
Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

1 of 290 11/5/2007 9:02 PM

Haskell/Print version
From Wikibooks, the open-content textbooks collection

Table Of Contents

Haskell Basics

Getting set up
Variables and functions
Lists and tuples
Next steps
Type basics
Simple input and output
Type declarations

Elementary Haskell

Recursion
Pattern matching
More about lists
Control structures
List processing
More on functions
Higher order functions 

Intermediate Haskell

Modules
Indentation
More on datatypes
Class declarations
Classes and types
Keeping track of State 

Monads

Understanding monads 
Advanced monads
Additive monads (MonadPlus)
Monadic parser combinators
Monad transformers
Value recursion (MonadFix)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

2 of 290 11/5/2007 9:02 PM

Practical monads

Advanced Haskell

Arrows
Understanding arrows
Continuation passing style (CPS) 
Mutable objects 
Zippers 
Applicative Functors 
Concurrency 

Fun with Types

Existentially quantified types
Polymorphism 
Advanced type classes
Phantom types 
Generalised algebraic data-types (GADT)
Datatype algebra 

Wider Theory

Denotational semantics 
Equational reasoning
Program derivation
Category theory 
The Curry-Howard isomorphism

Haskell Performance

Graph reduction 
Laziness 
Strictness 
Algorithm complexity
Parallelism
Choosing data structures

Libraries Reference

The Hierarchical Libraries
Lists:Arrays:Maybe:Maps
IO:Random Numbers

General Practices

Building a standalone application



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

3 of 290 11/5/2007 9:02 PM

Debugging
Testing
Packaging your software (Cabal)
Using the Foreign Function Interface (FFI)

Specialised Tasks

Graphical user interfaces (GUI) 
Databases 
Web programming 
Working with XML 
Using Regular Expressions 

Haskell Basics

Getting set up
This chapter will explore how to install the programs you'll need to start coding in Haskell.

Installing Haskell

First of all, you need a Haskell compiler. A compiler is a program that takes your code and spits out an 
executable which you can run on your machine.

There are several Haskell compilers available freely, the most popular and fully featured of them all being the 
Glasgow Haskell Compiler or GHC for short. The GHC was originally written at the University of Glasgow. 
GHC is available for most platforms:

For MS Windows, see the GHC download page (http://haskell.org/ghc/download.html) for details
For MacOS X, Linux or other platforms, you are most likely better off using one of the pre-packaged 
versions (http://haskell.org/ghc/distribution_packages.html) for your distribution or operating system.

Note

A quick note to those people who prefer to compile from source: This might be a bad 
idea with GHC, especially if it's the first time you install it. GHC is itself mostly written 
in Haskell, so trying to bootstrap it by hand from source is very tricky. Besides, the 
build takes a very long time and consumes a lot of disk space. If you are sure that you 
want to build GHC from the source, see Building and Porting GHC at the GHC 
homepage (http://hackage.haskell.org/trac/ghc/wiki/Building) .

Getting interactive



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

4 of 290 11/5/2007 9:02 PM

If you've just installed GHC, then you'll have also installed a sideline program called GHCi. The 'i' stands for 
'interactive', and you can see this if you start it up. Open a shell (or click Start, then Run, then type 'cmd' and hit 
Enter if you're on Windows) and type ghci, then press Enter.

You should get output that looks something like the following:

The first bit is GHCi's logo. It then informs you it's loading the base package, so you'll have access to most of the 
built-in functions and modules that come with GHC. Finally, the Prelude>  bit is known as the prompt. This is 
where you enter commands, and GHCi will respond with what they evaluate to.

Let's try some basic arithmetic:

The operators are similar to what they are in other languages: + is addition, *  is multiplication, and ̂ is 
exponentiation (raising to the power of).

GHCi is a very powerful development environment. As we progress through the course, we'll learn how we can 
load source files into GHCi, and evaluate different bits of them.

The next chapter will introduce some of the basic concepts of Haskell. Let's dive into that and have a look at our
first Haskell functions.

Variables and functions
(All the examples in this chapter can be typed into a Haskell source file and evaluated by loading that file into 
GHC or Hugs.)

Variables

Previously, we saw how to do simple arithmetic operations like addition and subtraction. Pop quiz: what is the 
area of a circle whose radius is 5 cm? No, don't worry, you haven't stumbled through the Geometry wikibook by 

mistake. The area of our circle is πr2 where r is our radius (5cm) and π, for the sake of simplicity, is 3.14. So 
let's try this out in GHCi:

   ___         ___ _
  / _ \ /\  /\/ __(_)
 / /_\// /_/ / /  | |      GHC Interactive, version  6.6, for Haskell 98.
/ /_\\/ __  / /___| |      http://www.haskell.org/g hc/
\____/\/ /_/\____/|_|      Type :? for help.

Loading package base ... linking ... done.
Prelude>

Prelude> 2 + 2
4
Prelude> 5 * 4 + 3
23
Prelude> 2 ^ 5
32



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

5 of 290 11/5/2007 9:02 PM

So let's see, we want to multiply pi (3.14) times our radius squared, so that would be

Great! Well, now since we have these wonderful, powerful computers to help us calculate things, there really 
isn't any need to round pi down to 2 decimal places. Let's do the same thing again, but with a slightly longer 
value for pi

Much better, so now how about giving me the circumference of that circle (hint: 2πr)?

Or how about the area of a different circle with radius 25 (hint: πr2)?

What we're hoping here is that sooner or later, you are starting to get sick of typing (or copy-and-pasting) all this 
text into your interpreter (some of you might even have noticed the up-arrow and Emacs-style key bindings to 
zip around the command line). Well, the whole point of programming, we would argue, is to avoid doing stupid, 
boring, repetitious work like typing the first 20 digits of pi in a million times. What we really need is a means of 
remembering the value of pi:

Note

If this command does not work, you are probably using hugs instead of GHCi, which 
expects a slightly different syntax.

Here you are literally telling Haskell to: "let pi be equal to 3.14159...". This introduces the new variable pi , 
which is now defined as being the number 3.14159265358979323846264338327950. This will be very handy 
because it means that we can call that value back up by just typing pi again:

   ___         ___ _
  / _ \ /\  /\/ __(_)
 / /_\// /_/ / /  | |      GHC Interactive, version  6.4.1, for Haskell 98.
/ /_\\/ __  / /___| |      http://www.haskell.org/g hc/
\____/\/ /_/\____/|_|      Type :? for help.

Loading package base-1.0 ... linking ... done.
Prelude>

Prelude> 3.14 * 5^2
78.5

Prelude> 3.14159265358979323846264338327950 * (5 ^ 2)
78.53981633974483

Prelude> 2 * 3.14159265358979323846264338327950 * 5
31.41592653589793

Prelude> 3.14159265358979323846264338327950 * (25 ^  2)
1963.4954084936207

Prelude> let pi = 3.1415926535897932384626433832795 0



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

6 of 290 11/5/2007 9:02 PM

Don't worry about all those missing digits; they're just skipped when displaying the value. All the digits will be 
used in any future calculations.

Having variables takes some of the tedium out of things. What is the area of a circle having a radius of 5 cm? 
How about a radius of 25cm?

Note

What we call "variables" in this book are often referred to as "symbols" in other 
introductions to functional programming. This is because other languages, namely the 
more popular imperative languages have a very different use for variables: keeping track 
of state. Variables in Haskell do no such thing; they store a value and an immutable one 
at that.

Types

Following the previous example, you might be tempted to try storing a value for that radius. Let's see what 
happens:

Whoops! You've just run into a programming concept known as types. Types are a feature of many 
programming languages which are designed to catch some of your programming errors early on so that you find 
out about them before it's too late. We'll discuss types in more detail later on in the Type basics chapter, but for 
now it's useful to think in terms of plugs and connectors. For example, many of the plugs on the back of your 
computer are designed to have different shapes and sizes for a purpose. This is partly so that you don't 
inadvertently plug the wrong bits of your computer together and blow something up. Types serve a similar 
purpose, but in this particular example, well, types aren't so helpful.

The tricky bit here is that numbers like 25 can either be interpreted as being Double  or Integer  (among other 
types)... but for lack of other information, Haskell has "guessed" that its type must be Integer  (which cannot be 
multiplied with a Double ). To work around this, we simply insist that it is to be treated as a Double

Prelude> pi
3.141592653589793

Prelude> pi * 5^2
78.53981633974483
Prelude> pi * 25^2
1963.4954084936207

Prelude> let r = 25
Prelude> 2 * pi * r

<interactive>:1:9:
    Couldn't match `Double' against `Integer'
      Expected type: Double
      Inferred type: Integer
    In the second argument of `(*)', namely `r'
    In the definition of `it': it = (2 * pi) * r



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

7 of 290 11/5/2007 9:02 PM

Note that Haskell only has this "guessing" behaviour in contexts where it does not have enough information to 
infer the type of something. As we will see below, most of the time, the surrounding context gives us all of the 
information that is needed to determine, say, if a number is to be treated as an Integer  or not.

Note

There is actually a little bit more subtlety behind this problem. It involves a language 
feature known as the monomorphism restriction. You don't actually need to know 
about this for now, so you can skip over this note if you just want to keep a brisk pace. 
Instead of specifying the type Double , you also could have given it a polymorphic type, 
like Num a => a , which means "any type a which belongs in the class Num". The 
corresponding code looks like this and works just as seamlessly as before:

Haskell could in theory assign such polymorphic types systematically, instead of 
defaulting to some potentially incorrect guess, like Integer. But in the real world, this 
could lead to values being needlessly duplicated or recomputed. To avoid this potential 
trap, the designers of the Haskell language opted for a more prudent "monomorphism 
restriction". It means that values may only have a polymorphic type if it can be inferred 
from the context, or if you explicitly give it one. Otherwise, the compiler is forced to 
choose a default monomorphic (i.e. non-polymorphic) type. This feature is somewhat 
controversial. It can even be disabled with the GHC flag 
(-fno-monomorphism-restriction), but it comes with some risk for inefficiency. Besides, 
in most cases, it is just as easy to specify the type explicitly.

Variables within variables

Variables can contain much more than just simple values such as 3.14. Indeed, they can contain any Haskell 
expression whatsoever. So, if we wanted to keep around, say the area of a circle with radius of 5, we could write 
something like this:

What's interesting about this is that we've stored a complicated chunk of Haskell (an arithmetic expression 
containing a variable) into yet another variable.

We can use variables to store any arbitrary Haskell code, so let's use this to get our acts together.

Prelude> let r = 25 :: Double
Prelude> 2 * pi * r
157.07963267948966

Prelude> let r = 25 :: Num a => a
Prelude> 2 * pi * r
157.07963267948966

Prelude> let area = pi * 5^2



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

8 of 290 11/5/2007 9:02 PM

Variables do not 
vary

So far so good.

Wait a second, why didn't this work? That is, why is it that we get the same value 
for area as we did back when r was 25? The reason this is the case is that variables 
in Haskell do not change. What actually happens when you defined r the second 
time is that you are talking about a different r. This is something that happens in 
real life as well. How many people do you know that have the name John? What's 
interesting about people named John is that most of the time, you can talk about 
"John" to your friends, and depending on the context, your friends will know which John your are refering to. 
Programming has something similar to context, called scope. We won't explain scope (at least not now), but 
Haskell's lexical scope is the magic that lets us define two different r and always get the right one back. Scope, 
however, does not solve the current problem. What we want to do is define a generic area  function that always 
gives you the area of a circle. What we could do is just define it a second time:

But we are programmers, and programmers loathe repetition. Is there a better way?

Functions

What we are really trying to accomplish with our generic area  is to define a function. Defining functions in 
Haskell is dead-simple. It is exactly like defining a variable, except with a little extra stuff on the left hand side. 
For instance, below is our definition of pi, followed by our definition of area:

To calculate the area of our two circles, we simply pass it a different value:

Functions allow us to make a great leap forward in the reusability of our code. But let's slow down for a 
moment, or rather, back up to dissect things. See the r  in our definition area r = ... ? This is what we call a 
parameter. A parameter is what we use to provide input to the function. When Haskell is interpreting the 
function, the value of its parameter must come from the outside. In the case of area , the value of r  is 5 when you
say area 5 , but it is 25 if you say area 25 .

Prelude> let r = 25.0
Prelude> let area2 = pi * r ^ 2
Prelude> area2
1963.4954084936207

Prelude> let r = 2.0
Prelude> area2
1963.4954084936207

Prelude> let area3 = pi * r ^ 2
Prelude> area3
12.566370614359172

Prelude> let pi = 3.1415926535897932384626433832795 0
Prelude> let area r = pi * r ^ 2

Prelude> area 5
78.53981633974483
Prelude> area 25
1963.4954084936207



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

9 of 290 11/5/2007 9:02 PM

Exercises

Say I type something in like this (don't type it in yet):

What do you think should happen? Are we in for an unpleasant 
surprise?

1.

What actually happens? Why? (Hint: remember what was said 
before about "scope")

2.

Scope and parameters

Warning: this section contains spoilers to the previous exercise

We hope you have completed the very short exercise (I would say thought experiment) above. Fortunately, the 
following fragment of code does not contain any unpleasant surprises:

An unpleasant surprise here would have been getting the value 0. This is just a consequence of what we wrote 
above, namely the value of a parameter is strictly what you pass in when you call the function. And that is 
directly a consequence of our old friend scope. Informally, the r  in let r = 0  is not the same r  as the one inside 
our defined function area  - the r  inside area  overrides the other r ; you can think of it as Haskell picking the 
most specific version of r  there is. If you have many friends all named John, you go with the one which just 
makes more sense and is specific to the context; similarly, what value of r we get depends on the scope.

Multiple parameters

Another thing you might want to know about functions is that they can accept more than one parameter. Say for 
instance, you want to calculate the area of a rectangle. This is quite simple to express:

Or say you want to calculate the area of a right angle triangle :

Prelude> let r = 0
Prelude> let area r = pi * r ^ 2
Prelude> area 5

Prelude> let r = 0
Prelude> let area r = pi * r ^ 2
Prelude> area 5
78.53981633974483

Prelude> let areaRect l w = l * w
Prelude> areaRect 5 10
50

Prelude> let areaTriangle b h = (b * h) / 2
Prelude> areaTriangle 3 9
13.5



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

10 of 290 11/5/2007 9:02 PM

Passing parameters in is pretty straightforward: you just give them in the same order that they are defined. So, 
whereas areaTriangle 3 9  gives us the area of a triangle with base 3 and height 9, areaTriangle 9 3  gives us 
the area with the base 9 and height 3.

Exercises
Write a function to calculate the volume of a box. A box has width, height 
and depth. You have to multiply them all to get the volume.

Functions within functions

To further cut down the amount of repetition it is possible to call functions from within other functions. A 
simple example showing how this can be used is to create a function to compute the area of a Square. We can 
think of a square as a special case of a rectangle (the area is still the width multiplied by the length); however, 
we also know that the width and length are the same, so why should we need to type it in twice?

Exercises
Write a function to calculate the volume of a cylinder. The volume of a 
cylinder is the area of the base, which is a circle (you already programmed 
this function in this chapter, so reuse it) multiplied by the height.

Summary

Variables store values. In fact, they store any arbitrary Haskell expression.1.
Variables do not change.2.
Functions help you write reusable code.3.
Functions can accept more than one parameter.4.

Notes

^   For readers with prior programming experience: Variables don't change? I only get constants? Shock!
Horror! No... trust us, as we hope to show you in the rest of this book, you can go a very long way without
changing a single variable! In fact, this non-changing of variables makes life easier because it makes 
programs so much more predictable.

1.

Lists and tuples
Lists and tuples are two ways of crushing several values down into a single value.

Prelude> let areaRect l w = l * w
Prelude> let areaSquare s = areaRect s s
Prelude> areaSquare 5
25



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

11 of 290 11/5/2007 9:02 PM

Lists

The functional programmer's next best friend

In the last section we introduced the concept of variables and functions in Haskell. Functions are one of the two 
major building blocks of any Haskell program. The other is the versatile list. So, without further ado, let's switch
over to the interpreter and build some lists:

Example - Building Lists in the Interpreter

The square brackets denote the beginning and the end of the list. List elements are separated by the comma "," 
operator. Further, list elements must be all of the same type. Therefore, [42, "life, universe and 

everything else"]  is not a legal list because it contains two elements of different types, namely, integer and 
string respectively. However, [12, 80]  or, ["beer", "sandwiches"]  are valid lists because they are both 
type-homogeneous.

Here is what happens if you try to define a list with mixed-type elements:

If you're confused about this business of lists and types, don't worry about it. We haven't talked very much about
types yet and we are confident that this will clear up as the book progresses.

Building lists

Square brackets and commas aren't the only way to build up a list. Another thing you can do with them is to 
build them up piece by piece, by consing things on to them, via the (:)  operator.

Example: Consing something on to a list

When you cons something on to a list (something:someList ), what you get back is another list. So, 
unsurprisingly, you could keep on consing your way up.

Prelude> let numbers = [1,2,3,4]
Prelude> let truths  = [True, False, False]
Prelude> let strings = ["here", "are", "some", "str ings"]

Prelude> let mixed = [True, "bonjour"]

<interactive>:1:19:
    Couldn't match `Bool' against `[Char]'
      Expected type: Bool
      Inferred type: [Char]
    In the list element: "bonjour"
    In the definition of `mixed': mixed = [True, "b onjour"]

Prelude> let numbers = [1,2,3,4]
Prelude> numbers
[1,2,3,4]
Prelude> 0:numbers
[0,1,2,3,4]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

12 of 290 11/5/2007 9:02 PM

Example: Consing lots of things to a list

In fact, this is just about how all lists are built, by consing them up from the empty list ([] ). The commas and 
brackets notation is actually a pleasant form of syntactic sugar. In other words, a list like [1,2,3,4,5]  is 
exactly equivalent to 1:2:3:4:5:[]

You will, however, want to watch out for a potential pitfall in list construction. Whereas 1:2:[]  is perfectly 
good Haskell, 1:2  is not. In fact, if you try it out in the interpreter, you get a nasty error message.

Example: Whoops!

Well, to be fair, the error message is nastier than usual because numbers are slightly funny beasts in Haskell. 
Let's try this again with something simpler, but still wrong, True:False

Example: Simpler but still wrong

The basic intuition for this is that the cons operator, (:)  works with this pattern something:someList  ;
however, what we gave it is more something:somethingElse . Cons only knows how to stick things onto lists. 
We're starting to run into a bit of reasoning about types. Let's summarize so far:

The elements of the list must have the same type.
You can only cons (:)  something onto a list.

Well, sheesh, aren't types annoying? They are indeed, but as we will see in Type basics, they can also be a life 

Prelude> 1:0:numbers
[1,0,1,2,3,4]
Prelude> 2:1:0:numbers
[2,1,0,1,2,3,4]
Prelude> 5:4:3:2:1:0:numbers
[5,4,3,2,1,0,1,2,3,4]

Prelude> 1:2

<interactive>:1:2:
    No instance for (Num [a])
      arising from the literal `2' at <interactive> :1:2
    Probable fix: add an instance declaration for ( Num [a])
    In the second argument of `(:)', namely `2'
    In the definition of `it': it = 1 : 2

Prelude> True:False

<interactive>:1:5:
    Couldn't match `[Bool]' against `Bool'
      Expected type: [Bool]
      Inferred type: Bool
    In the second argument of `(:)', namely `False'
    In the definition of `it': it = True : False



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

13 of 290 11/5/2007 9:02 PM

saver. In either case, when you are programming in Haskell and something blows up, you'll probably want to get 
used to thinking "probably a type error".

Exercises

Would the following piece of Haskell work: 3:[True,False] ? Why 
or why not?

1.

Write a function cons8  that takes a list and conses 8 on to it. Test it 
out on the following lists by doing:

cons8 []1.
cons8 [1,2,3]2.
cons8 [True,False]3.
let foo = cons8 [1,2,3]4.
cons8 foo5.

2.

Write a function that takes two arguments, a list and a thing, and 
conses the thing onto the list. You should start out with let myCons 

list thing =

3.

Lists within lists

Lists can contain anything, just as long as they are all of the same type. Well, then, chew on this: lists are things 
too, therefore, lists can contain... yes indeed, other lists! Try the following in the interpreter:

Example: Lists can contain lists

Lists of lists can be pretty tricky sometimes, because a list of things does not have the same type as a thing all by 
itself. Let's sort through these implications with a few exercises:

Exercises

Which of these are valid Haskell and which are not? Rewrite in cons 
notation.

[1,2,3,[]]1.
[1,[2,3],4]2.
[[1,2,3],[]]3.

1.

Which of these are valid Haskell, and which are not? Rewrite in 
comma and bracket notation.

[]:[[1,2,3],[4,5,6]]1.
[]:[]2.
[]:[]:[]3.
[1]:[]:[]4.

2.

Prelude> let listOfLists = [[1,2],[3,4],[5,6]] 
Prelude> listOfLists
[[1,2],[3,4],[5,6]]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

14 of 290 11/5/2007 9:02 PM

Can Haskell have lists of lists of lists? Why or why not?3.
Why is the following list invalid in Haskell? Don't worry too much if 
you don't get this one yet.

[[1,2],3,[4,5]]1.

4.

Lists of lists are extremely useful, because they allow you to express some very complicated, structured data 
(two-dimensional matrices, for example). They are also one of the places where the Haskell type system truly 
shines. Human programmers, or at least this wikibook author, get confused all the time when working with lists 
of lists, and having restrictions of types often helps in wading through the potential mess.

Tuples

A different notion of many

Tuples are another way of storing multiple values in a single value, but they are subtly different in a number of 
ways. They are useful when you know, in advance, how many values you want to store, and they lift the 
restriction that all the values have to be of the same type. For example, we might want a type for storing pairs of 
co-ordinates. We know how many elements there are going to be (two: an x and y co-ordinate), so tuples are 
applicable. Or, if we were writing a phonebook application, we might want to crunch three values into one: the 
name, phone number and address of someone. Again, we know how many elements there are going to be. Also, 
those three values aren't likely to have the same type, but that doesn't matter here, because we're using tuples.

Let's look at some sample tuples.

Example: Some tuples

The first example is a tuple containing two elements. The first one is True and the second is 1. The next example
again has two elements, the first is "Hello world" and the second, False. The third example is a bit more 
complex. It's a tuple consisting of five elements, the first is the number 4, the second the number 5, the third 
"Six", the fourth True, and the last one the character 'b'. So the syntax for tuples is: separate the different 
elements with a comma, and surround the whole thing in parentheses.

A quick note on nomenclature: in general you write n-tuple for a tuple of size n. 2-tuples (that is, tuples with 2 
elements) are normally called 'pairs' and 3-tuples triples. Tuples of greater sizes aren't actually all that common, 
although, if you were to logically extend the naming system, you'd have 'quadruples', 'quintuples' and so on, 
hence the general term 'tuple'.

So tuples are a bit like lists, in that they can store multiple values. However, there is a very key difference: pairs 
don't have the same type as triples, and triples don't have the same type as quadruples, and in general, two tuples
of different sizes have different types. You might be getting a little disconcerted because we keep mentioning 
this word 'type', but for now, it's just important to grasp how lists and tuples differ in their approach to sizes. 
You can have, say, a list of numbers, and add a new number on the front, and it remains a list of numbers. If you 

(True, 1)
("Hello world", False)
(4, 5, "Six", True, 'b')



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

15 of 290 11/5/2007 9:02 PM

have a pair and wish to add a new element, it becomes a triple, and this is a fundamentally different object [1].

Exercises

Write down the 3-tuple whose first element is 4, second element is 
"hello" and third element is True.

1.

Which of the following are valid tuples ?
(4, 4)1.
(4, "hello")2.
(True, "Blah", "foo")3.

2.

Lists can be built by consing new elements on to them: you cons a 
number onto a list of numbers, and get back a list of numbers. It 
turns out that there is no such way to build up tuples.

Why do you think that is?1.
Say for the sake of argument, that there was such a function. 
What would you get if you "consed" something on a tuple?

2.

3.

What are tuples for?

Tuples are handy when you want to return more than one value from a function. In most languages trying to 
return two or more things at once means wrapping them up in a special data structure, maybe one that only gets 
used in that function. In Haskell, just return them as a tuple.

You can also use tuples as a primitive kind of data structure. But that needs an understanding of types, which we
haven't covered yet.

Getting data out of tuples

In this section, we concentrate solely on pairs. This is mostly for simplicity's sake, but pairs are by far and away 
the most commonly used size of tuple.

Okay, so we've seen how we can put values in to tuples, simply by using the (x, y, z)  syntax. How can we get 
them out again? For example, a typical use of tuples is to store the (x, y) co-ordinate pair of a point: imagine you
have a chess board, and want to specify a specific square. You could do this by labeling all the rows from 1 to 8,
and similarly with the columns, then letting, say, (2, 5) represent the square in row 2 and column 5. Say we want
to define a function for finding all the pieces in a given row. One way of doing this would be to find the 
co-ordinates of all the pieces, then look at the row part and see if it's equal to whatever row we're being asked to 
examine. This function would need, once it had the co-ordinate pair (x, y)  of a piece, to extract the x (the row 
part). To do this there are two functions, fst  and snd , which project the first and second elements out of a pair, 
respectively (in math-speak a function that gets some data out of a structure is called a "Projection"). Let's see 
some examples:

Example: Using fst  and snd



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

16 of 290 11/5/2007 9:02 PM

It should be fairly obvious what these functions do. Note that you can only use these functions on pairs. Why? It 
all harks back to the fact that tuples of different sizes are different beasts entirely. fst  and snd  are specialized to 

pairs, and so you can't use them on anything else [2].

Exercises

Use a combination of fst  and snd  to extract the 4 from the tuple 
(("Hello", 4), True) .

1.

Normal chess notation is somewhat different to ours: it numbers the 
rows from 1-8 but then labels the columns A-H. Could we label a 
specific point with a number and a character, like (4, 'a') ? What 
important difference with lists does this illustrate?

2.

Tuples within tuples (and other combinations)

We can apply the same reasoning to tuples about storing lists within lists. Tuples are things too, so you can store
tuples with tuples (within tuples up to any arbitrary level of complexity). Likewise, you could also have lists of 
tuples, tuples of lists, all sorts of combinations along the same lines.

Example: Nesting tuples and lists

Some discussion about this - what you get out of this, maybe, what's the big idea behind grouping things 
together

There is one bit of trickiness to watch out for, however. The type of a tuple is defined not only by its size, but by 
the types of objects it contains. For example, the tuples like ("Hello",32)  and (47,"World")  are fundamentally
different. One is of type (String,Int)  tuples, whereas the other is (Int,String) . This has implications for 
building up lists of tuples. We could very well have lists like [("a",1),("b",9),("c",9)] , but having a list 
like [("a",1),(2,"b"),(9,"c")]  is right out. Can you spot the difference?

Exercises

Prelude> fst (2, 5)
2
Prelude> fst (True, "boo")
True
Prelude> snd (5, "Hello")
"Hello"

((2,3), True)
((2,3), [2,3])
[(1,2), (3,4), (5,6)]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

17 of 290 11/5/2007 9:02 PM

Which of these are valid Haskell, and why?
fst [1,2]

1:(2,3)

(2,4):(2,3)

(2,4):[]

[(2,4),(5,5),('a','b')]

([2,4],[2,2])

1.

FIXME: to be added2.

Summary

We have introduced two new notions in this chapter, lists and tuples. To sum up:

Lists are defined by square brackets and commas : [1,2,3] .
They can contain anything as long as all the elements of the list are of the same type
They can also be built by the cons operator, (:) , but you can only cons things onto lists

1.

Tuples are defined by parentheses and commas : ("Bob",32)

They can contain anything, even things of different types
They have a fixed length, or at least their length is encoded in their type. That is, two tuples with 
different lengths will have different types.

2.

Lists and tuples can be combined in any number of ways: lists within lists, tuples with lists, etc3.

We hope that at this point, you're somewhat comfortable enough manipulating them as part of the fundamental 
Haskell building blocks (variables, functions and lists), because we're now going to move to some potentially 
heady topics, types and recursion. Types, we have alluded to thrice in this chapter without really saying what 
they are, so these shall be the next major topic that we cover. But before we get to that, we're going to make a 
short detour to help you make better use of the GHC interpreter.

Notes

↑ At least as far as types are concerned, but we're trying to avoid that word :)1.
↑ More technically, fst  and snd  have types which limit them to pairs. It would be impossible to define 
projection functions on tuples in general, because they'd have to be able to accept tuples of different sizes, 
so the type of the function would vary.

2.

Next steps

Haskell files

Up to now, we've made heavy use of the GHC interpreter. The interpreter is indeed a useful tool for trying things
out quickly and for debugging your code. But we're getting to the point where typing everything directly into the 



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

18 of 290 11/5/2007 9:02 PM

interpreter isn't very practical. So now, we'll be writing our first Haskell source files.

Open up a file Varfun.hs  in your favourite text editor (the hs stands for Haskell) and paste the following 
definition in. Haskell uses indentations and spaces to decide where functions (and other things) begin and end, 
so make sure there are no leading spaces and that indentations are correct, otherwise GHC will report parse 
errors.

(In case you're wondering, pi  is actually predefined in Haskell, no need to include it here). Now change into the 
directory where you saved your file, open up ghci, and use :load (or :l for short):

If ghci gives an error, "Could not find module 'Varfun.hs'", then use :cd to change the current directory to the
directory containing Varfun.hs:

Now you can execute the bindings found in that file:

If you make changes to the file, just use :reload (:r for short) to reload the file.

Note

GHC can also be used as a compiler. That is, you could use GHC to convert your 
Haskell files into a program that can then be run without running the interpreter. See the 
documentation for details.

You'll note that there are a couple of differences between how we do things when we type them directly into 
ghci, and how we do them when we load them from files. The differences may seem awfully arbitrary for now, 
but they're actually quite sensible consequences of the scope, which, rest assured, we will explain later.

No let

For starters, you no longer say something like

area r = pi * r^2

Prelude> :load Varfun.hs
Compiling Main             ( Varfun.hs, interpreted  )
Ok, modules loaded: Main.
*Main> 

Prelude> :cd c:\myDirectory
Prelude> :load Varfun.hs
Compiling Main             ( Varfun.hs, interpreted  )
Ok, modules loaded: Main.
*Main> 

*Main> area 5
78.53981633974483



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

19 of 290 11/5/2007 9:02 PM

Instead, you say things like

The keyword let  is actually something you use a lot in Haskell, but not exactly in this context. We'll see further 
on in this chapter when we discuss the use of let bindings.

You can't define the same thing twice

Previously, the interpreter cheerfully allowed us to write something like this

On the other hand, writing something like this in a source file does not work

As we mentioned above, variables do not change, and this is even more the case when you're working in a 
source file. This has one very nice implication. It means that:

Order does not matter

The order in which you declare things does not matter. For example, the following fragments of code do exactly 
the same thing:

This is a unique feature of Haskell and other functional programming languages. The fact that variables never 
change means that we can opt to write things in any order that we want (but this is also why you can't declare 
something more than once... it would be ambiguous otherwise).

Exercises
Save the functions you had written in the previous module's exercises into 
a Haskell file. Load the file in GHCi and test the functions on a few 
parameters

let x = 3
let y = 2
let area r = pi * r ^ 2

x = 3
y = 2
area r = pi * r ^ 2

Prelude> let r = 5
Prelude> r
5
Prelude> let r = 2
Prelude> r
2

-- this does not work
r = 5
r = 2

 y = x * 2
 x = 3

 x = 3
 y = x * 2



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

20 of 290 11/5/2007 9:02 PM

More about functions

Working with actual source code files instead of typing things into the interpreter makes things convenient to 
define much more substantial functions than those we've seen up to now. Let's flex some Haskell muscle here 
and examine the kinds of things we can do with our functions.

Conditional expressions

if / then / else

Haskell supports standard conditional expressions. For instance, we could define a function that returns - 1 if its 
argument is less than 0; 0 if its argument is 0; and 1 if its argument is greater than 0 (this is called the signum 
function). Actually, such a function already exists, but let's define one of our own, what we'll call mySignum.

You can experiment with this as:

Example:

Note that the parenthesis around "-1" in the last example are required; if missing, the system will think you are 
trying to subtract the value "1" from the value "mySignum," which is ill-typed.

The if/then/else construct in Haskell is very similar to that of most other programming languages; however, you 
must have both a then and an else clause. It evaluates the condition (in this case x < 0 and, if this evaluates to 
True , it evaluates the then condition; if the condition evaluated to False , it evaluates the else condition).

You can test this program by editing the file and loading it back into your interpreter. Instead of typing :l 
Varfun.hs  again, you can simply type :reload  or just :r  to reload the current file. This is usually much faster.

case

Haskell, like many other languages, also supports case constructions. These are used when there are multiple 
values that you want to check against (case expressions are actually quite a bit more powerful than this -- see the
Pattern matching chapter for all of the details).

mySignum x =
    if x < 0
      then -1
      else if x > 0
        then 1
        else 0

*Main> mySignum 5
1
*Main> mySignum 0
0
*Main> mySignum (5-10)
-1
*Main> mySignum (-1)
-1



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

21 of 290 11/5/2007 9:02 PM

Suppose we wanted to define a function that had a value of 1 if its argument were 0; a value of 5 if its argument 
were 1; a value of 2 if its argument were 2; and a value of - 1 in all other instances. Writing this function using 
if statements would be long and very unreadable; so we write it using a case statement as follows (we call this 
function f ):

In this program, we're defining f  to take an argument x and then inspecting the value of x. If it matches 0, the 
value of f  is 1. If it matches 1, the value of f  is 5. If it matches 2, then the value of f  is 2; and if it hasn't matched 
anything by that point, the value of f  is - 1 (the underscore can be thought of as a "wildcard" -- it will match 
anything).

The indentation here is important. Haskell uses a system called "layout" to structure its code (the programming 
language Python uses a similar system). The layout system allows you to write code without the explicit 
semicolons and braces that other languages like C and Java require.

Indentation

The general rule for layout is that an open-brace is inserted after the keywords where, let, do and of, and the 
column position at which the next command appears is remembered. From then on, a semicolon is inserted 
before every new line that is indented the same amount. If a following line is indented less, a close-brace is 
inserted. This may sound complicated, but if you follow the general rule of indenting after each of those 
keywords, you'll never have to remember it (see the Indentation chapter for a more complete discussion of 
layout).

Some people prefer not to use layout and write the braces and semicolons explicitly. This is perfectly acceptable.
In this style, the above function might look like:

Of course, if you write the braces and semicolons explicitly, you're free to structure the code as you wish. The 
following is also equally valid:

However, structuring your code like this only serves to make it unreadable (in this case).

Defining one function for different parameters

Functions can also be defined piece-wise, meaning that you can write one version of your function for certain 
parameters and then another version for other parameters. For instance, the above function f  could also be 
written as:

f x =
    case x of
      0 -> 1
      1 -> 5
      2 -> 2
      _ -> -1

f x = case x of
        { 0 -> 1 ; 1 -> 5 ; 2 -> 2 ; _ -> -1 }

f x =
    case x of { 0 -> 1 ;
      1 -> 5 ; 2 -> 2
   ; _ -> -1 }



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

22 of 290 11/5/2007 9:02 PM

Here, the order is important. If we had put the last line first, it would have matched every argument, and f  would
return -1 , regardless of its argument (most compilers will warn you about this, though, saying something about 
overlapping patterns). If we had not included this last line, f  would produce an error if anything other than 0, 1 
or 2 were applied to it (most compilers will warn you about this, too, saying something about incomplete 
patterns). This style of piece-wise definition is very popular and will be used quite frequently throughout this 
tutorial. These two definitions of f  are actually equivalent -- this piece-wise version is translated into the case 
expression.

Function composition

More complicated functions can be built from simpler functions using function composition. Function 
composition is simply taking the result of the application of one function and using that as an argument for 
another. We've already seen this back in the Getting set up chapter, when we wrote 5*4+3 . In this, we were 
evaluating 5 * 4 and then applying + 3 to the result. We can do the same thing with our square  and f  functions:

Example:

The result of each of these function applications is fairly straightforward. The parentheses around the inner 
function are necessary; otherwise, in the first line, the interpreter would think that you were trying to get the 
value of square f , which has no meaning. Function application like this is fairly standard in most programming 
languages. There is another, more mathematical way to express function composition: the (. ) enclosed period 
function. This (. ) function is modeled after the () operator in mathematics.

Note

In mathematics we write  to mean "f following g." In Haskell , we write f . g

also to mean "f following g."

The meaning of  is simply that . That is, applying the 
function  to the value x is the same as applying g to x, taking the result, and then 
applying f to that.

f 0 = 1
f 1 = 5
f 2 = 2
f _ = -1

square x = x^2

*Main> square (f 1)
25
*Main> square (f 2)
4
*Main> f (square 1)
5
*Main> f (square 2)
-1



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

23 of 290 11/5/2007 9:02 PM

The (. ) function (called the function composition function), takes two functions and makes them into one. For 
instance, if we write (square . f) , this means that it creates a new function that takes an argument, applies f  to 
that argument and then applies square  to the result. Conversely, (f . square)  means that a new function is 
created that takes an argument, applies square  to that argument and then applies f  to the result. We can see this 
by testing it as before:

Example:

Here, we must enclose the function composition in parentheses; otherwise, the Haskell compiler will think we're
trying to compose square  with the value f 1  in the first line, which makes no sense since f 1  isn't even a 
function.

It would probably be wise to take a little time-out to look at some of the functions that are defined in the 
Prelude. Undoubtedly, at some point, you will accidentally rewrite some already-existing function (I've done it 
more times than I can count), but if we can keep this to a minimum, that would save a lot of time.

Let Bindings

Often we wish to provide local declarations for use in our functions. For instance, if you remember back to your 
grade school mathematics courses, the following equation is used to find the roots (zeros) of a polynomial of the 

form ax2 + bx + c = 0: . We could write the following function to compute the 

two values of x:

Notice that our definition here has a bit of redundancy. It is not quite as nice as the mathematical definition 
because we have needlessly repeated the code for sqrt(b*b - 4*a*c) . To remedy this problem, Haskell allows 
for local bindings. That is, we can create values inside of a function that only that function can see. For instance, 
we could create a local binding for sqrt(b*b-4*a*c)  and call it, say, disc  and then use that in both places 
where sqrt(b*b - 4*a*c)  occurred. We can do this using a let/in declaration:

In fact, you can provide multiple declarations inside a let. Just make sure they're indented the same amount, or 
you will have layout problems:

*Main> (square . f) 1
25
*Main> (square . f) 2
4
*Main> (f . square) 1
5
*Main> (f . square) 2
-1

roots a b c =
    ((-b + sqrt(b*b - 4*a*c)) / (2*a),
     (-b - sqrt(b*b - 4*a*c)) / (2*a))

roots a b c =
    let disc = sqrt (b*b - 4*a*c)
    in  ((-b + disc) / (2*a),
         (-b - disc) / (2*a))



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

24 of 290 11/5/2007 9:02 PM

In Haskell, the 
rule is that all type 
names have to 
begin with a 
capital letter. We 
shall adhere to 
this convention 
henceforth.

Type basics
Types in programming are a way of grouping similar values. In Haskell, the type system is a powerful way of 
ensuring there are fewer mistakes in your code.

Introduction

Programming deals with different sorts of entities. For example, consider adding two numbers together:

2 + 3

What are 2 and 3? They are numbers, clearly. But how about the plus sign in the middle? That's certainly not a 
number. So what is it?

Similarly, consider a program that asks you for your name, then says "Hello". Neither your name nor the word 
Hello is a number. What are they then? We might refer to all words and sentences and so forth as Text. In fact, 
it's more normal in programming to use a slightly more esoteric word, that is, String.

If you've ever set up a database before, you'll likely have come across types. For 
example, say we had a table in a database to store details about a person's contacts;
a kind of personal telephone book. The contents might look like this:

First Name Last Name Telephone number Address

Sherlock Holmes 743756 221B Baker Street London

Bob Jones 655523 99 Long Road Street Villestown

The fields contain values. Sherlock  is a value as is 99 Long Road Street 

Villestown  as well as 655523 . As we've said, types are a way of grouping different sorts of data. What do we 
have in the above table? Two of the columns, First name and Last name contain text, so we say that the values 
are of type String. The type of the third column is a dead giveaway by its name, Telephone number. Values in 
that column have the type of Number!

At first glance one may be tempted to class address as a string. However, the semantics behind an innocent 
address are quite complex. There's a whole lot of human conventions that dictate. For example, if the first line 
contains a number, then that's the number of the house, if not, then it's probably the name of the house, except if 
the line begins with PO Box then it's just a postal box address and doesn't indicate where the person lives at all... 
Clearly, there's more going on here than just Text. We could say that addresses are Text; there'd be nothing 

roots a b c =
    let disc = sqrt (b*b - 4*a*c)
        twice_a = 2*a
    in  ((-b + disc) / twice_a,
         (-b - disc) / twice_a)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

25 of 290 11/5/2007 9:02 PM

wrong with that. However, claiming they're of some different type, say, Address, is more powerful. If we know 
some piece of data has the type of Text, that's not very helpful. However, if we know it has the type of Address, 
we instantly know much more about the piece of data.

We might also want to apply this line of reasoning to our telephone number column. Indeed, it would be a good 
idea to come up with a TelephoneNumber type. Then if we were to come across some arbitrary sequence of 
digits, knowing that sequence of digits was of type TelephoneNumber, we would have access to a lot more 
information than if it were just a Number.

Another reason to not consider the TelephoneNumber as a Number is that numbers are arithmetic entities 
allowing them to be used for computing other numbers. What would be then the meaning and expected 
effect of adding 1 to a TelephoneNumber? It would not allow calling anyone by phone. That's a good 
enough reason why you would like a stronger type than just a mere Number. Also, each digit making a 
telephone number is important, it's not acceptable to lose some of them, by rounding it, or even by 
omitting some leading zeroes. Other reasons would be that telephone numbers can't be used the same way 
from different locations, and you may also need to specify within a TelephoneNumber value some other 
information like a area number or a country prefix. One good way to specify that is to provide some 
abstraction for telephone numbers and to design your database with a separate type instead of just 
Number.

Why types are useful

So far, what we've done just seems like categorizing things -- hardly a feature which would cause every modern 
programming language designer to incorporate into their language! In the next section we explore how Haskell 
uses types to the programmer's benefit.

Using the interactive :type command

Characters and strings

The best way to explore how types work in Haskell is to fire up GHCi. Let's do it! Once we're up and running, 
let us get to know the :type command.

Example: Using the :t command in GHCi on a literal character

(The :type can be also shortened to :t , which we shall use from now on.)

And there we have it. You give GHCi an expression and it returns its type. In this case we gave it the literal 
value 'H'  - the letter H enclosed in single quotation marks (a.k.a. apostrophe, ANSI 39) and GHCi printed it 
followed by the "::" symbol which reads "is of type" followed by Char. The whole thing reads: 'H' is of type 
Char.

If we try to give it a string of characters, we need to enclose them in quotation marks:

Prelude> :type 'H'
'H' :: Char



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

26 of 290 11/5/2007 9:02 PM

Example: Using the :t command in GHCi on a literal string

In this case we gave it some text enclosed in double quotation marks and GHCi printed "Hello World" ::

[Char] . [Char] means a list of characters. Notice the difference between Char and [Char] - the square brackets 
are used to construct literal lists, and they are also used to describe the list type.

Exercises

Try using the :type  command on the literal value "H"  (notice the 
double quotes). What happens? Why?

1.

Try using the :type  command on the literal value 'Hello World'

(notice the single quotes). What happens? Why?
2.

This is essentially what strings are in Haskell - lists of characters. A string in Haskell can be initialized in several 
ways: It may be entered as a sequence of characters enclosed in double quotation marks (ANSI 34); it may be 
constructed similar to any other list as individual elements of type Char joined together with the ":" function and
terminated by an empty list or, built with individual Char values enclosed in brackets and separated by commas.

So, for the final time, what precisely is this concept of text that we're throwing around? One way of interpreting 
it is to say it's basically a sequence of characters. Think about it: the word "Hey" is just the character 'H' 
followed by the character 'e' followed by the character 'y'. Haskell uses a list to hold this sequence of characters. 
Square brackets indicate a list of things, for example here [Char]  means 'a list of Chars'.

Haskell has a concept of type synonyms. Just as in the English language, two words that mean the same thing, 
for example 'fast' and 'quick', are called synonyms, in Haskell two types which are exactly the same are called 
'type synonyms'. Everywhere you can use [Char], you can use String. So to say:

Is also perfectly valid. From here on we'll mostly refer to text as String, rather than [Char].

Boolean values

One of the other types found in most languages is called a Boolean, or Bool for short. This has two values: true 
or false. This turns out to be very useful. For example consider a program that would ask the user for a name 
then look that name up in a spreadsheet. It might be useful to have a function, nameExists , which indicates 
whether or not the name of the user exists in the spreadsheet. If it does exist, you could say that it is true that the 
name exists, and if not, you could say that it is false that the name exists. So we've come across Bools. The two 
values of bools are, as we've mentioned, true and false. In Haskell boolean values are capitalized (for reasons 
that will later become clear):

Prelude> :t "Hello World"
"Hello World" :: [Char]

"Hello World" :: String



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

27 of 290 11/5/2007 9:02 PM

Example: Exploring the types of True and False in GHCi

This shouldn't need too much explaining at this point. The values True and False are categorized as Booleans, 
that is to say, they have type Bool.

Numeric types

If you've been playing around with typing :t on all the familiar values you've come across, perhaps you've run
into the following complication:

We'll defer the explanation of this until later. The short version of the story is that there are many different types 
of numbers (fractions, whole numbers, etc) and 5 can be any one of them. This weird-looking type relates to a 
Haskell feature called type classes, which we will be playing with later in this book.

Functional types

So far, the types we have talked about apply to values (strings, booleans, characters, etc), and we have explained
how types not only help to categorize them, but also describe them. The next thing we'll look at is what makes 

the type system truly powerful: We can assign types not only to values, but to functions as well[3]. Let's look at 
some examples.

Example: not

Example: Negating booleans

not  is a standard Prelude function that simply negates Bools, in the sense that truth turns into falsity and vice 
versa. For example, given the above example we gave using Bools, nameExists , we could define a similar 
function that would test whether a name doesn't exist in the spreadsheet. It would likely look something like 
this:

Prelude> :t True
True :: Bool
Prelude> :t False
False :: Bool

Prelude> :t 5
5 :: (Num t) => t

not True  = False
not False = True



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

28 of 290 11/5/2007 9:02 PM

Example: nameDoesntExist : using not

To assign a type to not  we look at two things: the type of values it takes as its input, and the type of values it 
returns. In our example, things are easy. not  takes a Bool (the Bool to be negated), and returns a Bool (the 
negated Bool). Therefore, we write that:

Example: Type signature for not

You can read this as 'not  is a function from things of type Bool to things of type Bool'.

Example: unlines and unwords

A common programming task is to take a list of Strings, then join them all up into a single string, but insert a 
newline character between each one, so they all end up on different lines. For example, say you had the list 
["Bacon", "Sausages", "Egg"] , and wanted to convert it to something resembling a shopping list, the natural 
thing to do would be to join the list together into a single string, placing each item from the list onto a new line. 
This is precisely what unlines  does. unwords  is similar, but it uses a space instead of a newline as a separator. 
(mnemonic: un = unite)

Example: unlines  and unwords

Notice the weird output from unlines . This isn't particularly related to types, but it's worth noting anyway, so 
we're going to digress a little and explore why this is. Basically, any output from GHCi is first run through the 
show function, which converts it into a String. This makes sense, because GHCi shows you the result of your 
commands as text, so it has to be a String. However, what does show do if you give it something which is already
a String? Although the obvious answer would be 'do nothing', the behaviour is actually slightly different: any 
'special characters', like tabs, newlines and so on in the String are converted to their 'escaped forms', which 
means that rather than a newline actually making the stuff following it appear on the next line, it is shown as 
"\n". To avoid this, we can use the putStrLn  function, which GHCi sees and doesn't run your output through 
show.

nameDoesntExist name = not (nameExists name)

not :: Bool -> Bool

Prelude> unlines ["Bacon", "Sausages", "Egg"]
"Bacon\nSausages\nEgg\n"
Prelude> unwords ["Bacon", "Sausages", "Egg"]
"Bacon Sausages Egg"



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

29 of 290 11/5/2007 9:02 PM

Example: Using putStrLn  in GHCi

The second result may look identical, but notice the lack of quotes. putStrLn  outputs exactly what you give it 
(actually putStrLn  appends a newline character to its input before printing it; the function putStr  outputs 
exactly what you give it). Also, note that you can only pass it a String. Calls like putStrLn 5  will fail. You'd 
need to convert the number to a String first, that is, use show: putStrLn (show 5)  (or use the equivalent 
function print: print 5 ).

Getting back to the types. What would the types of unlines  and unwords  be? Well, again, let's look at both what 
they take as an argument, and what they return. As we've just seen, we've been feeding these functions a list, and
each of the items in the list has been a String. Therefore, the type of the argument is [String]. They join all these 
Strings together into one long String, so the return type has to be String. Therefore, both of the functions have 
type [String] -> String . Note that we didn't mention the fact that the two functions use different separators.
This is totally inconsequential when it comes to types — all that matters is that they return a String. The type of
a String with some newlines is precisely the same as the type of a String with some spaces.

Example: chr and ord

Text presents a problem to computers. Once everything is reduced to its lowest level, all a computer knows how 
to deal with is 1's and 0's: computers work in binary. As working with binary isn't very convenient, humans have
come up with ways of making computers store text. Every character is first converted to a number, then that 
number is converted to binary and stored. Hence, a piece of text, which is just a sequence of characters, can be 
encoded into binary. Normally, we're only interested in how to encode characters into their numerical 
representations, because the number to binary bit is very easy.

The easiest way of converting characters to numbers is simply to write all the possible characters down, then 
number them. For example, we might decide that 'a' corresponds to 1, then 'b' to 2, and so on. This is exactly 
what a thing called the ASCII standard is: 128 of the most commonly-used characters, numbered. Of course, it 
would be a bore to sit down and look up a character in a big lookup table every time we wanted to encode it, so 

we've got two functions that can do it for us, chr  (pronounced 'char') and ord  [4]:

Example: Type signatures for chr  and ord

Remember earlier when we stated Haskell has many numeric types? The simplest is Int , which represents whole

numbers, or integers, to give them their proper name. [5] So what do the above type signatures say? Recall how 

Prelude> putStrLn (unlines ["Bacon", "Sausages", "E gg"])
Bacon
Sausages
Egg

Prelude> putStrLn (unwords ["Bacon", "Sausages", "E gg"])
Bacon Sausages Egg

chr :: Int  -> Char
ord :: Char -> Int



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

30 of 290 11/5/2007 9:02 PM

There are very 
deep reasons for 
this, which we'll 
cover in the 
chapter on 
Currying.

the process worked for not  above. We look at the type of the function's argument, then at the type of the 
function's result. In the case of chr  (find the character corresponding to a specific numeric encoding), the type 
signature tells us that it takes arguments of type Int and has a result of type Char. The converse is the case with 
ord  (find the specific numeric encoding for a given character): it takes things of type Char and returns things of 
type Int.

To make things more concrete, here are a few examples of function calls to chr  and ord , so you can see how the 
types work out. Notice that the two functions aren't in the standard prelude, but instead in the Data.Char module,
so you have to load that module with the :m (or :module) command.

Example: Function calls to chr  and ord

Functions in more than one argument

So far, all we've seen is functions that take a single argument. This isn't very interesting! For example, the 
following is a perfectly valid Haskell function, but what would its type be?

Example: A function in more than one argument

As we've said a few times, there's more than one type for numbers, but we're going to cheat here and pretend that
x and y have to be Ints.

The general technique for forming the type of a function in more than one 
argument, then, is to just write down all the types of the arguments in a row, in 
order (so in this case x first then y), then write ->  in between all of them. Finally, 
add the type of the result to the end of the row and stick a final ->  in just before it. 
So in this case, we have:

FIXME: use images here.

Write down the types of the arguments. We've already said that x and y have 
to be Ints, so it becomes:

1.

Fill in the gaps with -> :2.

Prelude> :m Data.Char
Prelude Data.Char> chr 97
'a'
Prelude Data.Char> chr 98
'b'
Prelude Data.Char> ord 'c'
99

f x y = x + 5 + 2 * y

Int             Int
^^ x is an Int  ^^ y is an Int as well



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

31 of 290 11/5/2007 9:02 PM

A library is a 
collection of 
common code used
by many 
programs.

Add in the result type and a final -> . In our case, we're just doing some basic arithmetic so the result 
remains an Int.

3.

Real-World Example: openWindow

As you'll learn in the Practical Haskell section of the course, one popular group of 
Haskell libraries are the GUI ones. These provide functions for dealing with all the 
parts of Windows or Linux you're familiar with: opening and closing application 
windows, moving the mouse around etc. One of the functions from one of these 
libraries is called openWindow , and you can use it to open a new window in your 
application. For example, say you're writing a word processor like Microsoft Word,
and the user has clicked on the 'Options' button. You need to open a new window 
which contains all the options that they can change. Let's look at the type signature 

for this function [6]:

Example: openWindow

Don't panic! Here are a few more types you haven't come across yet. But don't worry, they're quite simple. All 
three of the types there, WindowTitle, WindowSize and Window are defined by the GUI library that provides 
openWindow . As we saw when constructing the types above, because there are two arrows, the first two types are 
the types of the parameters, and the last is the type of the result. WindowTitle holds the title of the window 
(what appears in the blue bar - you didn't change the color, did you? - at the top), WindowSize how big the 
window should be. The function then returns a value of type Window which you can use to get information on 
and manipulate the window.

Exercises

Finding types for functions is a basic Haskell skill that you should become 
very familiar with. What are the types of the following functions?

The negate  function, which takes an Int and returns that Int with its 
sign swapped. For example, negate 4 = -4 , and negate (-2) = 2

1.

The && function, pronounced 'and', that takes two Bools and returns 
a third Bool which is True if both the arguments were, and False 
otherwise.

2.

The ||  function, pronounced 'or', that takes two Bools and returns a 
third Bool which is True if either of the arguments were, and False 
otherwise.

3.

Int -> Int

Int -> Int -> Int
              ^^ We're returning an Int
           ^^ There's the extra -> that got added i n 

openWindow :: WindowTitle -> WindowSize -> Window



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

32 of 290 11/5/2007 9:02 PM

We'll look at the 
theory behind 
polymorphism in 
much more detail 
later in the course.

For any functions hereafter involving numbers, you can just assume the 
numbers are Ints.

f x y = not x && y1.
g x = (2*x - 1)^22.
h x y z = chr (x - 2)3.

Polymorphic types

So far all we've looked at are functions and values with a single type. However, if you start playing around
with :t in GHCi you'll quickly run into things that don't have types beginning with the familiar capital letter. For
example, there's a function that finds the length of a list, called (rather predictably) length . Remember that 
[Foo] is a list of things of type Foo. However, we'd like length  to work on lists of any type. I.e. we'd rather not 
have a lengthInts :: [Int] -> Int , as well as a lengthBools :: [Bool] -> Int , as well as a 
lengthStrings :: [String] -> Int , as well as a...

That's too complicated. We want one single function that will find the length of any type of list. The way Haskell
does this is using type variables. For example, the actual type of length is as follows:

Example: Our first polymorphic type

The "a" you see there in the square brackets is called a type variable. Type
variables begin with a lowercase letter. Indeed, this is why types have to begin with
an uppercase letter — so they can be distinguished from type variables. When
Haskell sees a type variable, it allows any type to take its place. This is exactly
what we want. In type theory (a branch of mathematics), this is called
polymorphism: functions or values with only a single type (like all the ones we've
looked at so far except length ) are called monomorphic, and things that use type 
variables to admit more than one type are therefore polymorphic. 

Example: fst and snd

As we saw, you can use the fst  and snd  functions to extract parts of pairs. By this time you should be in the 
habit of thinking "What type is that function?" about every function you come across. Let's examine fst  and 
snd . First, a few sample calls to the functions:

Example: Example calls to fst  and snd

length :: [a] -> Int



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

33 of 290 11/5/2007 9:02 PM

To begin with, let's point out the obvious: these two functions take a pair as their parameter and return one part 
of this pair. The important thing about pairs, and indeed tuples in general, is that they don't have to be 
homogeneous with respect to types; their different parts can be different types. Indeed, that is the case in the 
second and third examples above. If we were to say:

That would force the first and second part of input pair to be the same type. That illustrates an important aspect 
to type variables: although they can be replaced with any type, they have to be replaced with the same type 
everywhere. So what's the correct type? Simply:

Example: The types of fst  and snd

Note that if you were just given the type signatures, you might guess that they return the first and second parts of
a pair, respectively. In fact this is not necessarily true, they just have to return something with the same type of 
the first and second parts of the pair.

Type signatures in code

Now we've explored the basic theory behind types and types in Haskell, let's look at how they appear in code. 
Most Haskell programmers will annotate every function they write with its associated type. That is, you might 
be writing a module that looks something like this:

Example: Module without type signatures

This is a small library that provides some frequently used string manipulation functions. uppercase  converts a 

Prelude> fst (1, 2) 
1
Prelude> fst ("Hello", False)
"Hello"
Prelude> snd (("Hello", False), 4)
4

fst :: (a, a) -> a

fst :: (a, b) -> a
snd :: (a, b) -> b

module StringManip where

import Data.Char

uppercase = map toUpper
lowercase = map toLower
capitalise x = 
  let capWord []     = []
      capWord (x:xs) = toUpper x : xs
  in unwords (map capWord (words x))



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

34 of 290 11/5/2007 9:02 PM

string to uppercase, lowercase  to lowercase, and capitalize  capitalizes the first letter of every word. Providing 
a type for these functions makes it more obvious what they do. For example, most Haskellers would write the 
above module something like the following:

Example: Module with type signatures

Note that you can group type signatures together into a single type signature (like ours for uppercase  and 
lowercase  above) if the two functions share the same type.

Type inference

So far, we've explored types by using the :t command in GHCi. However, before you came across this chapter,
you were still managing to write perfectly good Haskell code, and it has been accepted by the compiler. In other 
words, it's not necessary to add type signatures. However, if you don't add type signatures, that doesn't mean 
Haskell simply forgets about typing altogether! Indeed, when you didn't tell Haskell the types of your functions 
and variables, it worked them out. This is a process called type inference, whereby the compiler starts with the 
types of things it knows, then works out the types of the rest of the things. Type inference for Haskell is 

decidable, which means that the compiler can always work out the types, even if you never write them in [7]. 
Lets look at some examples to see how the compiler works out types.

Example: Simple type inference

This function takes a character and sees if it is an 'l' character. The compiler derives the type for isL  something 
like the following:

Example: A typing derivation

module StringManip where

import Data.Char

uppercase, lowercase :: String -> String
uppercase = map toUpper
lowercase = map toLower

capitalise :: String -> String
capitalise x = 
  let capWord []     = []
      capWord (x:xs) = toUpper x : xs
  in unwords (map capWord (words x))

-- We're deliberately not providing a type signatur e for this function
isL c = c == 'l'



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

35 of 290 11/5/2007 9:02 PM

The first line indicates that the type of the function (==) , which tests for equality, is a -> a -> Bool  [8]. (We 
include the function name in parentheses because it's an operator: its name consists only of non-alphanumeric 
characters. More on this later.) The compiler also knows that something in 'single quotes' has type Char, so 
clearly the literal 'l' has type Char. Next, the compiler starts replacing the type variables in the signature for (==)

with the types it knows. Note that in one step, we went from a -> a -> Bool  to Char -> Char -> Bool , 
because the type variable a was used in both the first and second argument, so they need to be the same. And so 
we arrive at a function that takes a single argument (whose type we don't know yet, but hold on!) and applies it 
as the first argument to (==) . We have a particular instance of the polymorphic type of (==) , that is, here, we're 
talking about (==) :: Char -> Char -> Bool  because we know that we're comparing Chars. Therefore, as 
(==) :: Char -> Char -> Bool  and we're feeding the parameter into the first argument to (==) , we know that 
the parameter has the type of Char. Phew!

But wait, we're not even finished yet! What's the return type of the function? Thankfully, this bit is a bit easier. 
We've fed two Chars into a function which (in this case) has type Char -> Char -> Bool , so we must have a 
Bool. Note that the return value from the call to (==)  becomes the return value of our isL  function.

So, let's put it all together. isL  is a function which takes a single argument. We discovered that this argument 
must be of type Char. Finally, we derived that we return a Bool. So, we can confidently say that isL  has the 
type:

Example: isL  with a type

And, indeed, if you miss out the type signature, the Haskell compiler will discover this on its own, using exactly 
the same method we've just run through.

Reasons to use type signatures

So if type signatures are optional, why bother with them at all? Here are a few reasons:

Documentation: the most prominent reason is that it makes your code easier to read. With most functions,
the name of the function along with the type of the function are sufficient to guess at what the function 
does. (Of course, you should always comment your code anyway.)
Debugging: if you annotate a function with a type, then make a typo in the body of the function, the 
compiler will tell you at compile-time that your function is wrong. Leaving off the type signature could 
have the effect of allowing your function to compile, and the compiler would assign it an erroneous type. 
You wouldn't know until you ran your program that it was wrong. In fact, this is so important, let's explore
it some more.

(==)  :: a -> a -> Bool
'l'   :: Char
Replacing the second ''a'' in the signature for (== ) with the type of 'l':
(==)  :: Char -> Char -> Bool
isL   :: Char -> Bool

isL :: Char -> Bool
isL c = c == 'l'



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

36 of 290 11/5/2007 9:02 PM

Types prevent errors

Imagine you have a few functions set up like the following:

Example: Type inference at work

Our function fiveOrSix  takes a Bool. When pairToInt  receives its arguments, it knows, because of the type 
signature we've annotated it with, that the first element of the pair is a Bool. So, we could extract this using fst

and pass that into fiveOrSix , and this would work, because the type of the first element of the pair and the type 
of the argument to fiveOrSix  are the same.

This is really central to typed languages. When passing expressions around you have to make sure the types 
match up like they did here. If they don't, you'll get type errors when you try to compile; your program won't 
typecheck. This is really how types help you to keep your programs bug-free. To take a very trivial example:

Example: A non-typechecking program

Having that line as part of your program will make it fail to compile, because you can't add two strings together! 
More likely, you wanted to use the string concatenation operator, which joins two strings together into a single 
one:

Example: Our erroneous program, fixed

An easy typo to make, but because you use Haskell, it was caught when you tried to compile. You didn't have to 
wait until you ran the program for the bug to become apparent.

This was only a simple example. However, the idea of types being a system to catch mistakes works on a much 
larger scale too. In general, when you make a change to your program, you'll change the type of one of the 
elements. If this change isn't something that you intended, then it will show up immediately. A lot of Haskell 
programmers remark that once they have fixed all the type errors in their programs, and their programs compile, 
that they tend to 'just work': function flawlessly first time, with only minor problems. Run-time errors, where 
your program goes wrong when you run it rather than when you compile it, are much rarer in Haskell than in 
other languages. This is a huge advantage of a strong type system like Haskell's.

fiveOrSix :: Bool -> Int
fiveOrSix True  = 5
fiveOrSix False = 6

pairToInt :: (Bool, String) -> Int
pairToInt x = fiveOrSix (fst x)

"hello" + " world"

"hello" ++ " world"



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

37 of 290 11/5/2007 9:02 PM

Exercises

Infer the types of following functions:

f x y = uppercase (x ++ y)1.
g (x,y) = fiveOrSix (isL x) - ord y2.
h x y = pairToInt (fst x,y) + snd x + length y3.

FIXME more to come...

Notes

↑ At least as far as types are concerned, but we're trying to avoid that word :)1.
↑ More technically, fst  and snd  have types which limit them to pairs. It would be impossible to define 
projection functions on tuples in general, because they'd have to be able to accept tuples of different sizes, 
so the type of the function would vary.

2.

↑ In fact, these are one and the same concept in Haskell.3.
↑ This isn't quite what chr  and ord  do, but that description fits our purposes well, and it's close enough.4.
↑ To make things even more confusing, there's actually even more than one type for integers! Don't worry,
we'll come on to this in due course.

5.

↑ This has been somewhat simplified to fit our purposes. Don't worry, the essence of the function is there.6.
↑ Some of the newer type system extensions to GHC do break this, however, so you're better off just 
always putting down types anyway.

7.

↑ This is a slight lie. That type signature would mean that you can compare two values of any type 
whatsoever, but this clearly isn't true: how can you see if two functions are equal? Haskell includes a kind 
of 'restricted polymorphism' that allows type variables to range over some, but not all types. Haskell 
implements this using type classes, which we'll learn about later. In this case, the correct type of (==)  is Eq 

a => a -> a -> Bool .

8.

Simple input and output
So far this tutorial has discussed functions that return values, which is well and good. But how do we write 
"Hello world"? To give you a first taste of it, here is a small variant of the "Hello world" program:

Example: Hello! What is your name?

At the very least, what should be clear is that dealing with input and output (IO) in Haskell is not a lost cause! 
Functional languages have always had a problem with input and output because they require side effects. 

main = do
  putStrLn "Please enter your name: "
  name <- getLine
  putStrLn ("Hello, " ++ name ++ ", how are you?")



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

38 of 290 11/5/2007 9:02 PM

Functions always have to return the same results for the same arguments. But how can a function "getLine" 
return the same value every time it is called? Before we give the solution, let's take a step back and think about 
the difficulties inherent in such a task.

Any IO library should provide a host of functions, containing (at a minimum) operations like:

print a string to the screen
read a string from a keyboard
write data to a file
read data from a file

There are two issues here. Let's first consider the initial two examples and think about what their types should 
be. Certainly the first operation (I hesitate to call it a "function") should take a String  argument and produce 
something, but what should it produce? It could produce a unit () , since there is essentially no return value from 
printing a string. The second operation, similarly, should return a String , but it doesn't seem to require an 
argument.

We want both of these operations to be functions, but they are by definition not functions. The item that reads a 
string from the keyboard cannot be a function, as it will not return the same String  every time. And if the first 
function simply returns ()  every time, then referential transparency tells us we should have no problem with 
replacing it with a function f _ = () . But clearly this does not have the desired effect.

Actions

The breakthrough for solving this problem came when Phil Wadler realized that monads would be a good way to
think about IO computations. In fact, monads are able to express much more than just the simple operations 
described above; we can use them to express a variety of constructions like concurrence, exceptions, IO, 
non-determinism and much more. Moreover, there is nothing special about them; they can be defined within
Haskell with no special handling from the compiler (though compilers often choose to optimize monadic 
operations). Monads also have a somewhat undeserved reputation of being difficult to understand. So we're 
going to leave things at that -- knowing simply that IO somehow makes use of monads without neccesarily 
understanding the gory details behind them (they really aren't so gory). So for now, we can forget that monads 
even exist.

As pointed out before, we cannot think of things like "print a string to the screen" or "read data from a file" as 
functions, since they are not (in the pure mathematical sense). Therefore, we give them another name: actions. 
Not only do we give them a special name, we give them a special type. One particularly useful action is 
putStrLn , which prints a string to the screen. This action has type:

As expected, putStrLn  takes a string argument. What it returns is of type IO () . This means that this function is 
actually an action (that is what the IO  means). Furthermore, when this action is evaluated (or "run") , the result 
will have type () .

Note

Actually, this type means that putStrLn  is an action "within the IO monad", but we will 

putStrLn :: String -> IO ()



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

39 of 290 11/5/2007 9:02 PM

gloss over this for now.

You can probably already guess the type of getLine :

This means that getLine  is an IO action that, when run, will have type String .

The question immediately arises: "how do you 'run' an action?". This is something that is left up to the compiler. 
You cannot actually run an action yourself; instead, a program is, itself, a single action that is run when the 
compiled program is executed. Thus, the compiler requires that the main  function have type IO () , which means
that it is an IO action that returns nothing. The compiled code then executes this action.

However, while you are not allowed to run actions yourself, you are allowed to combine  actions. There are two 
ways to go about this. The one we will focus on in this chapter is the do notation, which provides a convenient 
means of putting actions together, and allows us to get useful things done in Haskell without having to 
understand what really happens. Lurking behind the do notation is the more explicit approach using the (>>=) 
operator, but we will not be ready to cover this until the chapter Understanding monads.

Note

Do notation is just syntactic sugar for (>>=) . If you have experience with higher order 
functions, it might be worth starting with the latter approach and coming back here to 
see how do notation gets used.

Let's consider the following name program:

Example: What is your name?

We can consider the do notation as a way to combine a sequence of actions. Moreover, the <-  notation is a way 
to get the value out of an action. So, in this program, we're sequencing three actions: a putStrLn , a getLine  and 
another putStrLn . The putStrLn  action has type String -> IO () , so we provide it a String , so the fully 
applied action has type IO () . This is something that we are allowed to run as a program.

Exercises

Write a program which asks the user for the base and height of a triangle, 

getLine :: IO String

main = do
  putStrLn "Please enter your name: "
  name <- getLine
  putStrLn ("Hello, " ++ name ++ ", how are you?")



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

40 of 290 11/5/2007 9:02 PM

calculates its area and prints it to the screen. The interaction should look 
something like:

Hint: you can use the function read  to convert user strings like "3.3" into 
numbers like 3.3 and function show to convert a number into string.

Left arrow clarifications

The <- is optional

While we are allowed to get a value out of certain actions like getLine , we certainly are not obliged to do so. 
For example, we could very well have written something like this:

Example: executing getLine  directly

Clearly, that isn't very useful: the whole point of prompting the user for his or her name was so that we could do 
something with the result. That being said, it is conceivable that one might wish to read a line and completely 
ignore the result. Omitting the <-  will allow for that; the action will happen, but the data won't be stored 
anywhere.

In order to get the value out of the action, we write name <- getLine , which basically means "run getLine , and 
put the results in the variable called name."

The <- can be used with any action (except the last)

On the flip side, there are also very few restrictions which actions can have values gotten out of them. Consider 
the following example, where we put the results of each action into a variable (except the last... more on that 
later):

Example: putting all results into a variable

The base?
3.3
The height?
5.4
The area of that triangle is 8.91

main = do
  putStrLn "Please enter your name: "
  getLine
  putStrLn ("Hello, how are you?")

main = do
  x <- putStrLn "Please enter your name: "
  name <- getLine
  putStrLn ("Hello, " ++ name ++ ", how are you?")



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

41 of 290 11/5/2007 9:02 PM

The variable x gets the value out of its action, but that isn't very interesting because the action returns the unit 
value () . So while we could technically get the value out of any action, it isn't always worth it. But wait, what 
about that last action? Why can't we get a value out of that? Let's see what happens when we try:

Example: getting the value out of the last action

Whoops!

This is a much more interesting example, but it requires a somewhat deeper understanding of Haskell than we 
currently have. Suffice it to say, whenever you use <-  to get the value of an action, Haskell is always expecting 
another action to follow it. So the very last action better not have any <- s.

Controlling actions

Normal Haskell constructions like if/then/else and case/of can be used within the do notation, but you need 
to be somewhat careful. For instance, in a simple "guess the number" program, we have:

If we think about how the if/then/else construction works, it essentially takes three arguments: the condition, 
the "then" branch, and the "else" branch. The condition needs to have type Bool , and the two branches can have 
any type, provided that they have the same type. The type of the entire if/then/else construction is then the 
type of the two branches.

In the outermost comparison, we have (read guess) < num  as the condition. This clearly has the correct type. 
Let's just consider the "then" branch. The code here is:

Here, we are sequencing two actions: putStrLn  and doGuessing . The first has type IO () , which is fine. The 
second also has type IO () , which is fine. The type result of the entire computation is precisely the type of the 
final computation. Thus, the type of the "then" branch is also IO () . A similar argument shows that the type of 

main = do
  x <- putStrLn "Please enter your name: "
  name <- getLine
  y <- putStrLn ("Hello, " ++ name ++ ", how are yo u?")

YourName.hs:5:2:
    The last statement in a 'do' construct must be an expression

    doGuessing num = do
       putStrLn "Enter your guess:"
       guess <- getLine
       if (read guess) < num
         then do putStrLn "Too low!"
                 doGuessing num
         else if (read guess) > num
                then do putStrLn "Too high!"
                        doGuessing num
                else do putStrLn "You Win!"

              do putStrLn "Too low!"
                 doGuessing num



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

42 of 290 11/5/2007 9:02 PM

the "else" branch is also IO () . This means the type of the entire if/then/else construction is IO () , which is 
just what we want.

Note

In this code, the last line is else do putStrLn "You Win!" . This is somewhat overly 
verbose. In fact, else putStrLn "You Win!"  would have been sufficient, since do is 
only necessary to sequence actions. Since we have only one action here, it is 
superfluous.

It is incorrect to think to yourself "Well, I already started a do block; I don't need another one," and hence write 
something like:

Here, since we didn't repeat the do, the compiler doesn't know that the putStrLn  and doGuessing  calls are 
supposed to be sequenced, and the compiler will think you're trying to call putStrLn  with three arguments: the 
string, the function doGuessing  and the integer num. It will certainly complain (though the error may be 
somewhat difficult to comprehend at this point).

We can write the same doGuessing  function using a case statement. To do this, we first introduce the Prelude 
function compare , which takes two values of the same type (in the Ord  class) and returns one of GT, LT, EQ, 
depending on whether the first is greater than, less than or equal to the second.

Here, again, the dos after the -> s are necessary on the first two options, because we are sequencing actions.

If you're used to programming in an imperative language like C or Java, you might think that return will exit 
you from the current function. This is not so in Haskell. In Haskell, return simply takes a normal value (for 
instance, one of type Int ) and makes it into an action that returns the given value (for the same example, the 
action would be of type IO Int ). In particular, in an imperative language, you might write this function as:

    do if (read guess) < num
         then putStrLn "Too low!"
              doGuessing num
         else ...

doGuessing num = do
  putStrLn "Enter your guess:"
  guess <- getLine
  case compare (read guess) num of
    LT -> do putStrLn "Too low!"
             doGuessing num
    GT -> do putStrLn "Too high!"
             doGuessing num
    EQ -> putStrLn "You Win!"



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

43 of 290 11/5/2007 9:02 PM

Here, because we have the return ()  in the first if  match, we expect the code to exit there (and in most 
imperative languages, it does). However, the equivalent code in Haskell, which might look something like:

First of all, if you guess correctly, it will first print "You win!," but it won't exit, and it will check whether guess

is less than num. Of course it is not, so the else branch is taken, and it will print "Too high!" and then ask you to 
guess again.

On the other hand, if you guess incorrectly, it will try to evaluate the case statement and get either LT or GT as the 
result of the compare . In either case, it won't have a pattern that matches, and the program will fail immediately 
with an exception.

Exercises

What does the following program print out?

Why?

Exercises

void doGuessing(int num) {
  print "Enter your guess:";
  int guess = atoi(readLine());
  if (guess == num) {
    print "You win!";
    return ();
  }

  // we won't get here if guess == num
  if (guess < num) {
    print "Too low!";
    doGuessing(num);
  } else {
    print "Too high!";
    doGuessing(num);
  }
}

doGuessing num = do
  putStrLn "Enter your guess:"
  guess <- getLine
  case compare (read guess) num of
    EQ -> do putStrLn "You win!"
             return ()

  -- we don't expect to get here unless guess == nu m
  if (read guess < num)
    then do print "Too low!";
            doGuessing
    else do print "Too high!";
            doGuessing

main =
 do x <- getX
    putStrLn x

getX =
 do return "hello"
    return "aren't"
    return "these"
    return "returns"
    return "rather"
    return "pointless?"



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

44 of 290 11/5/2007 9:02 PM

Write a program that asks the user for his or her name. If the name is one 
of Simon, John or Phil, tell the user that you think Haskell is a great 
programming language. If the name is Koen, tell them that you think 
debugging Haskell is fun (Koen Classen is one of the people who works on 
Haskell debugging); otherwise, tell the user that you don't know who he or 
she is.

Write two different versions of this program, one using if

statements, the other using a case statement.

Actions under the microscope

Actions may look easy up to now, but they are actually a common stumbling block for new Haskellers. If you 
have run into trouble working with actions, you might consider looking to see if one of your problems or 
questions matches the cases below. It might be worth skimming this section now, and coming back to it when 
you actually experience trouble.

Mind your action types

One temptation might be to simplify our program for getting a name and printing it back out. Here is one 
unsuccessful attempt:

Example: Why doesn't this work?

Ouch!

Let us boil the example above to its simplest form. Would you expect this program to compile?

Example: This still does not work

For the most part, this is the same (attempted) program, except that we've stripped off the superflous "What is 

main =
 do putStrLn "What is your name? "
    putStrLn ("Hello " ++ getLine)

YourName.hs:3:26:
    Couldn't match expected type `[Char]'
           against inferred type `IO String'

main =
 do putStrLn getLine



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

45 of 290 11/5/2007 9:02 PM

your name" prompt as well as the polite "Hello". One trick to understanding this is to reason about it in terms of 
types. Let us compare:

We can use the same mental machinery we learned in Type basics to figure how everything went wrong. Simply 
put, putStrLn is expecting a String  as input. We do not have a String , but something tantalisingly close, an IO 

String . This represents an action that will give us a String  when it's run. To obtain the String  that putStrLn

wants, we need to run the action, and we do that with the ever-handy left arrow, <- .

Example: This time it works

Working our way back up to the fancy example:

Now the name is the String we are looking for and everything is rolling again.

Mind your expression types too

Fine, so we've made a big deal out of the idea that you can't use actions in situations that don't call for them. The 
converse of this is that you can't use non-actions in situations that DO expect actions. Say we want to greet the 
user, but this time we're so excited to meet them, we just have to SHOUT their name out:

Example: Exciting but incorrect. Why?

This goes wrong...

putStrLn :: String -> IO ()
getLine  :: IO String

main =
 do name <- getLine
    putStrLn name

main =
 do putStrLn "What is your name? "
    name <- getLine
    putStrLn ("Hello " ++ name)

import Data.Char (toUpper)

main =
 do name <- getLine
    loudName <- makeLoud name
    putStrLn ("Hello " ++ loudName ++ "!")
    putStrLn ("Oh boy! Am I excited to meet you, " ++ loudName)

-- Don't worry too much about this function; it jus t capitalises a String
makeLoud :: String -> String
makeLoud s = map toUpper s



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

46 of 290 11/5/2007 9:02 PM

This is quite similar to the problem we ran into above: we've got a mismatch between something that is 
expecting an IO type, and something which is not. This time, the cause is our use of the left arrow <- ; we're 
trying to left arrow a value of makeLoud name , which really isn't left arrow material. It's basically the same 
mismatch we saw in the previous section, except now we're trying to use regular old String (the loud name) as an
IO String, which clearly are not the same thing. The latter is an action, something to be run, whereas the former 
is just an expression minding its own business. Note that we cannot simply use loudName = makeLoud name

because a do sequences actions, and loudName = makeLoud name  is not an action.

So how do we extricate ourselves from this mess? We have a number of options:

We could find a way to turn makeLoud  into an action, to make it return IO String . But this is not 
desirable, because the whole point of functional programming is to cleanly separate our side-effecting 
stuff (actions) from the pure and simple stuff. For example, what if we wanted to use makeLoud from 
some other, non-IO, function? An IO makeLoud  is certainly possible (how?), but missing the point entirely.
We could use return  to promote the loud name into an action, writing something like loudName <- 

return (makeLoud name) . This is slightly better, in that we are at least leaving the makeLoud  itself 
function nice and IO-free, whilst using it in an IO-compatible fashion. But it's still moderately clunky, 
because by virtue of left arrow, we're implying that there's action to be had -- how exciting! -- only to let 
our reader down with a somewhat anticlimatic return

Or we could use a let binding...

It turns out that Haskell has a special extra-convenient syntax for let bindings in actions. It looks a little like this:

Example: let  bindings in do blocks.

If you're paying attention, you might notice that the let binding above is missing an in . This is because let

bindings in do blocks do not require the in  keyword. You could very well use it, but then you'd have to make a 
mess of your do blocks. For what it's worth, the following two blocks of code are equivalent.

sweet unsweet

    Couldn't match expected type `IO' against infer red type `[]'
      Expected type: IO t
      Inferred type: String
    In a 'do' expression: loudName <- makeLoud name

main =
 do name <- getLine
    let loudName = makeLoud name
    putStrLn ("Hello " ++ loudName ++ "!")
    putStrLn ("Oh boy! Am I excited to meet you, " ++ loudName)

 do name <- getLine
    let loudName = makeLoud name
    putStrLn ("Hello " ++ loudName ++ "!")
    putStrLn ("Oh boy! Am I excited to meet you, " ++ loudName)

 do name <- getLine
    let loudName = makeLoud name
    in  do putStrLn ("Hello " ++ loudName ++ "!")
           putStrLn ("Oh boy! Am I excited to meet you, " ++ loudName)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

47 of 290 11/5/2007 9:02 PM

Exercises

Why does the unsweet version of the let binding require an extra do

keyword?
1.

Do you always need the extra do?2.
(extra credit) Curiously, let  without in  is exactly how we wrote 
things when we were playing with the interpreter in the beginning of 
this book. Why can you omit the in  keyword in the interpreter, when 
you'd have to put it in when typing up a source file?

3.

Learn more

At this point, you should have the skills you need to do some fancier input/output. Here are some IO-related 
options to consider.

You could continue the sequential track, by learning more about types and eventually monads.
Alternately: you could start learning about building graphical user interfaces in the GUI chapter
For more IO-related functionality, you could also consider learning more about the System.IO library

Type declarations

Haskell has three basic ways to declare a new type:

The data  declaration for structures and enumerations.
The type  declaration for type synonyms.
The newtype  declaration, which is a cross between the other two.

In this chapter, we will focus on the most essential way, data , and to make life easier, type . You'll find out 
about newtype  later on, but don't worry too much about it; it's there mainly for optimisation.

data for making your own types

Here is a data structure for a simple list of anniversaries:

data Anniversary = 
   Birthday String Int Int Int           -- Name, y ear, month, day
   | Wedding String String Int Int Int   -- First p artner's name, second partner's name, year, month, day



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

48 of 290 11/5/2007 9:02 PM

This declares a new data type Anniversary  with two constructor functions called Birthday  and Wedding . As 
usual with Haskell the case of the first letter is important: type names and constructor functions must always 
start with capital letters. Note also the vertical bar: this marks the point where one alternative ends and the next 
begins; you can think of it almost as an or - which you'll remember was || - except used in types.

The declaration says that an Anniversary can be one of two things; a Birthday or a Wedding. A Birthday 
contains one string and three integers, and a Wedding contains two strings and three integers. The comments 
(after the "--") explain what the fields actually mean.

Now we can create new anniversaries by calling the constructor functions. For example, suppose we have John 
Smith born on 3rd July 1968:

He married Jane Smith on 4th March 1987:

These two objects can now be put in a list:

(Obviously a real application would not hard-code its entries: this is just to show how constructor functions 
work).

Constructor functions can do all of the things ordinary functions can do. Anywhere you could use an ordinary 
function you can use a constructor function.

Anniversaries will need to be converted into strings for printing. This needs another function:

This shows the one way that constructor functions are special: they can also be used to deconstruct objects. 
showAnniversary  takes an argument of type Anniversary . If the argument is a Birthday  then the first version 
gets used, and the variables name, month , date  and year  are bound to its contents. If the argument is a Wedding

then the second version is used and the arguments are bound in the same way. The brackets indicate that the 
whole thing is one argument split into five or six parts, rather than five or six separate arguments.

Notice the relationship between the type and the constructors. All versions of showAnniversary  convert an 
anniversary to a string. One of them handles the Birthday  case and the other handles the Wedding  case.

It also needs an additional showDate  routine:

johnSmith :: Anniversary
johnSmith = Birthday "John Smith" 1968 7 3

smithWedding :: Anniversary
smithWedding = Wedding "John Smith" "Jane Smith" 19 87 3 4

anniversaries :: [Anniversary]
anniversaries = [johnSmith, smithWedding]

showAnniversary :: Anniversary -> String

showAnniversary (Birthday name year month day) =
   name ++ " born " ++ showDate year month day

showAnniversary (Wedding name1 name2 year month day ) =
   name1 ++ " married " ++ name2 ++ " " ++ showDate  year month day



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

49 of 290 11/5/2007 9:02 PM

Of course, it's a bit clumsy having the date passed around as three separate integers. What we really need is a 
new datatype:

Constructor functions are allowed to be the same name as the type, and if there is only one then it is good 
practice to make it so.

type for making type synonyms

It would also be nice to make it clear that the strings in the Anniversary type are names, but still be able to 
manipulate them like ordinary strings. The type  declaration does this:

This says that a Name is a synonym for a String . Any function that takes a String  will now take a Name as well, 
and vice versa. The right hand side of a type  declaration can be a more complex type as well. For example 
String  itself is defined in the standard libraries as

So now we can rewrite the Anniversary  type like this:

which is a lot easier to read. We can also have a type for the list:

The rest of the code needs to be changed to match:

showDate y m d = show y ++ "-" ++ show m ++ "-" ++ show d

data Date = Date Int Int Int   -- Year, Month, Day

type Name = String

type String = [Char]

data Anniversary = 
   Birthday Name Date
   | Wedding Name Name Date

type AnniversaryBook = [Anniversary]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

50 of 290 11/5/2007 9:02 PM

Elementary Haskell

Recursion
Recursion is a clever idea which plays a central role in Haskell (and computer science in general): namely, 
recursion is the idea of using a given function as part of its own definition. A function defined in this way is said 
to be recursive. It might sound like this always leads to infinite regress, but if done properly it doesn't have to.

Generally speaking, a recursive definition comes in two parts. First, there are one or more base cases which say 
what to do in simple cases where no recursion is necessary (that is, when the answer can be given straight away 
without recursively calling the function being defined). This ensures that the recursion can eventually stop. The 
recursive case is more general, and defines the function in terms of a 'simpler' call to itself. Let's look at a few 
examples.

Numeric recursion

The factorial function

In mathematics, especially combinatorics, there is a function used fairly frequently called the factorial  function 
[9]. It takes a single number as an argument, finds all the numbers between one and this number, and multiplies 
them all together. For example, the factorial of 6 is 1 × 2 × 3 × 4 × 5 × 6 = 720. This is an interesting function
for us, because it is a candidate to be written in a recursive style.

The idea is to look at the factorials of adjacent numbers:

johnSmith :: Anniversary
johnSmith = Birthday "John Smith" (Date 1968 7 3)

smithWedding :: Anniversary
smithWedding = Wedding "John Smith" "Jane Smith" (D ate 1987 3 4)

anniversaries :: AnniversaryBook
anniversaries = [johnSmith, smithWedding]

showAnniversary :: Anniversary -> String

showAnniversary (Birthday name date) =
   name ++ " born " ++ showDate date

showAnniversary (Wedding name1 name2 date) =
   name1 ++ " married " ++ name2 ++ showDate date

showDate :: Date -> String
showDate (Date y m d) = show y ++ "-" show m ++ "-"  ++ show d



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

51 of 290 11/5/2007 9:02 PM

Example: Factorials of adjacent numbers

Notice how we've lined things up. You can see here that the factorial of 6 involves the factorial of 5. In fact, the 
factorial of 6 is just 6 × (factorial of 5). Let's look at some more examples:

Example: Factorials of adjacent numbers

Indeed, we can see that the factorial of any number is just that number multiplied by the factorial of the number 
one less than it. There's one exception to this: if we ask for the factorial of 0, we don't want to multiply 0 by the 

factorial of -1! In fact, we just say the factorial of 0 is 1 (we define it to be so. It just is, okay?[10]). So, 0 is the 
base case for the recursion: when we get to 0 we can immediately say that the answer is 1, without using 
recursion. We can summarize the definition of the factorial function as follows:

The factorial of 0 is 1.
The factorial of any other number is that number multiplied by the factorial of the number one less than it.

We can translate this directly into Haskell:

Example: Factorial function

This defines a new function called factorial . The first line says that the factorial of 0 is 1, and the second one 
says that the factorial of any other number n is equal to n times the factorial of n-1 . Note the parentheses around 
the n-1 : without them this would have been parsed as (factorial n) - 1 ; function application (applying a 
function to a value) will happen before anything else does (we say that function application binds more tightly
than anything else).

This all seems a little voodoo so far. How does it work? Well, let's look at what happens when you execute 
factorial 3 :

3 isn't 0, so we recur: work out the factorial of 2
2 isn't 0, so we recur.

1 isn't 0, so we recur.
0 is 0, so we return 1.

Factorial of 6 = 6 × 5 × 4 × 3 × 2 × 1
Factorial of 5 =     5 × 4 × 3 × 2 × 1

Factorial of 3 = 3 × 2 × 1
Factorial of 2 =     2 × 1

Factorial of 8 = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1
Factorial of 7 =     7 × 6 × 5 × 4 × 3 × 2 × 1

factorial 0 = 1
factorial n = n * factorial (n-1)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

52 of 290 11/5/2007 9:02 PM

We multiply the current number, 1, by the result of the recursion, 1, obtaining 1 (1 × 1).
We multiply the current number, 2, by the result of the recursion, 1, obtaining 2 (2 × 1 × 1).

We multiply the current number, 3, by the result of the recursion, obtaining 6 (3 × 2 × 1 × 1).

We can see how the multiplication 'builds up' through the recursion.

(Note that we end up with the one appearing twice, since the base case is 0 rather than 1; but that's okay since 
multiplying by one has no effect. We could have designed factorial  to stop at 1 if we had wanted to, but it's 
conventional, and often useful, to have the factorial of 0 defined.)

One more thing to note about the recursive definition of factorial : the order of the two declarations (one for 
factorial 0  and one for factorial n ) is important. Haskell decides which function definition to use by 
starting at the top and picking the first one that matches. In this case, if we had the general case (factorial n ) 
before the 'base case' (factorial 0 ), then the general n would match anything passed into it -- including 0. So 
factorial 0  would match the general n case, the compiler would conclude that factorial 0  equals 0 * 

factorial (-1) , and so on to negative infinity. Definitely not what we want. The lesson here is that one should 
always list multiple function definitions starting with the most specific and proceeding to the most general.

Exercises

Type the factorial function into a Haskell source file and load it into 
your favourite Haskell environment.

What is factorial 5 ?
What about factorial 1000 ? If you have a scientific 
calculator (that isn't your computer), try it there first. Does 
Haskell give you what you expected?
What about factorial (-1) ? Why does this happen?

1.

The double factorial of a number n is the product of every other
number from 1 (or 2) up to n. For example, the double factorial of 8 
is 8 × 6 × 4 × 2 = 384, and the double factorial of 7 is 7 × 5 × 3 × 1
= 105. Define a doublefactorial  function in Haskell.

2.

A quick aside

This section is aimed at people who are used to more imperative-style languages like C and Java.

Loops are the bread and butter of imperative languages. For example, the idiomatic way of writing a factorial 
function in an imperative language would be to use a for loop, like the following (in C):

Example: The factorial function in an imperative language

int factorial(int n) {
  int res = 1;
  for (i = 1; i <= n; i++)
    res *= i;
  return res;
}



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

53 of 290 11/5/2007 9:02 PM

This isn't directly possible in Haskell, since changing the value of the variables res  and i  (a destructive update) 
would not be allowed. However, you can always translate a loop into an equivalent recursive form. The idea is 
to make each loop variable in need of updating into a parameter of a recursive function. For example, here is a 
direct 'translation' of the above loop into Haskell:

Example: Using recursion to simulate a loop

The expressions after the vertical bars are called guards, and we'll learn more about them in the section on 
control structures. For now, you can probably figure out how they work by comparing them to the corresponding
C code above.

Obviously this is not the shortest or most elegant way to implement factorial  in Haskell (translating directly 
from an imperative paradigm into Haskell like this rarely is), but it can be nice to know that this sort of 
translation is always possible.

Another thing to note is that you shouldn't be worried about poor performance through recursion with Haskell. 
In general, functional programming compilers include a lot of optimization for recursion, including one 
important one called tail-call optimisation; remember too that Haskell is lazy -- if a calculation isn't needed, it 
won't be done. We'll learn about these in later chapters.

Other recursive functions

As it turns out, there is nothing particularly special about the factorial  function; a great many numeric 
functions can be defined recursively in a natural way. For example, let's think about multiplication. When you 
were first introduced to multiplication (remember that moment? :)), it may have been through a process of
'repeated addition'. That is, 5 × 4 is the same as summing four copies of the number 5. Of course, summing four
copies of 5 is the same as summing three copies, and then adding one more -- that is, 5 × 4 = 5 × 3 + 5. This
leads us to a natural recursive definition of multiplication:

Example: Multiplication defined recursively

Stepping back a bit, we can see how numeric recursion fits into the general recursive pattern. The base case for 
numeric recursion usually consists of one or more specific numbers (often 0 or 1) for which the answer can be 
immediately given. The recursive case computes the result by recursively calling the function with a smaller 
argument and using the result somehow to produce the final answer. The 'smaller argument' used is often one 
less than the current argument, leading to recursion which 'walks down the number line' (like the examples of 
factorial  and mult  above), but it doesn't have to be; the smaller argument could be produced in some other 
way as well.

factorial n = factorialWorker 1 n 1
factorialWorker i n res | i <= n    = factorialWork er (i+1) n (res * i)
                        | otherwise = res

mult n 0 = 0                      -- anything times  0 is zero
mult n 1 = n                      -- anything times  1 is itself
mult n m = (mult n (m - 1)) + n   -- recur: multipl y by one less, and add an extra copy



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

54 of 290 11/5/2007 9:02 PM

Exercises

Expand out the multiplication 5 × 4 similarly to the expansion we
used above for factorial 3 .

1.

Define a recursive function power  such that power x y  raises x to 
the y power.

2.

You are given a function plusOne x = x + 1 . Without using any 
other (+) s, define a recursive function addition  such that addition 

x y  adds x and y together.

3.

(Harder) Implement the function log2 , which computes the integer 
log (base 2) of its argument. That is, log2  computes the exponent of 
the largest power of 2 which is less than or equal to its argument. 
For example, log2 16 = 4 , log2 11 = 3 , and log2 1 = 0 . (Small 
hint: read the last phrase of the paragraph immediately preceding 
these exercises.)

4.

List-based recursion

A lot of functions in Haskell turn out to be recursive, especially those concerning lists.[11] Consider the length

function that finds the length of a list:

Example: The recursive definition of length

Don't worry too much about the syntax; we'll learn more about it in the section on Pattern matching. For now, 
let's rephrase this code into English to get an idea of how it works. The first line gives the type of length : it 
takes any sort of list and produces an Int . The next line says that the length of an empty list is 0. This, of course, 
is the base case. The final line is the recursive case: if a list consists of a first element x and another list xs

representing the rest of the list, the length of the list is one more than the length of xs .

How about the concatenation function (++) , which joins two lists together? (Some examples of usage are also 
given, as we haven't come across this function so far.)

Example: The recursive (++)

length :: [a] -> Int
length []     = 0
length (x:xs) = 1 + length xs



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

55 of 290 11/5/2007 9:02 PM

This is a little more complicated than length  but not too difficult once you break it down. The type says that 
(++)  takes two lists and produces another. The base case says that concatenating the empty list with a list ys  is 
the same as ys  itself. Finally, the recursive case breaks the first list into its head (x) and tail (xs ) and says that to 
concatenate the two lists, concatenate the tail of the first list with the second list, and then tack the head x on the 
front.

There's a pattern here: with list-based functions, the base case usually involves an empty list, and the recursive 
case involves passing the tail of the list to our function again, so that the list becomes progressively smaller.

Exercises

Give recursive definitions for the following list-based functions. In each 
case, think what the base case would be, then think what the general case 
would look like, in terms of everything smaller than it.

replicate :: Int -> a -> [a] , which takes an element and a 
count and returns the list which is that element repeated that many 
times. E.g. replicate 3 'a' = "aaa" . (Hint: think about what 
replicate of anything with a count of 0 should be; a count of 0 is 
your 'base case'.)

1.

(!!) :: [a] -> Int -> a , which returns the element at the given 
'index'. The first element is at index 0, the second at index 1, and so 
on. Note that with this function, you're recurring both numerically 
and down a list.

2.

(A bit harder.) zip :: [a] -> [b] -> [(a, b)] , which takes two 
lists and 'zips' them together, so that the first pair in the resulting list 
is the first two elements of the two lists, and so on. E.g. zip 

[1,2,3] "abc" = [(1, 'a'), (2, 'b'), (3, 'c')] . If either of 
the lists is shorter than the other, you can stop once either list runs 
out. E.g. zip [1,2] "abc" = [(1, 'a'), (2, 'b')] .

3.

Recursion is used to define nearly all functions to do with lists and numbers. The next time you need a list-based
algorithm, start with a case for the empty list and a case for the non-empty list and see if your algorithm is 
recursive.

Don't get TOO excited about recursion...

Although it's very important to have a solid understanding of recursion when programming in Haskell, one 
rarely has to write functions that are explicitly recursive. Instead, there are all sorts of standard library functions 

Prelude> [1,2,3] ++ [4,5,6]
[1,2,3,4,5,6]
Prelude> "Hello " ++ "world" -- Strings are lists o f Chars
"Hello world"

(++) :: [a] -> [a] -> [a]
[] ++ ys     = ys
(x:xs) ++ ys = x : xs ++ ys



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

56 of 290 11/5/2007 9:02 PM

which perform recursion for you in various ways, and one usually ends up using those instead. For example, a 
much simpler way to implement the factorial  function is as follows:

Example: Implementing factorial with a standard library function

Almost seems like cheating, doesn't it? :) This is the version of factorial  that most experienced Haskell 
programmers would write, rather than the explicitly recursive version we started out with. Of course, the 

product  function is using some list recursion behind the scenes[12], but writing factorial  in this way means 
you, the programmer, don't have to worry about it.

Summary

Recursion is the practise of using a function you're defining in the body of the function itself. It nearly always 
comes in two parts: a base case and a recursive case. Recursion is especially useful for dealing with list- and 
number-based functions.

Notes

↑ At least as far as types are concerned, but we're trying to avoid that word :)1.
↑ More technically, fst  and snd  have types which limit them to pairs. It would be impossible to define 
projection functions on tuples in general, because they'd have to be able to accept tuples of different sizes, 
so the type of the function would vary.

2.

↑ In fact, these are one and the same concept in Haskell.3.
↑ This isn't quite what chr  and ord  do, but that description fits our purposes well, and it's close enough.4.
↑ To make things even more confusing, there's actually even more than one type for integers! Don't worry,
we'll come on to this in due course.

5.

↑ This has been somewhat simplified to fit our purposes. Don't worry, the essence of the function is there.6.
↑ Some of the newer type system extensions to GHC do break this, however, so you're better off just 
always putting down types anyway.

7.

↑ This is a slight lie. That type signature would mean that you can compare two values of any type 
whatsoever, but this clearly isn't true: how can you see if two functions are equal? Haskell includes a kind 
of 'restricted polymorphism' that allows type variables to range over some, but not all types. Haskell 
implements this using type classes, which we'll learn about later. In this case, the correct type of (==)  is Eq 

a => a -> a -> Bool .

8.

↑ In mathematics, n! normally means the factorial of n, but that syntax is impossible in Haskell, so we 
don't use it here.

9.

↑ Actually, defining the factorial of 0 to be 1 is not just arbitrary; it's because the factorial of 0 represents 
an empty product.

10.

↑ This is no coincidence; without mutable variables, recursion is the only way to implement control 
structures. This might sound like a limitation until you get used to it (it isn't, really).

11.

↑ Actually, it's using a function called foldl , which actually does the recursion.12.

factorial n = product [1..n]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

57 of 290 11/5/2007 9:02 PM

Pattern matching
Pattern matching is a convenient way to bind variables to different parts of a given value.

Note

Pattern matching on what?

Some languages like Perl and Python use pattern matching in a very specific way, that is 
to match regular expressions against strings. The pattern matching we are referring to in 
this chapter is quite different. In fact, you're probably best of forgetting what you know 
about pattern matching for now. Here, pattern matching is used in the same way as in 
others ML-like languages : to deconstruct values according to their type specification.

What is pattern matching?

You've actually met pattern matching before, in the lists chapter. Recall functions like map:

Here there are four different patterns going on: two per equation. Let's explore each one in turn (although not in 
the order they appeared in that example):

[]  is a pattern that matches the empty list. It doesn't bind any variables.
(x:xs)  is a pattern that matches something (which gets bound to x), which is cons'd, using the function 
(:) , onto something else (which gets bound to the variable xs ).
f  is a pattern which matches anything at all, and binds f  to that something.
_ is the pattern which matches anything at all, but doesn't do any binding.

So pattern matching is a way of assigning names to things (or binding those names to those things), and possibly
breaking down expressions into subexpressions at the same time (as we did with the list in the definition of map).

However, you can't pattern match with anything. For example, you might want to define a function like the 
following to chop off the first three elements of a list:

However, that won't work , and will give you an error. The problem is that the function (++)  isn't allowed in 
patterns. So what is allowed?

The one-word answer is constructors. Recall algebraic datatypes, which look something like:

map _ []     = []
map f (x:xs) = f x : map f xs

dropThree ([x,y,z] ++ xs) = xs



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

58 of 290 11/5/2007 9:02 PM

Here Bar  and Baz are constructors for the type Foo. And so you can pattern match with them:

Remember that lists are defined thusly (note that the following isn't actually valid syntax: lists are in reality 
deeply grained into Haskell):

So the empty list, [] , and the (:)  function, are in reality constructors of the list datatype, so you can pattern 
match with them.

Note, however, that as [x, y, z]  is just syntactic sugar for x:y:z:[] , you can still pattern match using the latter 
form:

If the only relevant information is the type of the constructor (regardless of the number of its elements) the {}
pattern can be used:

The function g does not have to be changed when the number of elements of the constructors Bar  or Baz

changes. Note: Foo does not have to be a record for this to work.

For constructors with many elements, it can help to use records:

which then allows:

The one exception

There is one exception to the rule that you can only pattern match with constructors. It's known as n+k  patterns. 
It is indeed valid Haskell 98 to write something like:

data Foo = Bar | Baz Int

f :: Foo -> Int
f Bar     = 1
f (Baz x) = x - 1

data [a] = [] | a : [a]

dropThree (_:_:_:xs) = xs

g :: Foo -> Bool
g Bar {} = True
g Baz {} = False

data Foo2 = Bar2 | Baz2 {barNumber::Int, barName::S tring}

h :: Foo2 -> Int
h Baz2 {barName=name} = length name
h Bar2 {} = 0

pred :: Int -> Int
pred (n+1) = n



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

59 of 290 11/5/2007 9:02 PM

However, this is generally accepted as bad form and not many Haskell programmers like this exception, and so 
try to avoid it.

Where you can use it

The short answer is that wherever you can bind variables, you can pattern match. Let's have a look at that more 
precisely.

Equations

The first place is in the left-hand side of function equations. For example, our above code for map:

Here we're binding, and doing pattern-matching, on the left hand side of both of these equations.

Let expressions / Where clauses

You can obviously bind variables with a let expression or where clause. As such, you can also do pattern 
matching here. A trivial example:

Case expressions

One of the most obvious places you can use pattern binding is on the left hand side of case branches:

Lambdas

As lambdas can be easily converted into functions, you can pattern match on the left-hand side of lambda 
expressions too:

Note that here, along with on the left-hand side of equations as described above, you have to use parentheses 
around your patterns (unless they're just _ or are just a binding, not a pattern, like x).

List comprehensions

After the |  in list comprehensions, you can pattern match. This is actually extremely useful. For example, the 
function catMaybes  from Data.Maybe takes a list of Maybes, filters all the Just x s, and gets rid of all the Just

wrappers. It's easy to write it using list comprehensions:

map _ []     = []
map f (x:xs) = f x : map f xs

let Just x = lookup "bar" [("foo", 1), ("bar", 2), ("baz", 3)] 

case someRandomList of
  []     -> "The list was empty"
  (x:xs) -> "The list wasn't empty: the first eleme nt was " ++ x ++ ", and " ++
            "there were " ++ show (length xs) ++ " more elements in the list."

head = (\(x:xs) -> x)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

60 of 290 11/5/2007 9:02 PM

If the pattern match fails, it just moves on to the next element in ms. (More formally, as list comprehensions are 
just the list monad, a failed pattern match invokes fail , which is the empty list in this case, and so gets ignored.)

A few other places

That's mostly it, but there are one or two other places you'll find as you progress through the book. Here's a list 
in case you're very eager already:

In p <- x  in do-blocks, p can be a pattern.
Similarly, with let bindings in do-blocks, you can pattern match analogously to 'real' let bindings.

Exercises

If you have programmed in a language like Perl and Python before, how does pattern 
matching in Haskell compare to the pattern matching you know? What can you use it 
on, where? In what sense can we think of Perl/Python pattern matching as being 
"more powerful" than the Haskell one, and vice versa? Are they even comparable? 
You may also be interested in looking at the Haskell Text.Regex
(http://www.haskell.org/ghc/docs/latest/html/libraries/regex-compat/Text-Regex.html) 
library wrapper.

1.

More about lists

By now we have seen the basic tools for working with lists. We can build lists up from the cons operator (:)
and the empty list []  (see Lists and tuples if you are unsure about this); and we can take them apart by using a 
combination of Recursion and Pattern matching. In this chapter, we will delve a little deeper into the 
inner-workings and the use of Haskell lists. We'll discover a little bit of new notation and some characteristically
Haskell-ish features like infinite lists and list comprehensions. But before going into this, let us step back for a 
moment and combine the things we have already learned about lists.

Constructing Lists

We'll start by making a function to double every element of a list of integers. First, we must specify the type 
declaration for our function. For our purposes here, the function maps a list of integers to another list of integers:

Then, we must specify the function definition itself. We'll be using a recursive definition, which consists of

catMaybes :: [Maybe a] -> [a]
catMaybes ms = [ x | Just x <- ms ]

doubleList :: [Integer] -> [Integer]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

61 of 290 11/5/2007 9:02 PM

the general case which iteratively generates a successive and simpler general case and1.
the base case, where iteration stops.2.

Since by definition, there are no more elements beyond the end of a list, intuition tells us iteration must stop at 
the end of the list. The easiest way to accomplish this is to return the null list: As a constant, it halts our 
iteration. As the empty list, it doesn't change the value of any list we append it to.

The general case requires some explanation. Remember that ":" is one of a special class of functions known as 
"constructors". The important thing about constructors is that they can be used to break things down as part of 
"pattern matching" on the left hand side of function definitions. In this case the argument passed to doubleList is
broken down into the first element of the list (known as the "head") and the rest of the list (known as the "tail").

On the right hand side doubleList builds up a new list by using ":". It says that the first element of the result is 
twice the head of the argument, and the rest of the result is obtained by applying "doubleList" to the tail. Note 
the naming convention implicit in (n:ns). By appending an "s" to the element "n" we are forming its plural. The 
idea is that the head contains one item while the tail contains many, and so should be pluralised.

So what actually happens when we evaluate the following?

We can work this out longhand by substituting the argument into the function definition, just like schoolbook 
algebra:

Notice how the definition for empty lists terminates the recursion. Without it, the Haskell compiler would have 
had no way to know what to do when it reached the end of the list.

Also notice that it would make no difference when we did the multiplications (unless one of them is an error or 
nontermination: we'll get to that later). If I had done them immediately it would have made absolutely no 
difference. This is an important property of Haskell: it is a "pure" functional programming language. Because 
evaluation order can never change the result, it is mostly left to the compiler to decide when to actually evaluate 
things. Haskell is a "lazy" evaluation language, so evaluation is usually deferred until the value is really needed, 
but the compiler is free to evaluate things sooner if this will improve efficiency. From the programmer's point of 
view evaluation order rarely matters (except in the case of infinite lists, of which more will be said shortly).

Of course a function to double a list has limited generality. An obvious generalization would be to allow 
multiplication by any number. That is, we could write a function "multiplyList" that takes a multiplicand as well 
as a list of integers. It would be declared like this:

doubleList (n:ns) = (n * 2) : doubleList ns
doubleList [] = []

doubleList [1,2,3,4]

doubleList 1:[2,3,4] = (1*2) : doubleList (2 : [3,4 ])
                     = (1*2) : (2*2) : doubleList ( 3 : [4])
                     = (1*2) : (2*2) : (3*2) : doub leList (4 : [])
                     = (1*2) : (2*2) : (3*2) : (4*2 ) : doubleList []
                     = (1*2) : (2*2) : (3*2) : (4*2 ) : []
                     = 2 : 4 : 6 : 8 : []
                     = [2, 4, 6, 8]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

62 of 290 11/5/2007 9:02 PM

This example introduces the "_", which is used for a "don't care" argument; it will match anything, like * does in
shells or .* in regular expressions. The multiplicand is not used for the null case, so instead of being bound to an
unused argument name it is explicitly thrown away, by "setting" _ to it. ("_" can be thought of as a write-only 
"variable".)

The type declaration needs some explanation. Hiding behind the rather odd syntax is a deep and clever idea. The
"->" arrow is actually an operator for types, and is right associative. So if you add in the implied brackets the 
type definition is actually

Think about what this is saying. It means that "multiplyList" doesn't take two arguments. Instead it takes one (an 
Integer), and then returns a new function. This new function itself takes one argument (a list of Integers) and 
returns a new list of Integers. This process of functions taking one argument is called "currying", and is very 
important.

The new function can be used in a straightforward way:

or it can do something which, in any other language, would be an error; this is partial function application and 
because we're using Haskell, we can write the following neat & elegant bits of code:

It may help you to understand if you put the implied brackets in the first definition of "evens":

In other words "multiplyList 2" returns a new function that is then applied to [1,2,3,4].

Dot Dot Notation

Haskell has a convenient shorthand for specifying a list containing a sequence of integers. Some examples are 
enough to give the flavor:

The same notation can be used for floating point numbers and characters as well. However, be careful with 
floating point numbers: rounding errors can cause unexpected things to happen. Try this:

multiplyList :: Integer -> [Integer] -> [Integer]
multiplyList _ [] = []
multiplyList m (n:ns) = (m*n) : multiplyList m ns

multiplyList :: Integer -> ( [Integer] -> [Integer]  )

evens = multiplyList 2 [1,2,3,4]

doubleList = multiplyList 2
evens = doubleList [1,2,3,4]

evens = (multiplyList 2) [1,2,3,4]

Code             Result
----             ------
[1..10]          [1,2,3,4,5,6,7,8,9,10]
[2,4..10]        [2,4,6,8,10]
[5,4..1]         [5,4,3,2,1]
[1,3..10]        [1,3,5,7,9]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

63 of 290 11/5/2007 9:02 PM

Similarly, there are limits to what kind of sequence can be written through dot-dot notation. You can't put in

and expect to get back the rest of the Fibonacci series, or put in the beginning of a geometric sequence like

Infinite Lists

One of the most mind-bending things about Haskell lists is that they are allowed to be infinite. For example, the 
following generates the infinite list of integers starting with 1:

(If you try this in GHCi, remember you can stop an evaluation with C-c).

Or you could define the same list in a more primitive way by using a recursive function:

This works because Haskell uses lazy evaluation: it never actually evaluates more than it needs at any given 
moment. In most cases an infinite list can be treated just like an ordinary one. The program will only go into an 
infinite loop when evaluation would actually require all the values in the list. Examples of this include sorting or
printing the entire list. However:

will define "evens" to be the infinite list [2,4,6,8....]. And you can pass "evens" into other functions, and it will 
all just work. See the exercise 4 below for an example of how to process an infinite list and then take the first 
few elements of the result.

Infinite lists are quite useful in Haskell. Often it's more convenient to define an infinite list and then take the first 
few items than to create a finite list. Functions that process two lists in parallel generally stop with the shortest, 
so making the second one infinite avoids having to find the length of the first. An infinite list is often a handy 
alternative to the traditional endless loop at the top level of an interactive program.

Exercises

Write the following functions and test them out. Don't forget the type 
declarations.

[0,0.1 .. 1]

[0,1,1,2,3,5,8..100]

[1,3,9,27..100]

[1..]

intsFrom n = n : intsFrom (n+1)
positiveInts = intsFrom 1

evens = doubleList [1..]
  



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

64 of 290 11/5/2007 9:02 PM

takeInt returns the first n items in a list. So takeInt 4 
[11,21,31,41,51,61] returns [11,21,31,41]

1.

dropInt drops the first n items in a list and returns the rest. so dropInt 
3 [11,21,31,41,51] returns [41,51].

2.

sumInt returns the sum of the items in a list.3.
scanSum adds the items in a list and returns a list of the running 
totals. So scanSum [2,3,4,5] returns [2,5,9,14]. Is there any 
difference between "scanSum (takeInt 10 [1..])" and "takeInt 10 
(scanSum [1..])"?

4.

diffs returns a list of the differences between adjacent items. So diffs 
[3,5,6,8] returns [2,1,2]. (Hint: write a second function that takes 
two lists and finds the difference between corresponding items).

5.

Deconstructing lists

So now we know how to generate lists by appending to the empty list, or using infinite lists and their notation. 
Very useful.

But what happens if our function is not generating a list and handing it off to some other function, but is rather 
receiving a list? It needs to be analyzed and broken down in some way.

For this purpose, Haskell includes the same basic functionality as other programming languages, except with 
better names than "cdr" or "car": the "head" and "tail" functions.

From these two functions we can build pretty much all the functionality we want. If we want the first item in the 
list, a simple head will do:

If we want the second item in a list, we have to be a bit clever: head gives the first item in a list, and tail 
effectively removes the first item in a list. They can be combined, though:

Enough tails can reach to arbitrary elements; usually this is generalized into a function which is passed a list and
a number, which gives the position in a list to return.

Exercises

     head :: [a] -> a
     tail :: [a] -> [a]

Code            Result
----            ------
head [1,2,3]    1
head [5..100]   5

Code                          Result
----                          ------
head(tail [1,2,3,4,5])        2
head(tail (tail [1,2,3,4,5])) 3



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

65 of 290 11/5/2007 9:02 PM

Write a function which takes a list and a number and returns the given 
element; use head or tail, and not !!.

List comprehensions

This is one further way to deconstruct lists; it is called a List comprehension. List comprehensions are useful and
concise expressions, although they are fairly rare.

List comprehensions are basically syntactic sugar for a common pattern dealing with lists: when one wants to 
take a list and generate a new list composed only of elements of the first list that meet a certain condition.

One could write this out manually. For example, suppose one wants to take a list [1..10], and only retain the 
even numbers? One could handcraft a recursive function called retainEven, based on a test for evenness which 
we've already written called isEven:

Exercises

Write a function which will take a list and return only odd numbers greater 
than 1. Hint: isOdd can be defined as the negation of isEven.

This is fairly verbose, though, and we had to go through a fair bit of effort and define an entirely new function 
just to accomplish the relatively simple task of filtering a list. Couldn't it be generalized? What we want to do is 
construct a new list with only the elements of an old list for which some boolean condition is true. Well, we 
could generalize our function writing above like this, involving the higher-order functions map and filter . For 
example, the above can also be written as

We can do this through the list comprehension form, which looks like this:

We can read the first half as an arbitrary expression modifying n, which will then be prepended to a new list. In 
this case, n isn't being modified, so we can think of this as repeatedly prepending the variable, like n:n:n:n:[] - 
but where n is different each time. n is drawn (the "<-") from the list es (a subtle point is that es can be the name 
of a list, or it can itself be a list).

Thus if es  is equal to [1,2,3,4], then we would get back the list [2,4].

            isEven :: Integer -> Bool 
            isEven n
                    | n < 0 = error "isEven needs a  positive integer"
                    | ((mod n 2) == 0) = True  -- E ven numbers have no remainder when divided by 2
                    | otherwise = False  -- If it h as a remainder of anything but 0, it is not even

    retainEven :: [Integer] -> [Integer]
    retainEven []               = []
    retainEven (e:es) 
                     | isEven e  = e:retainEven es --If something is even, let's hang onto it
                     | otherwise = retainEven es -- If something isn't even, discard it and move on

   retainEven es = filter isEven es

   retainEven es = [ n | n <- es , isEven n ]   



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

66 of 290 11/5/2007 9:02 PM

Suppose we wanted to subtract one from every even?

We can do more than that, and list comprehensions can be easily modifiable. Perhaps we wish to generalize 
factoring a list, instead of just factoring it by evenness (that is, by 2). Well, given that ((mod n x) == 0) returns 
true for numbers n which are factorizable by x, it's obvious how to use it, no? Write a function using a list 
comprehension which will take an integer, and a list of integers, and return a list of integers which are divisible 
by the first argument. In other words, the type signature is thus:

We can load the function, and test it with:

which should give us this:

Which is as it should be. But what if we want to write the opposite? What if we want to write a function which 
returns those integers which are not divisible? The modification is very simple, and the type signature the same. 
What decides whether a integer will be added to the list or not is the mod function, which currently returns true 
for those to be added. A simple 'not' suffices to reverse when it returns true, and so reverses the operation of the 
list:

We can load it and give the equivalent test:

Of course this function is not perfect. We can still do silly things like

We can stack on more tests besides the one: maybe all our even numbers should be larger than 2:

   evensMinusOne es = [n - 1 | n<-es , isEven n ]

returnfact :: Int -> [Int] -> [Int]

returnFact 10 [10..1000]

*Main> returnFact 10 [10..1000]
[10,20,30,40,50,60,70,80,90,100,110,120,130,140,150 ,160,170,180,190,200,....etc.]

rmFact :: Int -> [Int] -> [Int]
rmFact x ys = [n | n<-ys , (not ((mod n x) == 0))]

*Main> rmFact 10 [10..1000]
[11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28 ,29,......etc.]

*Main> rmFact 0 [1..1000]
*** Exception: divide by zero

   evensLargerThanTwo = [ n | n <- [1..10] , isEven  n, n > 2 ]   



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

67 of 290 11/5/2007 9:02 PM

The else  is 
required!

Fortunately, our Boolean tests are commutative, so it doesn't matter whether (n > 2) or (isEven 2) is evaluated 
first.

Pattern matching in list comprehensions

It's useful to note that the left arrow in list comprehensions can be used with pattern matching. For example, 
suppose we had a list of tuples [(Integer, Integer)] . What we would like to do is return the first element of 
every tuple whose second element is even. We could write it with a filter and a map, or we could write it as 
follows:

And if we wanted to double those first elements:

Control structures

Haskell offers several ways of expressing a choice between different values. This section will describe them all 
and explain what they are for:

if Expressions

You have already seen these. The full syntax is:

If the <condition>  is True  then the <true-value>  is returned, otherwise the 
<false-value>  is returned. Note that in Haskell if  is an expression (returning a 
value) rather than a statement (to be executed). Because of this the usual 
indentation is different from imperative languages. If you need to break an if

expression across multiple lines then you should indent it like one of these:

firstOfEvens xys = [ x | (x,y) <- xys, isEven y ]

doubleFirstOfEvens xys = [ 2 * x | (x,y) <- xys, is Even y ]

if <condition> then <true-value> else <false-value>

if <condition>
   then <1>
   else <0>

if <condition>
   then
      <true-value>
   else
      <false-value>



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

68 of 290 11/5/2007 9:02 PM

Here is a simple example:

Unlike many other languages, in Haskell the else  is required. Since if  is an expression, it must return a result, 
and the else  ensures this.

case Expressions

case  expressions are a generalization of if  expressions. As an example, let's clone if  as a case :

First, this checks <condition>  for a pattern match against True . If they match, the whole expression will 
evaluate to <true-value> , otherwise it will continue down the list. You can use _ as the pattern wildcard. In 
fact, the left hand side of any case branch is just a pattern, so it can also be used for binding:

This expression tells you whether str  is the empty string or something else. Of course, you could just do this 
with an if-statement (with a condition of null str ), but using a case binds variables to the head and tail of our 
list, which is convenient in this instance.

Equations and Case Expressions

You can use multiple equations as an alternative to case  expressions. The case  expression above could be 
named describeString  and written like this:

Named functions and case expressions at the top level are completely interchangeable. In fact the function 
definition form shown here is just syntactic sugar for a case  expression.

The handy thing about case  expressions is that they can go inside other expressions, or be used in an anonymous
function. TODO: this isn't really limited to case. For example, this case  expression returns a string which is 
then concatenated with two other strings to create the result:

message42 :: Integer -> String
message42 n =
   if n == 42
      then "The Answer is forty two."
      else "The Answer is not forty two."

case <condition> of
     True  -> <true-value>
     False -> <false-value>
     _     -> error "Neither True nor False? How ca n that be?"

case str of
   (x:xs) -> "The first character is " ++ [x] ++ ";  the rest of the string is " ++ xs
   ""     -> "This is the empty string."

describeString :: String -> String
describeString (x:xs) = "The first character is " + + [x] ++ "; the rest of the string is " ++ xs
describeString ""     = "This is the empty string."



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

69 of 290 11/5/2007 9:02 PM

You can also put where  clauses in a case  expression, just as you can in functions:

Guards

As shown, if we have a top-level case  expression, we can just give multiple equations for the function instead, 
which is normally neater. Is there an analogue for if  expressions? It turns out there is.

We use some additonal syntax known as "guards". A guard is a boolean condition, like this:

Note the lack of an = before the first | . Guards are evaluated in the order they appear. That is, if you have a set 
up similar to the following:

Then the input to f will be pattern-matched against pattern1. If it succeeds, then predicate1 will be evaluated. If 
this is true, then w is returned. If not, then predicate2 is evaluated. If this is true, then x is returned. Again, if not, 
then we jump out of this 'branch' of f and try to pattern match against pattern2, repeating the guards procedure 
with predicate3 and predicate4. If no guards match, an error will be produced at runtime, so it's always a good 
idea to leave an 'otherwise' guard in there to handle the "But this can't happen!' case.

The otherwise  you saw above is actually just a normal value defined in the Standard Prelude as:

This works because of the sequential evaluation described a couple of paragraphs back: if none of the guards 
previous to your 'otherwise' one are true, then your otherwise will definitely be true and so whatever is on the 

data Colour = Black | White | RGB Int Int Int

describeColour c = 
   "This colour is "
   ++ (case c of
          Black -> "black"
          White -> "white"
          RGB _ _ _ -> "freaky, man, sort of in bet ween")
   ++ ", yeah?"

describeColour c = 
   "This colour is "
   ++ (case c of
          Black -> "black"
          White -> "white"
          RGB red green blue -> "freaky, man, sort of " ++ show av
             where av = (red + green + blue) `div` 3
      )
   ++ ", yeah?"

describeLetter :: Char -> String
describeLetter c
   | c >= 'a' && c <= 'z' = "Lower case"
   | c >= 'A' && c <= 'Z' = "Upper case"
   | otherwise            = "Not a letter"

f (pattern1) | predicate1 = w
             | predicate2 = x
f (pattern2) | predicate3 = y
             | predicate4 = z

otherwise :: Bool
otherwise = True



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

70 of 290 11/5/2007 9:02 PM

right-hand side gets returned. It's just nice for readability's sake.

'where' and guards

One nicety about guards is that where clauses are common to all guards.

The difference between if and case

It's worth noting that there is a fundamental difference between if -expressions and case -expressions. 
if -expressions, and guards, only check to see if a boolean expression evaluated to True. case -expressions, and 
multiple equations for the same function, pattern match against the input. Make sure you understand this 
important distinction.

List processing

Because lists are such a fundamental data type in Haskell, there is a large collection of standard functions for 
processing them. These are mostly to be found in a library module called the 'Standard Prelude' which is 
automatically imported in all Haskell programs. There are also additional list-processing functions to be found in
the Data.List  module.

Map

This module will explain one particularly important function, called map, and then describe some of the other list 
processing functions that work in similar ways.

Recall the multiplyList  function from a couple of chapters ago.

This works on a list of integers, multiplying each item by a constant. But Haskell allows us to pass functions 
around just as easily as we can pass integers. So instead of passing a multiplier m we could pass a function f , like 
this:

 doStuff x
   | x < 3 = report "less than three"
   | otherwise = report "normal"
  where
   report y = "the input is " ++ y

multiplyList :: Integer -> [Integer] -> [Integer]
multiplyList _ [] = []
multiplyList m (n:ns) = (m*n) : multiplyList m ns



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

71 of 290 11/5/2007 9:02 PM

Take a minute to compare the two functions. The difference is in the first parameter. Instead of being just an 
Integer  it is now a function. This function parameter has the type (Integer -> Integer) , meaning that it is a 
function from one integer to another. The second line says that if this is applied to an empty list then the result is 
itself an empty list, and the third line says that for a non-empty list the result is f  applied to the first item in the 
list, followed by a recursive call to mapList1  for the rest of the list.

Remember that (*)  has type Integer -> Integer -> Integer . So if we write (2*)  then this returns a new 
function that doubles its argument and has type Integer -> Integer . But that is exactly the type of functions 
that can be passed to mapList1 . So now we can write doubleList  like this:

We could also write it like this, making all the arguments explicit:

(The two are equivalent because if we pass just one argument to mapList1 we get back a new function. The 
second version is more natural for newcomers to Haskell, but experts often favour the first, known as 'point free' 
style.)

Obviously this idea is not limited to just integers. We could just as easily write

and have a function that does this for strings. But this is horribly wasteful: the code is exactly the same for both 
strings and integers. What is needed is a way to say that mapList  works for both Integers, Strings, and any other 
type we might want to put in a list. In fact there is no reason why the input list should be the same type as the 
output list: we might very well want to convert a list of integers into a list of their string representations, or vice 
versa. And indeed Haskell provides a way to do this. The Standard Prelude contains the following definition of 
map:

Instead of constant types like String  or Integer  this definition uses type variables. These start with lower case 
letters (as opposed to type constants that start with upper case) and otherwise follow the same lexical rules as 
normal variables. However the convention is to start with "a" and go up the alphabet. Even the most complicated
functions rarely get beyond "d".

So what this says is that map takes two parameters:

A function from a thing of type a to a thing of type b.

mapList1 :: (Integer -> Integer) -> [Integer] -> [I nteger]
mapList1 _ [] = []
mapList1 f (n:ns) = (f n) : mapList1 f ns

  doubleList = mapList1 (2*)

  doubleList ns = mapList1 (2*) ns

mapListString :: (String -> String) -> [String] -> [String]
mapListString _ [] = []
mapListString f (n:ns) = (f n) : mapList1 f ns

 map :: (a -> b) -> [a] -> [b]
 map _ [] = []
 map f (x:xs) = (f x) : map f xs



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

72 of 290 11/5/2007 9:02 PM

A list of things of type a.

Then it returns a new list containing things of type b, constructed by applying the function to each element of the
input list.

Exercises

Use map to build functions that, given a list l of Ints, returns:
A list that is the element-wise negation of l.
A list of lists of Ints ll that, for each element of l, contains the 
factors of l. It will help to know that

The element-wise negation of ll.

1.

Implement a Run Length Encoding (RLE) encoder and decoder.
The idea of RLE is simple; given some input:

compress it by taking the length of each run of characters:

The group  function might be helpful
What is the type of your encode  and decode  functions?
How would you convert the list of tuples (e.g. [(4,'a'), 

(6,'b')] ) into a string (e.g. "4a6b")?
(bonus) Assuming numeric characters are forbidden in the 
original string, how would you parse that string back into a list 
of tuples?

2.

Folds

A fold applies a function to a list in a way similar to map, but accumulates a single result instead of a list.

Take for example, a function like sum, which might be implemented as follows:

Example: sum

or product :

factors p = [ f | f <- [1..p], p `mod` f == 0 ]

"aaaabbaaa"

(4,'a'), (2, 'b'), (3, 'a')

 sum :: [Integer] -> Integer
 sum []     = 0
 sum (x:xs) = x + sum xs



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

73 of 290 11/5/2007 9:02 PM

Example: product

or concat , which takes a list of lists and joins (concatenates) them into one:

Example: concat

There is a certain pattern of recursion common to all of these examples. This pattern is known as a fold, possibly
from the idea that a list is being "folded up" into a single value, or that a function is being "folded between" the 
elements of the list.

The Standard Prelude defines four fold functions: foldr , foldl , foldr1  and foldl1 .

foldr

The most natural and commonly used of these in a lazy language like Haskell is the right-associative foldr :

The first argument is a function with two arguments, the second is a "zero" value for the accumulator, and the 
third is the list to be folded.

For example, in sum, f  is (+) , and z is 0, and in concat , f  is (++)  and z is [] . In many cases, like all of our 
examples so far, the function passed to a fold will have both its arguments be of the same type, but this is not 
necessarily the case in general.

What foldr f z xs  does is to replace each cons (:) in the list xs  with the function f , and the empty list at the 
end with z. That is,

becomes

This is perhaps most elegantly seen by picturing the list data structure as a tree:

 product :: [Integer] -> Integer
 product []     = 1
 product (x:xs) = x * product xs

 concat :: [[a]] -> [a]
 concat []     = []
 concat (x:xs) = x ++ concat xs

foldr            :: (a -> b -> b) -> b -> [a] -> b
foldr f z []     = z
foldr f z (x:xs) = f x (foldr f z xs)

a : b : c : []

f a (f b (f c z))



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

74 of 290 11/5/2007 9:02 PM

It is fairly easy to see with this picture that foldr (:) []  is just the identity function on lists.

foldl

The left-associative foldl  processes the list in the opposite direction:

So brackets in the resulting expression accumulate on the left. Our list above, after being transformed by foldl 

f z  becomes:

The corresponding trees look like:

Technical Note: The left associative fold is tail-recursive, that is, it recurses immediately, calling itself. For this 
reason the compiler will optimise it to a simple loop, and it will then be much more efficient than foldr . 
However, Haskell is a lazy language, and so the calls to f will by default be left unevaluated, building up an 
expression in memory whose size is linear in the length of the list, exactly what we hoped to avoid in the first 
place. To get back this efficiency, there is a version of foldl which is strict, that is, it forces the evaluation of f 
immediately, called foldl' . Note the single quote character: this is pronounced "fold-ell-tick". A tick is a valid 
character in Haskell identifiers. foldl' can be found in the library Data.List . As a rule you should use foldr  on
lists that might be infinite or where the fold is building up a data structure, and foldl'  if the list is known to be 
finite and comes down to a single value. foldl  (without the tick) should rarely be used at all.

foldr1 and foldl1

As previously noted, the type declaration for foldr  makes it quite possible for the list elements and result to be 
of different types. For example, "read" is a function that takes a string and converts it into some type (the type 
system is smart enough to figure out which one). In this case we convert it into a float.

  :                         f
 / \                       / \
a   :       foldr f z     a   f
   / \    ------------->     / \
  b   :                     b   f
     / \                       / \
    c  []                     c   z

foldl            :: (a -> b -> a) -> a -> [b] -> a
foldl f z []     =  z
foldl f z (x:xs) =  foldl f (f z x) xs

f (f (f z a) b) c

  :                            f
 / \                          / \
a   :       foldl f z        f   c
   / \    ------------->    / \
  b   :                    f   b 
     / \                  / \
    c  []                z   a



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

75 of 290 11/5/2007 9:02 PM

Example: The list elements and results can have different types

If you substitute the types Float  and String  for the type variables a and b in the type of foldr you will see that 
this is type correct.

There is also a variant called foldr1  ("fold - arr - one") which dispenses with an explicit zero by taking the last 
element of the list instead:

And foldl1  as well:

Note: There is additionally a strict version of foldl1 called foldl1' in the Data.List library.

Notice that in this case all the types have to be the same, and that an empty list is an error. These variants are 
occasionally useful, especially when there is no obvious candidate for z, but you need to be sure that the list is 
not going to be empty. If in doubt, use foldr or foldl'.

folds and laziness

One good reason that right-associative folds are more natural to use in Haskell than left-associative ones is that 
right folds can operate on infinite lists, which are not so uncommon in Haskell programming. If the input 
function f only needs its first parameter to produce the first part of the output, then everything works just fine. 
However, a left fold will continue recursing, never producing anything in terms of output until it reaches the end
of the input list. Needless to say, this never happens if the input list is infinite, and the program will spin 
endlessly in an infinite loop.

As a toy example of how this can work, consider a function echoes  taking a list of integers, and producing a list 
where if the number n occurs in the input list, then n replicated n times will occur in the output list. We will 
make use of the prelude function replicate : replicate n x  is a list of length n with x the value of every 
element.

We can write echoes as a foldr quite handily:

or as a foldl:

 addStr :: String -> Float -> Float
 addStr str x = read str + x

 sumStr :: [String] -> Float
 sumStr = foldr addStr 0.0

foldr1           :: (a -> a -> a) -> [a] -> a
foldr1 f [x]     =  x
foldr1 f (x:xs)  =  f x (foldr1 f xs)
foldr1 _ []      =  error "Prelude.foldr1: empty li st"

foldl1           :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs)  =  foldl f x xs
foldl1 _ []      =  error "Prelude.foldl1: empty li st"

echoes = foldr (\x xs -> (replicate x x) ++ xs) []



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

76 of 290 11/5/2007 9:02 PM

but only the first definition works on an infinite list like [1..]. Try it!

Note the syntax in the above example: the \xs x ->  means that xs  is set to the first argument outside the 
parentheses (in this case, [] ), and x is set to the second (will end up being the argument of echoes  when it is 
called).

As a final example, another thing that you might notice is that map itself is patterned as a fold:

Folding takes a little time to get used to, but it is a fundamental pattern in functional programming, and 
eventually becomes very natural. Any time you want to traverse a list and build up a result from its members you
want a fold.

Exercises

Define the following functions recursively (like the definitions for sum, 
product  and concat  above), then turn them into a fold:

and :: [Bool] -> Bool , which returns True if a list of Bools are all 
True, and False otherwise.
or :: [Bool] -> Bool , which returns True if any of a list of Bools 
are True, and False otherwise.

Define the following functions using foldl1  or foldr1 :

maximum :: Ord a => [a] -> a , which returns the maximum 
element of a list (hint: max :: Ord a => a -> a -> a  returns the 
maximum of two values).
minimum :: Ord a => [a] -> a , which returns the minimum 
element of a list (hint: min :: Ord a => a -> a -> a  returns the 
minimum of two values).

Scans

A "scan" is much like a cross between a map and a fold. Folding a list accumulates a single return value, whereas
mapping puts each item through a function with no accumulation. A scan does both: it accumulates a value like 
a fold, but instead of returning a final value it returns a list of all the intermediate values.

The Standard Prelude contains four scan functions:

This accumulates the list from the left, and the second argument becomes the first item in the resulting list. So 

echoes = foldl (\xs x -> xs ++ (replicate x x)) []

map f = foldr (\x xs -> f x : xs) []

scanl   :: (a -> b -> a) -> a -> [b] -> [a]    



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

77 of 290 11/5/2007 9:02 PM

scanl (+) 0 [1,2,3] = [0,1,3,6]

This is the same as scanl , but uses the first item of the list as a zero parameter. It is what you would typically 
use if the input and output items are the same type. Notice the difference in the type signatures. scanl1 (+) 

[1,2,3] = [1,3,6] .

These two functions are the exact counterparts of scanl  and scanl1 . They accumulate the totals from the right. 
So:

Exercises

Define the following functions:

factList :: Integer -> [Integer] , which returns a list of 
factorials from 1 up to its argument. For example, facList 4 = 

[1,2,6,24] .

More to be added

More on functions

As functions are absolutely essential to functional programming, there are some nice features you can use to 
make using functions easier.

Private Functions

Remember the sumStr  function from the chapter on list processing. It used another function called addStr :

So you could find that

scanl1  :: (a -> a -> a) -> [a] -> [a] 

scanr   :: (a -> b -> b) -> b -> [a] -> [b]    
scanr1  :: (a -> a -> a) -> [a] -> [a]         

scanr (+) 0 [1,2,3] = [6,5,3,0]
scanr1 (+) [1,2,3] = [6,5,3]

addStr :: Float -> String -> Float
addStr x str = x + read str

sumStr :: [String] -> Float
sumStr = foldl addStr 0.0



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

78 of 290 11/5/2007 9:02 PM

gives 28.0, and

gives 11.5.

But maybe you don't want addStr  cluttering up the top level of your program. Haskell lets you nest declarations 
in two subtly different ways:

The difference between let  and where  lies in the fact that let foo = 5 in foo + foo  is an expression, but foo 

+ foo where foo = 5  is not. (Try it: an interpreter will reject the latter expression.) Where clauses are part of 
the function declaration as a whole, which makes a difference when using guards.

Anonymous Functions

An alternative to creating a named function like addStr  is to create an anonymous function, also known as a 
lambda function . For example, sumStr  could have been defined like this:

The bit in the parentheses is a lambda function. The backslash is used as the nearest ASCII equivalent to the
Greek letter lambda (λ). This example is a lambda function with two arguments, x and str , and the result is "x + 
read str". So, the sumStr  presented just above is precisely the same as the one that used addStr  in a let binding.

Lambda functions are handy for one-off function parameters, especially where the function in question is simple.
The example above is about as complicated as you want to get.

Infix versus Prefix

As we noted in the previous chapter, you can take an operator and turn it into a function by surrounding it in 
brackets:

This is called making the operator prefix: you're using it before its arguments, so it's known as a prefix function. 
We can now formalise the term 'operator': it's a function which is entirely non-alphanumeric characters, and is 
used infix (normally). You can define your own operators just the same as functions, just don't use any 

  addStr 4.3 "23.7"

  sumStr ["1.2", "4.3", "6.0"]

 sumStr = foldl addStr 0.0
    where addStr x str = x + read str

 sumStr =
    let addStr x str = x + read str
    in foldl addStr 0.0

 sumStr = foldl (\x str -> x + read str) 0.0

2 + 4
(+) 2 4



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

79 of 290 11/5/2007 9:02 PM

alphanumeric characters. For example, here's the set-difference definition from Data.List:

Note that aside from just using operators infix, you can define them infix as well. This is a point that most 
newcomers to Haskell miss. I.e., although one could have written:

It's more common to define operators infix. However, do note that in type declarations, you have to surround the
operators by parentheses.

You can use a variant on this parentheses style for 'sections':

These sections are functions in their own right. (2+)  has the type Int -> Int , for example, and you can pass 
sections to other functions, e.g. map (+2) [1..4] .

If you have a (prefix) function, and want to use it as an operator, simply surround it by backticks:

This is called making the function infix: you're using it in between its arguments. It's normally done for 
readability purposes: 1 `elem` [1..4]  reads better than elem 1 [1..4] . You can also define functions infix:

But once again notice that in the type signature you have to use the prefix style.

Sections even work with infix functions:

You can only make binary functions (those that take two arguments) infix. Think about the functions you use, 
and see which ones would read better if you used them infix.

Exercises

Lambdas are a nice way to avoid defining unnecessary separate 
functions. Convert the following let- or where-bindings to lambdas:

map f xs where f x = x * 2 + 3

let f x y = read x + y in foldr f 1 xs

Sections are just syntactic sugar for lambda operat ions. 

(\\) :: Eq a => [a] -> [a] -> [a]
xs \\ ys = foldl (\x y -> delete y x) xs ys

(\\) xs ys = foldl (\x y -> delete y x) xs ys

(2+) 4
(+4) 2

1 `elem` [1..4]

elem :: Eq a => a -> [a] -> Bool
x `elem` xs = any (==x) xs

(1 `elem`) [1..4]
(`elem` [1..4]) 1



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

80 of 290 11/5/2007 9:02 PM

I.e. (+2) is equivalent to \x -> x + 2. What would the 
following sections 'desugar' to? What would be thei r 

types?

(4+)

(1 `elem`)

(`notElem` "abc")

Higher-order functions and Currying

Higher-order functions are functions that take other functions as arguments. We have already met some of them, 
such as map, so there isn't anything really frightening or unfamiliar about them. They offer a form of abstraction 
that is unique to the functional programming style. In functional programming languages like Haskell, functions 
are just like any other value, so it doesn't get any harder to deal with higher-order functions.

Higher order functions have a separate chapter in this book, not because they are particularly difficult -- we've 
already worked with them, after all -- but because they are powerful enough to draw special attention to them. 
We will see in this chapter how much we can do if we can pass around functions as values. Generally speaking, 
it is a good idea to abstract over a functionality whenever we can. Besides, Haskell without higher order 
functions wouldn't be quite as much fun.

The Quickest Sorting Algorithm In Town

Don't get too excited, but quickSort  is certainly one of the quickest. Have you heard of it? If you did, you can 
skip the following subsection and go straight to the next one:

The Idea Behind quickSort

The idea is very much simple. For a big list, we pick an element, and divide the whole list into three parts.

The first part has all elements that should go before that element, the second part consists of all of the elements 
that are equal to the picked element, the third has the elements that ought to go after that element. And then, of 
course, we are supposed to concatenate these. What we get is somewhat better, right?

The trick is to note that only the first and the third are yet to be sorted, and for the second, sorting doesn't really 
make sense (they are all equal!). How to go about sorting the yet-to-be-sorted sub-lists? Why... apply the same 
algorithm on them again! By the time the whole process is finished, you get a completely sorted list.

So Let's Get Down To It!



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

81 of 290 11/5/2007 9:02 PM

And we are done! I suppose if you have met quickSort  before, you thought recursion is a neat trick but is hard 
to implement as so many things need to be kept track of.

Now, How Do We Use It?

With quickSort  at our disposal, sorting any list is a piece of cake. Suppose we have a list of String , maybe 
from a dictionary, and we want to sort them, we just apply quickSort  to the list. For the rest of this chapter, we 
will use a pseudo-dictionary of words (but a 25,000 word dictionary should do the trick as well):

We get, for quickSort dictionary ,

But, what if we wanted to sort them in the descending order? Easy, just reverse the list, reverse 

sortedDictionary  gives us what we want.

But wait! We didn't really sort in the descending order, we sorted (in the ascending order) and reversed it. They 
may have the same effect, but they are not the same thing!

Besides, you might object that the list you got isn't what you wanted. "a" should certainly be placed before "I". 
"Linux" should be placed between "have" and "thing". What's the problem here?

The problem is, the way String s are represented in a typical programming settings is by a list of ASCII 
characters. ASCII (and almost all other encodings of characters) specifies that the character code for capital 
letters are less than the small letters. Bummer. So "Z" is less than "a". We should do something about it. Looks 
like we need a case insensitive quickSort  as well. It might come handy some day.

But, there's no way you can blend that into quickSort  as it stands. We have work to do.

Tweaking What We Already Have

What we need to do is to factor out the comparisons quickSort  makes. We need to provide quickSort  with a 
function that compares two elements, and gives an Ordering , and as you can imagine, an Ordering  is any of LT, 

EQ, GT .

-- if the list is empty, we do nothing
-- note that this is the base case for the recursio n
quickSort [] = []

-- if there's only one element, no need to sort it
-- actually, the third case takes care of this one pretty well
-- I just wanted you to take it step by step
quickSort [x] = [x]

-- this is the gist of the process
-- we pick the first element as our "pivot", the re st is to be sorted
-- don't forget to include the pivot in the middle part!
quickSort (x : xs) = (quickSort less) ++ (x : equal ) ++ (quickSort more)
                     where less = filter (< x) xs
                           equal = filter (== x) xs
                           more = filter (> x) xs

dictionary = ["I", "have", "a", "thing", "for", "Li nux"]

["I", "Linux", "a", "for", "have", "thing"]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

82 of 290 11/5/2007 9:02 PM

To sort in the descending order, we supply quickSort  with a function that returns the opposite of the usual 
Ordering . For the case-insensitive sort, we may need to define the function ourselves. By all means, we want to 
make quickSort  applicable to all such functions so that we don't end up writing it over and over again, each 
time with only minor changes.

quickSort, Take Two

So, forget the version of quickSort  we have now, and let's think again.

Our quickSort  will take two things this time: first, the comparison function, and second, the list to sort.

A comparison function will be a function that takes two things, say, x and y, and compares them. If x is less than 
y (according to the criteria we want to implement by this function), then the value will be LT. If they are equal 
(well, equal with respect to the comparison, we want "Linux" and "linux" to be equal when we are dealing with 
the insensitive case), we will have EQ. The remaining case gives us GT (pronounced: greater than, for obvious 
reasons).

Cool!

Note

Almost all the basic data types in Haskell are members of the Ord  class. This class 
defines an ordering, the "natural" one. The functions (or, operators, in this case) (<) , 
(<=)  or (>)  provide shortcuts to the compare  function each type defines. When we want
to use the natural ordering as defined by the types themselves, the above code can be 
written using those operators, as we did last time. In fact, that makes for much clearer 
style; however, we wrote it the long way just to make the relationship between sorting 
and comparing more evident.

But What Did We Gain?

Reuse. We can reuse quickSort  to serve different purposes.

-- no matter how we compare two things
-- the first two equations should not change
-- they need to accept the comparison function thou gh
quickSort comparison [] = []
quickSort comparison [x] = [x]

-- we are in a more general setting now
-- but the changes are worth it!
quickSort comparison (x : xs) = (quickSort comparis on less) ++ (x : equal) ++ (quickSort comparison mo re)
                             where less  = filter ( \y -> comparison y x == LT) xs
                                   equal = filter ( \y -> comparison y x == EQ) xs
                                   more  = filter ( \y -> comparison y x == GT) xs



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

83 of 290 11/5/2007 9:02 PM

And we are done!

should, then, give

The comparison is just compare  from the Ord  class. This was our quickSort , before the tweaking.

now gives

And finally,

gives

Exactly what we wanted!

Exercises
Write insensitive , such that quickSort insensitive dictionary  gives 
["a", "for", "have", "I", "Linux", "thing"]

Higher-Order Functions and Types

Our quickSort  has type (a -> a -> Ordering) -> [a] -> [a] .

-- the usual ordering
-- uses the compare function from the Ord class
usual = compare

-- the descending ordering, note we flip the order of the arguments to compare
descending x y = compare y x

-- the case-insensitive version is left as an exerc ise!
insensitive = ... 
-- can you think of anything without making a very big list of all possible cases?

quickSort usual dictionary

["I", "Linux", "a", "for", "have", "thing"]

quickSort descending dictionary

["thing", "have", "for", "a", "Linux", "I"]

quickSort insensitive dictionary

["a", "for", "have", "I", "Linux", "thing"]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

84 of 290 11/5/2007 9:02 PM

Most of the time, the type of a higher-order function provides a good guideline about how to use it. A 
straightforward way of reading the type signature would be, "quickSort  takes a function that gives an ordering 
of as, and a list of as, to give a list of as". It is then natural to guess that the function sorts the list respecting the 
given ordering function.

Note that the parentheses surrounding a -> a -> Ordering  is mandatory. It says that a -> a -> Ordering

altogether form a single argument, an argument that happens to be a function. What happens if we omit the 
parentheses? We would get a function of type a -> a -> Ordering -> [a] -> [a] , which accepts four 
arguments instead of the desired two (a -> a -> Ordering  and [a] ). Furthermore none of the four arguments, 
neither a nor Ordering  nor [a]  are functions, so omitting the parentheses would give us something that isn't a 
higher order function.

Furthermore, it's worth noting that the ->  operator is right-associative, which means that a -> a -> Ordering 

-> [a] -> [a]  means the same thing as a -> (a -> (Ordering -> ([a] -> [a]))) . We really must insist 
that the a -> a -> Ordering  be clumped together by writing those parentheses... but wait... if ->  is 
right-associative, wouldn't that mean that the correct signature (a -> a -> Ordering) -> [a] -> [a]  actualy 
means... (a -> a -> Ordering) -> ([a] -> [a]) ?

Is that really what we want?

If you think about it, we're trying to build a function that takes two arguments, a function and a list, returning a 
list. Instead, what this type signature is telling us is that our function takes ONE argument (a function) and 
returns another function. That is profoundly odd... but if you're lucky, it might also strike you as being 
profoundly beautiful. Functions in multiple arguments are fundamentally the same thing as functions that take 
one argument and give another function back. It's OK if you're not entirely convinced. We'll go into a little bit 
more detail below and then show how something like this can be turned to our advantage.

Exercises
The following exercise combines what you have learned about higher 
order functions, recursion and IO. We are going to recreate what 
programmers from more popular languages call a "for loop". Implement a 
function

An example of how this function would be used might be

which prints the numbers 1 to 10 on the screen.

Starting from an initial value i , the for  executes job i . It then modifies 
this value f i  and checks to see if the modified value satisfies some 
condition. If it does, it stops; otherwise, the for loop continues, using the 
modified f i  in place of i .

The paragraph above gives an imperative description of the for loop. 
What would a more functional description be?

1.

for :: a -> (a->Bool) -> (a->a) -> (a-> IO ()) -> I O ()
for i p f job = -- ???

for 1 (<10) (+1) (\x -> print x)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

85 of 290 11/5/2007 9:02 PM

Implement the for loop in Haskell.2.
Why does Haskell not have a for loop as part of the language, or in 
the standard library?

3.

Some more challenging exercises you could try

What would be a more Haskell-like way of performing a task like 
'print the list of numbers from 1 to 10'? Are there any problems with 
your solution?

1.

Implement a function sequenceIO :: [IO a] -> IO [a] . Given a 
list of actions, this function runs each of the actions in order and 
returns all their results as a list.

2.

Implement a function mapIO :: (a -> IO b) -> [a] -> IO [b]

which given a function of type a -> IO b  and a list of type [a] , runs 
that action on each item in the list, and returns the results.

3.

This exercise was inspired from a blog post by osfameron. No peeking!

Currying

Intermediate Haskell

Modules

Modules

Haskell modules are a useful way to group a set of related functionalities into a single package and manage a set 
of different functions that have the same name. The module definition is the first thing that goes in your Haskell 
file.

Here is what a basic module definition looks like:

Note that

Each file contains only one module1.
The name of the module begins with a capital letter2.

module YourModule where



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

86 of 290 11/5/2007 9:02 PM

Importing

One thing your module can do is import functions from other modules. That is, in between the module 
declaration and the rest of your code, you may include some import declarations such as

Imported datatypes are specified by their name, followed by a list of imported constructors in parenthesis. For 
example:

Now what to do if you import some modules, but some of them have overlapping definitions? Or if you import a
module, but want to overwrite a function yourself? There are three ways to handle these cases: Qualified 
imports, hiding definitions and renaming imports.

Qualified imports

Say MyModule and MyOtherModule both have a definition for remove_e , which removes all instances of e from
a string. However, MyModule only removes lower-case e's, and MyOtherModule removes both upper and lower 
case. In this case the following code is ambiguous:

In this case, it isn't clear which remove_e  is meant. To avoid this, use the qualified keyword:

See the difference. In this case the function remove_e  isn't even defined. We call the functions from the imported
modules by adding the module's name. Note that MyModule.remove_e  also works if the qualified flag isn't 
included. The difference lies in the fact that remove_e  is ambiguously defined in the first case, and undefined in 
the second case. If we have a remove_e  defined in the current module, then using remove_e  without any prefix 
will call this function.

-- import only the functions toLower and toUpper fr om Data.Char
import Data.Char (toLower, toUpper) 

-- import everything exported from Data.List 
import Data.List 

-- import everything exported from MyModule
import MyModule

-- import only the Tree data type, and its Node con structor from Data.Tree
import Data.Tree (Tree(Node))

-- import everything exported from MyModule
import MyModule

-- import everything exported from MyOtherModule
import MyOtherModule

-- someFunction puts a c in front of the text, and removes all e's from the rest
someFunction :: String -> String
someFunction text = 'c' : remove_e text

import qualified MyModule
import qualified MyOtherModule

someFunction text = 'c' : MyModule.remove_e text --  Will work, removes lower case e's
someOtherFunction text = 'c' : MyOtherModule.remove _e text -- Will work, removes all e's
someIllegalFunction text = 'c' : remove_e text -- W on't work, remove_e isn't defined.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

87 of 290 11/5/2007 9:02 PM

Note

There is an ambiguity between a qualified name like MyModule.remove_e  and function 
composition (.). Writing reverse.MyModule.remove_e  is bound to confuse your 
Haskell compiler. One solution is stylistic: to always use spaces for function 
composition, for example, reverse . remove_e  or Just . remove_e  or even Just . 

MyModule.remove_e

Hiding definitions

Now suppose we want to import both MyModule  and MyOtherModule , but we know for sure we want to remove 
all e's, not just the lower cased ones. It will become really tedious (and disorderly) to add MyOtherModule  before 
every call to remove_e . Can't we just not import remove_e  from MyModule ? The answer is: yes we can.

This works. Why? Because of the word hiding on the import line. Followed by it, is a list of functions that 
shouldn't be imported. Hiding more than one function works like this:

Note that algebraic datatypes and type synonyms cannot be hidden. These are always imported. If you have a 
datatype defined in more modules, you must use qualified names.

Renaming imports

This is not really a technique to allow for overwriting, but it is often used along with the qualified flag. Imagine:

Especially when using qualified, this gets irritating. What we can do about it, is using the as keyword:

This allows us to use Shorty  instead of MyModuleWithAVeryLongModuleName  as prefix for the imported 
functions. As long as there are no ambiguous definitions, the following is also possible:

-- Note that I didn't use qualified this time.
import MyModule hiding (remove_e)
import MyOtherModule

someFunction text = 'c' : remove_e text

import MyModule hiding (remove_e, remove_f)

import qualified MyModuleWithAVeryLongModuleName

someFunction text = 'c' : MyModuleWithAVeryLongModu leName.remove_e $ text

import qualified MyModuleWithAVeryLongModuleName as  Shorty

someFunction text = 'c' : Shorty.remove_e $ text

import MyModule as My
import MyCompletelyDifferentModule as My



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

88 of 290 11/5/2007 9:02 PM

In this case, both the functions in MyModule  and the functions in MyCompletelyDifferentModule  can be 
prefixed with My.

Exporting

In the examples at the start of this article, the words "import everything exported from MyModule" were used. 
This raises a question. How can we decide which functions are exported and which stay "internal"? Here's how:

In this case, only remove_e  and add_two  are exported. While add_two  is allowed to make use of add_one , 
functions in modules that import MyModule  aren't allowed to try to use add_one , as it isn't exported.

Datatype export specifications are written quite similarly to import. You name the type, and follow with the list 
of constructors in parenthesis:

In this case, the module declaration could be rewritten "MyModule2 (Tree(..))", declaring that all constructors 
are exported.

Note: maintaining an export list is good practise not only because it reduces namespace pollution, but also 
because it enables certain compile-time optimizations
(http://www.haskell.org/haskellwiki/Performance/GHC#Inlining) which are unavailable otherwise.

Notes

In Haskell98, the last standardised version of Haskell, the module system is fairly conservative. But recent 
common practice consists of using an hierarchical module system, using periods to section off namespaces.

A module may export functions that it imports.

See the Haskell report for more details on the module system:

http://www.haskell.org/onlinereport/modules.html

Indentation

Haskell relies on indentation to reduce the verbosity of your code, but working with the indentation rules can be 
a bit confusing. The rules may seem many and arbitrary, but the reality of things is that there are only one or two 
layout rules, and all the seeming complexity and arbitrariness comes from how these rules interact with your 

module MyModule (remove_e, add_two) where

add_one blah = blah + 1

remove_e text = filter (/= 'e') text

add_two blah = add_one . add_one $ blah

module MyModule2 (Tree(Branch, Leaf)) where

data Tree a = Branch {left, right :: Tree a} 
            | Leaf a



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

89 of 290 11/5/2007 9:02 PM

code. So to take the frustration out of indentation and layout, the simplest solution is to get a grip on these rules.

The golden rule of indentation

Whilst the rest of this chapter will discuss in detail Haskell's indentation system, you will do fairly well if you 
just remember a single rule:

Code which is part of some expression should be indented further in than the 
line containing the beginning of that expression

What does that mean? The easiest example is a let binding group. The equations binding the variables are part of
the let expression, and so should be indented further in than the beginning of the binding group: the let keyword.
So,

Although you actually only need to indent by one extra space, it's more normal to place the first line alongside 
the 'let' and indent the rest to line up:

Here are some more examples:

Note that with 'case' it's less common to place the next expression on the same line as the beginning of the 
expression, as with 'do' and 'where'. Also note we lined up the arrows here: this is purely aesthetic and isn't 
counted as different layout; only indentation, whitespace beginning on the far-left edge, makes a difference to 
layout. Things get more complicated when the beginning of the expression isn't right at the left-hand edge. In 
this case, it's safe to just indent further than the beginning of the line containing the beginning of the expression. 
So,

Here are some alternative layouts to the above which would have also worked:

let
 x = a
 y = b

let x = a
    y = b

do foo
   bar
   baz

where x = a
      y = b

case x of
  p  -> foo
  p' -> baz

myFunction firstArgument secondArgument = do -- the  'do' isn't right at the left-hand edge
  foo                                        -- so indent these commands more than the beginning of th e line containing the 'do'.
  bar
  baz



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

90 of 290 11/5/2007 9:02 PM

It is sometimes 
useful to avoid 
layout or to mix it 
with semicolons 
and braces.

A mechanical translation

Did you know that layout (whitespace) is optional? It is entirely possible to treat 
Haskell as a one-dimensional language like C, using semicolons to separate things,
and curly braces to group them back.

To understand layout, you need to understand two things: where we need 
semicolons/braces, and how to get there from layout. The entire layout process can 
be summed up in three translation rules (plus a fourth one that doesn't come up 
very often):

If you see one of the layout keywords, (let , where , of , do), insert an open curly brace (right before the 
stuff that follows it)

1.

If you see something indented to the SAME level, insert a semicolon2.
If you see something indented LESS, insert a closing curly brace3.
If you see something unexpected in a list, like where , insert a closing brace before instead of a semicolon.4.

Exercises

In one word, what happens if you see something indented MORE?

to be completed: work through an example

Exercises

Translate the following layout into curly braces and semicolons. Note: to 
underscore the mechanical nature of this process, we deliberately chose 
something which is probably not valid Haskell:

myFunction firstArgument secondArgument = 
  do foo
     bar
     baz

myFunction firstArgument secondArgument = do foo
                                             bar
                                             baz

  of a
     b
      c
     d
  where
  a
  b
  c
  do
 you
  like
 the
way
 i let myself
        abuse
       these
 layout rules



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

91 of 290 11/5/2007 9:02 PM

Layout in action

Wrong Right

do within if

What happens if we put a do expression with an if ? Well, as we stated above, the keywords if  then  else , and 
everything besides the 4 layout keywords do not affect layout. So things remain exactly the same:

Wrong Right

Indent to the first

Remember from the First Rule of Layout Translation (above) that although the keyword do tells Haskell to insert 
a curly brace, where the curly braces goes depends not on the do, but the thing that immediately follows it. For 
example, this weird block of code is totally acceptable:

As a result, you could also write combined if/do combination like this:

Wrong Right

This is also the reason why you can write things like this

 do first thing
 second thing
 third thing

 do first thing
    second thing 
    third thing

 if foo
    then do first thing
         second thing
         third thing
    else do something else

 if foo
    then do first thing
            second thing
            third thing
    else do something else

         do
first thing
second thing
third thing

 if foo
    then do first thing
         second thing
         third thing
    else do something else

 if foo
    then do 
     first thing
     second thing
     third thing
    else do something else

main = do
 first thing
 second thing



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

92 of 290 11/5/2007 9:02 PM

instead of

Both are acceptable

if within do

This is a combination which trips up many Haskell programmers. Why does the following block of code not 
work?

Just to reiterate, the if then else  block is not at fault for this problem. Instead, the issue is that the do block 
notices that the then  part is indented to the same column as the if  part, so it is not very happy, because from its 
point of view, it just found a new statement of the block. It is as if you had written the unsugared version on the 
right:

sweet (layout) unsweet

Naturally enough, your Haskell compiler is unimpressed, because it thinks that you never finished writing your 
if  expression, before charging off to write some other new statement, oh ye of little attention span. Your 
compiler sees that you have written something like if condition; , which is clearly bad, because it is 
unfinished. So, in order to fix this, we need to indent the bottom parts of this if block a little bit inwards

sweet (layout) unsweet

This little bit of indentation prevents the do block from misinterpreting your then  as a brand new expression.

Exercises

main = 
 do first thing
    second thing

-- why is this bad?
do first thing
   if condition
   then foo
   else bar
   third thing

-- why is this bad?
do first thing
   if condition
   then foo
   else bar
   third thing

-- still bad, just explicitly so
do { first thing
   ; if condition
   ; then foo
   ; else bar
   ; third thing }

-- whew, fixed it!
do first thing
   if condition
    then foo
    else bar
   third thing

-- the fixed version without sugar
do { first thing
   ; if condition
      then foo
      else bar
   ; third thing }



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

93 of 290 11/5/2007 9:02 PM

The if-within-do problem has tripped up so many Haskellers, that one 
programmer has posted a proposal
(http://hackage.haskell.org/trac/haskell-prime/ticket/23) to the Haskell 
prime initiative to add optional semicolons between if then else . How 
would that fix the problem?

References

The Haskell Report (lexemes) (http://www.haskell.org/onlinereport/lexemes.html#sect2.7) - see 2.7 on 
layout

More on datatypes

Enumerations

One special case of the data  declaration is the enumeration. This is simply a data type where none of the 
constructor functions have any arguments:

You can mix constructors that do and do not have arguments, but its only an enumeration if none of the 
constructors have arguments. The section below on "Deriving" explains why the distinction is important. For 
instance,

The last constructor takes three arguments, so Colour  is not an enumeration.

Incidentally, the definition of the Bool  datatype is:

Named Fields (Record Syntax)

Consider a datatype whose purpose is to hold configuration settings. Usually when you extract members from 
this type, you really only care about one or possibly two of the many settings. Moreover, if many of the settings 
have the same type, you might often find yourself wondering "wait, was this the fourth or fifth element?" One 
thing you could do would be to write accessor functions. Consider the following made-up configuration type for 
a terminal program:

data Month = January | February | March | April | M ay | June | July
             | August | September | October | Novem ber | December

data Colour = Black | Red | Green | Blue | Cyan
            | Yellow | Magenta | White | RGB Int In t Int

data Bool = False | True
    deriving (Eq, Ord, Enum, Read, Show, Bounded)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

94 of 290 11/5/2007 9:02 PM

You could then write accessor functions, like (I've only listed a few):

You could also write update functions to update a single element. Of course, now if you add an element to the 
configuration, or remove one, all of these functions now have to take a different number of arguments. This is 
highly annoying and is an easy place for bugs to slip in. However, there's a solution. We simply give names to 
the fields in the datatype declaration, as follows:

This will automatically generate the following accessor functions for us:

Moreover, it gives us very convenient update methods. Here is a short example for a "post working directory" 
and "change directory" like functions that work on Configuration s:

So, in general, to update the field x in a datatype y to z, you write y{x=z} . You can change more than one; each 
should be separated by commas, for instance, y{x=z, a=b, c=d} .

It's only sugar

data Configuration =
    Configuration String          -- user name
                  String          -- local host
                  String          -- remote host
                  Bool            -- is guest?
                  Bool            -- is super user?
                  String          -- current direct ory
                  String          -- home directory
                  Integer         -- time connected
              deriving (Eq, Show)

getUserName (Configuration un _ _ _ _ _ _ _) = un
getLocalHost (Configuration _ lh _ _ _ _ _ _) = lh
getRemoteHost (Configuration _ _ rh _ _ _ _ _) = rh
getIsGuest (Configuration _ _ _ ig _ _ _ _) = ig
...

data Configuration =
    Configuration { username      :: String,
                    localhost     :: String,
                    remotehost    :: String,
                    isguest       :: Bool,
                    issuperuser   :: Bool,
                    currentdir    :: String,
                    homedir       :: String,
                    timeconnected :: Integer
                  }

username :: Configuration -> String
localhost :: Configuration -> String
...

changeDir :: Configuration -> String -> Configurati on
changeDir cfg newDir =
    -- make sure the directory exists
    if directoryExists newDir
      then -- change our current directory
           cfg{currentdir = newDir}
      else error "directory does not exist"

postWorkingDir :: Configuration -> String
  -- retrieve our current directory
postWorkingDir cfg = currentdir cfg



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

95 of 290 11/5/2007 9:02 PM

You can of course continue to pattern match against Configuration s as you did before. The named fields are 
simply syntactic sugar; you can still write something like:

But there is little reason to. Finally, you can pattern match against named fields as in:

This matches the variable lh  against the localhost  field on the Configuration  and the variable rh  against the 
remotehost  field on the Configuration . These matches of course succeed. You could also constrain the 
matches by putting values instead of variable names in these positions, as you would for standard datatypes.

You can create values of Configuration  in the old way as shown in the first definition below, or in the 
named-field's type, as shown in the second definition below:

Though the second is probably much more understandable unless you litter your code with comments.

Parameterised Types

Parameterised types are similar to "generic" or "template" types in other languages. A parameterised type takes 
one or more type parameters. For example the Standard Prelude type Maybe is defined as follows:

This says that the type Maybe takes a type parameter a. You can use this to declare, for example:

The lookupBirthday  function takes a list of birthday records and a string and returns a Maybe Anniversary . 
Typically, our interpretation is that if it finds the name then it will return Just  the corresponding record, and 
otherwise, it will return Nothing .

You can parameterise type  and newtype  declarations in exactly the same way. Furthermore you can combine 
parameterised types in arbitrary ways to construct new types.

getUserName (Configuration un _ _ _ _ _ _ _) = un

getHostData (Configuration {localhost=lh,remotehost =rh})
  = (lh,rh)

initCFG =
    Configuration "nobody" "nowhere" "nowhere"
                  False False "/" "/" 0
initCFG' =
    Configuration
       { username="nobody",
         localhost="nowhere",
         remotehost="nowhere",
         isguest=False,
         issuperuser=False,
         currentdir="/",
         homedir="/",
         timeconnected=0 }

data Maybe a = Nothing | Just a

lookupBirthday :: [Anniversary] -> String -> Maybe Anniversary



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

96 of 290 11/5/2007 9:02 PM

More than one type parameter

We can also have more than one type parameter. An example of this is the Either  type:

For example:

In this example, when you call otherFunction , it'll return a String . If you give it an even number as argument, 
it'll say so, and give half of it. If you give it anything else, eitherExample  will determine if it's divisible by three 
and pass it through to otherFunction .

Kind Errors

The flexibility of Haskell parameterised types can lead to errors in type declarations that are somewhat like type 
errors, except that they occur in the type declarations rather than in the program proper. Errors in these "types of 
types" are known as "kind" errors. You don't program with kinds: the compiler infers them for itself. But if you 
get parameterised types wrong then the compiler will report a kind error.

Trees

Now let's look at one of the most important datastructures: Trees. A tree is an example of a recursive datatype. 
Typically, its definition will look like this:

As you can see, it's parameterised, so we can have trees of Int s, trees of String s, trees of Maybe Int s, even 
trees of (Int, String)  pairs, if you really want. What makes it special is that Tree  appears in the definition of 
itself. We will see how this works by using an already known example: the list.

Lists as Trees

Think about it. As we have seen in the List Processing chapter, we break lists down into two cases: An empty 
list (denoted by [] ), and an element of the specified type, with another list (denoted by (x:xs) ). This gives us 
valuable insight about the definition of lists:

Which is sometimes written as (for Lisp-inclined people):

data Either a b = Left a | Right b

eitherExample :: Int -> Either Int String
eitherExample a | even a = Left (a/2)
                | a `mod` 3 == 0 = Right "three"
                | otherwise = Right "neither two or  three"

otherFunction :: Int -> String
otherFunction a = case eitherExample a of
  Left c = "Even: " ++ show a ++ " = 2*" ++ show c ++ "."
  Right s = show a ++ " is divisible by " ++ s ++ " ."

data Tree a = Leaf a | Branch (Tree a) (Tree a)

data [a] = [] | (a:[a]) -- Pseudo-Haskell, will not  work properly.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

97 of 290 11/5/2007 9:02 PM

As you can see this is also recursive, like the tree we had. Here, the constructor functions are []  and (:) . They 
represent what we have called Leaf  and Branch . We can use these in pattern matching, just as we did with the 
empty list and the (x:xs) :

Maps and Folds

We already know about maps and folds for lists. With our realisation that a list is some sort of tree, we can try to
write map and fold functions for our own type Tree . To recap:

I will handle map first, then folds.

Map

Let's take a look at the definition of map for lists:

First, if we were to write treeMap , what would its type be? Defining the function is easier if you have an idea of 
what its type should be.

We want it to work on a Tree  of some type, and it should return another Tree  of some type. What treeMap  does 
is applying a function on each element of the tree, so we also need a function. In short:

See how this is similar to the list example?

Next, we should start with the easiest case. When talking about a Tree , this is obviously the case of a Leaf . A 
Leaf  only contains a single value, so all we have to do is apply the function to that value and then return a Leaf

with the altered value:

Also, this looks a lot like the empty list case with map. Now if we have a Branch , it will include two subtrees; 
what do we do with them? When looking at the list-map, you can see it uses a call to itself on the tail of the list. 
We also shall do that with the two subtrees. The complete definition of treeMap is as follows:

data List a = Nil | Cons a (List a)

data Tree a = Leaf a | Branch (Tree a) (Tree a)
data [a]    = []     | (:)    a [a]              
  -- (:) a [a] would be the same as (a:[a]) with pr efix instead of infix notation.

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

treeMap :: (a -> b) -> Tree a -> Tree b

treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f (Leaf x) = Leaf (f x)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

98 of 290 11/5/2007 9:02 PM

We can make this a bit more readable by noting that treeMap f  is itself a function with type Tree a -> Tree b , 
and what we really need is a recursive definition of treeMap f . This gives us the following revised definition:

If you don't understand it just now, re-read it. Especially the use of pattern matching may seem weird at first, but
it is essential to the use of datatypes. The most important thing to remember is that pattern matching happens on 
constructor functions.

If you understand it, read on for folds.

Fold

Now we've had the treeMap , let's try to write a treeFold . Again let's take a look at the definition of foldr  for 
lists, as it is easier to understand.

Recall that lists have two constructors:

Thus foldr  takes two arguments corresponding to the two constructors:

We'll use the same strategy to find a definition for treeFold  as we did for treeMap . First, the type. We want 
treeFold  to transform a tree of some type into a value of some other type; so in place of [a] -> b  we will have 
Tree a -> b . How do we specify the transformation? First note that Tree a  has two constructors:

So treeFold  will have two arguments corresponding to the two constructors:

Putting it all together we get the following type definition:

treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f (Leaf x) = Leaf (f x)
treeMap f (Branch left right) = Branch (treeMap f l eft) (treeMap f right)

treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f = g where
  g (Leaf x) = Leaf (f x)
  g (Branch left right) = Branch (g left) (g right)

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

(:) :: a -> [a] -> [a]  -- two arguments
[] :: [a]  -- zero arguments

f :: a -> b -> b  -- a two-argument function
z :: b  -- like a zero-argument function

Branch :: Tree a -> Tree a -> Tree a
Leaf :: a -> Tree a

 fbranch :: b -> b -> b
 fleaf :: a -> b



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

99 of 290 11/5/2007 9:02 PM

That is, the first argument, of type (b -> b -> b) , is a function specifying how to combine subtrees; the second
argument, of type a -> b , is a function specifying what to do with leaves; and the third argument, of type Tree 

a, is the tree we want to "fold".

As with treeMap , we'll avoid repeating the arguments fbranch  and fleaf  by introducing a local function g:

The argument fleaf  tells us what to do with Leaf  subtrees:

The argument fbranch  tells us how to combine the results of "folding" two subtrees:

Our full definition becomes:

For examples of how these work, copy the Tree  data definition and the treeMap  and treeFold  functions to a 
Haskell file, along with the following:

Then load it into your favourite Haskell interpreter, and evaluate:

treeFold :: (b -> b -> b) -> (a -> b) -> Tree a -> b

treeFold :: (b -> b -> b) -> (a -> b)  -> Tree a ->  b
treeFold fbranch fleaf = g where
  -- definition of g goes here

g (Leaf x) = fleaf x

g (Branch left right) = fbranch (g left) (g right)

treeFold :: (b -> b -> b) -> (a -> b) -> Tree a -> b
treeFold fbranch fleaf = g where
  g (Leaf x) = fleaf x
  g (Branch left right) = fbranch (g left) (g right )

tree1 :: Tree Integer
tree1 = 
    Branch
       (Branch 
           (Branch 
               (Leaf 1) 
               (Branch (Leaf 2) (Leaf 3))) 
           (Branch 
               (Leaf 4) 
               (Branch (Leaf 5) (Leaf 6)))) 
       (Branch
           (Branch (Leaf 7) (Leaf 8)) 
           (Leaf 9))

doubleTree = treeMap (*2)  -- doubles each value in  tree
sumTree = treeFold (+) id -- sum of the leaf values  in tree
fringeTree = treeFold (++) (: [])  -- list of the l eaves of tree

doubleTree tree1
sumTree tree1
fringeTree tree1



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

100 of 290 11/5/2007 9:02 PM

Other datatypes

Now, unlike mentioned in the chapter about trees, folds and maps aren't tree-only. They are very useful for any 
kind of data type. Let's look at the following, somewhat weird, type:

There's no way you will be using this in a program written yourself, but it demonstrates how folds and maps are 
really constructed.

General Map

Again, we start with weirdMap . Now, unlike before, this Weird  type has two parameters. This means that we 
can't just use one function (as was the case for lists and Tree ), but we need more. For every parameter, we need 
one function. The type of weirdMap  will be:

Read it again, and it makes sense. Maps don't throw away the structure of a datatype, so if we start with a Weird

thing, the output is also a Weird  thing. Now we have to split it up into patterns. Remember that these patterns are
the constructor functions. To avoid having to type the names of the functions again and again, I use a where
clause:

It isn't very hard to find the definition for the First  and Second  constructors. The list of (a,b)  tuples is harder. 
The Fourth  is even recursive!

Remember that a map preserves structure. This is important. That means, a list of tuples stays a list of tuples. 
Only the types are changed in some way or another. You might have already guessed what we should do with the
list of tuples. We need to make another list, of which the elements are tuples. This might sound silly to repeat, 
but it becomes clear that we first have to change individual elements into other tuples, and then add them to a 
list. Together with the First  and Second  constructors, we get:

First we change (a,b) into (fa a, fb b). Next we need the mapped version of the rest of the list to add to it. Since 

data Weird a b =
  First a |
  Second b |
  Third [(a,b)] |
  Fourth (Weird a b)

weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> We ird c d

weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> We ird c d
weirdMap fa fb = weirdMap'
  where
    weirdMap' (First a)          = --More to follow
    weirdMap' (Second b)         = --More to follow
    weirdMap' (Third ((a,b):xs)) = --More to follow
    weirdMap' (Fourth w)         = --More to follow

weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> We ird c d
weirdMap fa fb = weirdMap'
  where
    weirdMap' (First a)          = First (fa a)
    weirdMap' (Second b)         = Second (fb b)
    weirdMap' (Third ((a,b):xs)) = Third ( (fa a, f b b) : weirdMap' (Third xs))
    weirdMap' (Fourth w)         = --More to follow



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

101 of 290 11/5/2007 9:02 PM

we don't know a function for a list of (a,b), we must change it back to a Weird  value, by adding Third . This isn't 
really stylish, though, as we first "unwrap" the Weird  package, and then pack it back in. This can be changed 
into a more elegant solution, in which we don't even have to break list elements into tuples!

Remember we already had a function to change a list of some type into another list, of a different type? Yup, it's 
our good old map function for lists. Now what if the first type was, say (a,b) , and the second type (c,d) ? That 
seems useable. Now we must think about the function we're mapping over the list. We have already found it in 
the above definition: It's the function that sends (a,b)  to (fa a, fb b) . To write it in the Lambda Notation: 
\(a, b) -> (fa a, fb b) .

That's it! We only have to match the list once, and call the list-map function on it. Now for the Fourth

Constructor. This is actually really easy. Just weirdMap  it again!

General Fold

Where we were able to define a map, by giving it a function for every separate type, this isn't enough for a fold. 
For a fold, we'll need a function for every constructor function. This is also the case with lists! Remember the 
constructors of a list are []  and (:) . The 'z'-argument in the foldr  function corresponds to the [] -constructor. 
The 'f'-argument in the foldr  function corresponds to the (:)  constructor. The Weird  datatype has four 
constructors, so we need four functions. Next, we have a parameter of the Weird a b  type, and we want to end 
up with some other type of value. Even more specific: the return type of each individual function we pass to 
weirdFold  will be the return type of weirdFold  itself.

This in itself won't work. We still need the types of something1 , something2 , something3  and something4 . But 
since we know the constructors, this won't be much of a problem. Let's first write down a sketch for our 
definition. Again, I use a where clause, so I don't have to write the four function all the time.

Again, the types and definitions of the first two functions are easy to find. The third one isn't very difficult 

weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> We ird c d
weirdMap fa fb = weirdMap'
  where
    weirdMap' (First a)    = First (fa a)
    weirdMap' (Second b)   = Second (fb b)
    weirdMap' (Third list) = Third ( map (\(a, b) - > (fa a, fb b) ) list)
    weirdMap' (Fourth w)   = --More to follow

weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> We ird c d
weirdMap fa fb = weirdMap'
  where
    weirdMap' (First a)    = First (fa a)
    weirdMap' (Second b)   = Second (fb b)
    weirdMap' (Third list) = Third ( map (\(a, b) - > (fa a, fb b) ) list)
    weirdMap' (Fourth w)   = Fourth (weirdMap w)

weirdFold :: (something1 -> c) -> (something2 -> c)  -> (something3 -> c) -> (something4 -> c) -> Weird  a b -> c

weirdFold :: (something1 -> c) -> (something2 -> c)  -> (something3 -> c) -> (something4 -> c) -> Weird  a b -> c
weirdFold f1 f2 f3 f4 = weirdFold'
  where
    weirdFold' First a          = --Something of ty pe c here
    weirdFold' Second b         = --Something of ty pe c here
    weirdFold' Third list       = --Something of ty pe c here
    weirdFold' Fourth w         = --Something of ty pe c here



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

102 of 290 11/5/2007 9:02 PM

either, as it's just some other combination with 'a' and 'b'. The fourth one, however, is recursive, and we have to 
watch out. As in the case of weirdMap , we also need to recursively use the weirdFold  function here. This brings 
us to the following, final, definition:

In which the hardest part, supplying of f1 , f2 , f3  and f4 , is left out.

Folds on recursive datatypes

Since I didn't bring enough recursiveness in the Weird a b  datatype, here's some help for the even weirder 
things. Someone, please clean this up!

Weird  was a fairly nice datatype. Just one recursive constructor, which isn't even nested inside other structures. 
What would happen if we added a fifth constructor?

A valid, and difficult, question. In general, the following rules apply:

A function to be supplied to a fold has the same amount of arguments as the corresponding constructor.
The type of such a function is the same as the type of the constructor.
The only difference is that every instance of the type the constructor belongs to, should be replaced by the 
type of the fold.
If a constructor is recursive, the complete fold function should be applied to the recursive part.
If a recursive instance appears in another structure, the appropriate map function should be used

So f5  would have the type:

as the type of Fifth  is:

The definition of weirdFold'  for the Fifth  constructor will be:

Now note that nothing strange happens with the Weird a a  part. No weirdFold  gets called. What's up? This is a 
recursion, right? Well... not really. Weird a a  has another type than Weird a b , so it isn't a real recursion. It 

weirdFold :: (a -> c) -> (b -> c) -> ([(a,b)] -> c)  -> (c -> c) -> Weird a b -> c
weirdFold f1 f2 f3 f4 = weirdFold'
  where
    weirdFold' First a          = f1 a
    weirdFold' Second b         = f2 b
    weirdFold' Third list       = f3 list
    weirdFold' Fourth w         = f4 (weirdFold f1 f2 f3 f4 w)

  Fifth [Weird a b] a (Weird a a, Maybe (Weird a b) )

f5 :: [c] -> a -> (Weird a a, Maybe c)

Fifth :: [Weird a b] -> a -> (Weird a a, Maybe (Wei rd a b))

    weirdFold' Fifth list a (waa, maybe) = f5 (map (weirdFold f1 f2 f3 f4 f5) list) a (waa, maybeMap ( weirdFold f1 f2 f3 f4 f5) maybe)
      where
        maybeMap f Nothing = Nothing
        maybeMap f (Just w) = Just (f w)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

103 of 290 11/5/2007 9:02 PM

isn't guaranteed that, for example, f2  will work with something of type 'a', where it expects a type 'b'. It can be 
true for some cases, but not for everything.

Also look at the definition of maybeMap. Verify that it is indeed a map function:

It preserves structure.
Only types are changed.

Class declarations
Type classes are a way of ensuring you have certain operations defined on your inputs. For example, if you 
know a certain type instantiates the class Fractional, then you can find its reciprocal.

Please note: For programmers coming from C++, Java and other object-oriented languages: the concept of 
"class" in Haskell is not the same as in OO languages. There are just enough similarities to cause confusion, but 
not enough to let you reason by analogy with what you already know. When you work through this section try to
forget everything you already know about classes and subtyping. It might help to mentally substitute the word 
"group" (or "interface") for "class" when reading this section. Java programmers in particular may find it useful 
to think of Haskell classes as being akin to Java interfaces. For C++ programmers, Haskell classes are similar to 
the informal notion of a "concept" used in specifying type requirements in the Standard Template Library (e.g. 
InputIterator, EqualityComparable, etc.)

Introduction

Haskell has several numeric types, including Int , Integer  and Float . You can add any two numbers of the 
same type together, but not numbers of different types. You can also compare two numbers of the same type for 
equality. You can also compare two values of type Bool  for equality, but you cannot add them together.

The Haskell type system expresses these rules using classes. A class is a template for types: it specifies the 
operations that the types must support. A type is said to be an "instance" of a class if it supports these 
operations.

For instance, here is the definition of the "Eq" class from the Standard Prelude. It defines the == and /=
functions.

This says that a type a is an instance of Eq if it supports these two functions. It also gives default definitions of 
the functions in terms of each other. This means that if an instance of Eq defines one of these functions then the 
other one will be defined automatically.

Here is how we declare that a type is an instance of Eq:

class  Eq a  where
   (==), (/=) :: a -> a -> Bool

       -- Minimal complete definition:
       --      (==) or (/=)
   x /= y     =  not (x == y)
   x == y     =  not (x /= y)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

104 of 290 11/5/2007 9:02 PM

There are several things to notice about this:

The class Eq is defined in the standard prelude. This code sample defines the type Foo and then declares it 
to be an instance of Eq. The three definitions (class, data type and instance) are completely separate and 
there is no rule about how they are grouped. You could just as easily create a new class Bar  and then 
declare the type Integer  to be an instance of it.

Types and classes are not the same thing. A class is a "template" for types. Again this is unlike most OO 
languages, where a class is also itself a type.

The definition of == depends on the fact that Integer  and String  are also members of Eq. In fact almost 
all types in Haskell (the most notable exception being functions) are members of Eq.

You can only declare types to be instances of a class if they were defined with data  or newtype . Type 
synonyms are not allowed.

Deriving

Obviously most of the data types you create in any real program should be members of Eq, and for that matter a 
lot of them will also be members of other Standard Prelude classes such as Ord  and Show. This would require 
large amounts of boilerplate for every new type, so Haskell has a convenient way to declare the "obvious" 
instance definitions using the keyword deriving . Using it, Foo would be written as:

This makes Foo an instance of Eq with exactly the same definition of == as before, and also makes it an instance 
of Ord  and Show for good measure. If you are only deriving from one class then you can omit the parentheses 
around its name, e.g.:

You can only use deriving  with a limited set of built-in classes. They are:

Eq 
Equality operators == and /=

Ord 
Comparison operators < <= > >= . Also min  and max.

Enum 
For enumerations only. Allows the use of list syntax such as [Blue .. Green] .

Bounded 

data Foo = Foo {x :: Integer, str :: String}

instance Eq Foo where
   (Foo x1 str1) == (Foo x2 str2) =
      (x1 == x2) && (str1 == str2)

data Foo = Foo {x :: Integer, str :: String}
   deriving (Eq, Ord, Show)

data Foo = Foo {x :: Integer, str :: String}
   deriving Eq



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

105 of 290 11/5/2007 9:02 PM

Also for enumerations, but can also be used on types that have only one constructor. Provides minBound

and maxBound, the lowest and highest values that the type can take.

Show 
Defines the function show (note the letter case of the class and function names) which converts the type to 
a string. Also defines some other functions that will be described later.

Read 
Defines the function read  which parses a string into a value of the type. As with Show it also defines some 
other functions as well.

The precise rules for deriving the relevant functions are given in the language report. However they can 
generally be relied upon to be the "right thing" for most cases. The types of elements inside the data type must 
also be instances of the class you are deriving.

This provision of special magic for a limited set of predefined classes goes against the general Haskell 
philosophy that "built in things are not special". However it does save a lot of typing. Experimental work with 
Template Haskell is looking at how this magic, or something like it, can be extended to all classes.

Class Inheritance

Classes can inherit from other classes. For example, here is the definition of the class Ord  from the Standard 
Prelude, for types that have comparison operators:

The actual definition is rather longer and includes default implementations for most of the functions. The point 
here is that Ord  inherits from Eq. This is indicated by the => symbol in the first line. It says that in order for a 
type to be an instance of Ord  it must also be an instance of Eq, and hence must also implement the == and /=
operations.

A class can inherit from several other classes: just put all the ancestor classes in the parentheses before the =>. 
Strictly speaking those parentheses can be omitted for a single ancestor, but including them acts as a visual 
prompt that this is not the class being defined and hence makes for easier reading.

Standard Classes

This diagram, copied from the Haskell Report, shows the relationships between the classes and types in the 
Standard Prelude. The names in bold are the classes. The non-bold text are the types that are instances of each 
class. The (->)  refers to functions and the []  refers to lists.

class  (Eq a) => Ord a  where
   compare              :: a -> a -> Ordering
   (<), (<=), (>=), (>) :: a -> a -> Bool
   max, min             :: a -> a -> a



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

106 of 290 11/5/2007 9:02 PM

Classes and types

Classes and Types

Simple Type Constraints

So far we have seen how to declare classes, how to declare types, and how to declare that types are instances of 
classes. But there is something missing. How do we declare the type of a simple arithmetic function?

Obviously x and y must be of the same type because you can't add different types of numbers together. So how 
about:

plus x y = x + y



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

107 of 290 11/5/2007 9:02 PM

which says that plus  takes two values and returns a new value, and all three values are of the same type. But 
there is a problem: the arguments to plus  need to be of a type that supports addition. Instances of the class Num

support addition, so we need to limit the type signature to just that class. The syntax for this is:

This says that the type of the arguments to plus  must be an instance of Num, which is what we want.

You can put several limits into a type signature like this:

This says that the arguments x and y must be of the same type, and that type must be an instance of both Num and
Show. Furthermore the final argument t  must be of some (possibly different) type that is also an instance of Show.

You can omit the parentheses for a single constraint, but they are required for multiple constraints. Actually it is 
common practice to put even single constraints in parentheses because it makes things easier to read.

More Type Constraints

You can put a type constraint in almost any type declaration. The only exception is a type  synonym declaration. 
The following is not legal:

But you can say:

This declares a type Foo with two constructors. F1 takes any numeric type, while F2 takes an integer.

You can also use type parameters in newtype  and instance  declarations. Class inheritance (see the previous 
section) also uses the same syntax.

Monads

Understanding monads

plus :: a -> a -> a

plus :: Num a => a -> a -> a

foo :: (Num a, Show a, Show b) => a -> a -> b -> St ring
foo x y t = 
   show x ++ " plus " ++ show y ++ " is " ++ show ( x+y) ++ ".  " ++ show t

type (Num a) => Foo a = a -> a -> a

data (Num a) => Foo a = F1 a | F2 Integer



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

108 of 290 11/5/2007 9:02 PM

This page is undergoing a major rewrite. Meanwhile, here's the previous version
(http://en.wikibooks.org/w/index.php?title=Haskell/Understanding_monads&oldid=933545) 
.

Notes and TODOs

Loose ends:

Explain monadic parser combinators! But in another chapter.

The basic triad "rock, scissors, paper" err, "reader, writer, state" is best introduced in another chapter, 
maybe entitled "A Zoo of Monads". Reader must include the famous function [(a->b)] -> a -> [b]  also
known as sequence !

The Random a  is too cute to not elaborate it further to probabilistic functional programming. The Monty 
Hall problem can be solved with that. Key: the implementation can be changed, it effectively becomes the 
Set-Monad then. Extension: guard  and backtracking.

Introduction

What is a Monad?

We're bold and present the exact definition of "monad". This should (hopefully) prevent common confusion 
about the definition and remove the buzzword status. Of course, this paragraph has to be really short since it 
doesn't explain why I should care about monads at all or what the intuition behind bind and return is.

A monad is a triple  consisting of a type constructor M and two polymorphic functions

that obey the following three laws

Right unit

Left unit

Associativity

The operator  is commonly called "bind". Often, one simply refers to the type constructor M as the monad.

In Haskell, we can capture this definition as a type class

Any instance of this class Monad is assumed to fulfill the three laws stated above. In other words, a monad is a 

class Monad m where
  return :: a -> m a
  (>>=)  :: m a -> (a -> m b) -> m b



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

109 of 290 11/5/2007 9:02 PM

type constructor for which those two functions are implemented. This class is, slightly expanded, part of the 
Haskell Prelude (http://www.haskell.org/onlinereport/standard-prelude.html) and defined in the standard library 
module Control.Monad (http://www.haskell.org/ghc/docs/latest/html/libraries/base/Control-Monad.html) .

What use are Monads?

After maturing in the mathematical discipline of category theory for some time, monads were introduced to 

programming when Eugenio Moggi showed[13] how they can unify the description of the semantics of different 
programming languages. Depending on the concrete monad chosen, different semantics emerge. For instance, 
mutable state can be modeled by the monad M a = s -> (a,s) . Lists are a monad, too, and model 
nondeterminism and backtracking whereas the monad M a = Either e a  models exceptions.

One aim of the chapters on monads is to exemplify many of these different forms of computation. Of course, it's 

not our main interest to study programming language semantics, but it was Philip Wadler who noticed[14] [15]

that we can directly implement Moggi's monads in Haskell. This is a powerful idea since each monad is a little 
minilanguage specially suited for a particular task. For instance, to program a state transformer, we can use a 
monad to model state. To solve a logic problem, we use the list monad to transparently handle backtracking. To 
handle failure and exceptions easily, we have the Either e  monad. And last but not least, there is the IO  monad 
to perform input/output, something that did not seem to fit well into a purely functional language. This and 
subsequent chapters are to guide you to through these minilanguages and to show they can simplify and structure
your daily Haskell code.

But how can the rather short definition of monads given above relate all these very different forms of 
computation? They all share a common use pattern, namely the ability to combine two computations f and g into
a compound computation  by first "executing" f and "then" binding, i.e. feeding the result to g. This is 
what the operator  captures and that's why it's called "bind". In other words,  is similar to function 
composition. Of course, depending on the underlying monad, "executing" and "then" may have quite different 
meanings. Don't worry if this seems too abstract now, we will detail the genesis of  with our first example 
monad in the section #Stateful Computations.

Stateful Computations

Example state monads, i.e. particular state types. One of them is to be treated before/in parallel to IO a . The 
others may be useful for exercises!

random numbers. Drawbacks:  is meaningless, using an infinite list of random numbers is a better 
abstraction. Highlights: the state is more an implementation detail than of individual importance, this 
makes explanation easier!
name-supply. Task: label all leaves in a tree from 1 to n.
Data.Map for depth first search in a graph.
SOE, chapter 19: interactive robot language. Nice example monad to program in. But not a good example
for implementation.

Of course, the problem with an example is that we need to explain the example use case before plunging into 
>>=. But it's probably worth it. Huh, it turns out that we even have to explain the s -> (a,s)  pattern for 
threading state. Seems that random numbers are easiest to explain.

Random Number Generation



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

110 of 290 11/5/2007 9:02 PM

We will introduce  with a practical example of stateful computations: random number generation. This 
subsection will present the example, it's the next subsection that will show the monad behind.

Computers usually create random numbers by starting with a single random number (frequently called "seed") 
and applying some arithmetic operations to it to get a new random number. By repeating this process, we get a 
sequence of fairly random numbers. Of course, since each number is generated in a deterministic way from the 
previous one, they are not truly random, but pseudo-random numbers. But by choosing the arithmetic 
operations carefully to properly "scramble" the input number, they behave like real random numbers. To give an 
impression of how this "scrambling" works, here's an example function that generates a pseudo-random number 
from a previous one:

There is much research on constructing good pseudo-random number generators, but fortunately, the Haskell 
standard library module System.Random
(http://www.haskell.org/ghc/docs/latest/html/libraries/base/System-Random.html) already implements a 
ready-to-use generator for us. However, its interface is best explained with randomNext , so we will stick to that 
for now.

Let's implement a function that simulates a dice roll, i.e. that returns a random number from 1 to 6. But 
randomNext  uses large numbers since they can be scrambled much better, so we need to convert a Seed to a 
number from 1 to 6. This can be done by dividing the Seed by 6 and taking the remainder

So, given an initial random Seed, we can roll a die with it

But something is missing: what if we want to roll the die a second time? For that, we have to generate a new 
random Seed from the old one via randomNext . In other words, we have to change the current Seed, i.e. the state
of our pseudo-random number generator. In Haskell, this can be accomplished by returning the new state in the 
result

This is the description of a state transformer: an initial state (the Seed) is transformed to a new one while 
yielding a result (the Int  between 1 and 6). We can visualize it as ... (TODO: DRAW THE PICTURE!).

To roll two dice and sum their pips, we can now feed the Seed from the first roll to the second roll. Of course, 
we have to return the new state from the second dice roll as well for our function sumTwoDice  to be as useful as 
rollDie :

type Seed = Int

randomNext:: Seed -> Seed
randomNext rand = if newRand > 0 then newRand else newRand + 2147483647
    where 
    newRand = 16807 * lo - 2836 * hi
    (hi,lo) = rand `divMod` 127773

toDieRoll :: Seed -> Int
toDieRoll seed = (seed `mod` 6) + 1

> toDieRoll 362354 -- hand-crafted initial random s eed :-)
3

rollDie :: Seed -> (Int, Seed)
rollDie seed = ((seed `mod` 6) + 1, randomNext seed )



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

111 of 290 11/5/2007 9:02 PM

Again, a picture shows clearly how the state is passed from one rollDie  to the next (PICTURE!). Note that 
nextRandom  does not appear in the definition of sumTwoDice , the state change it performs is already embedded in
rollDie . The function sumTwoDice  merely propagates the state updates.

This is the model that System.Random
(http://www.haskell.org/ghc/docs/latest/html/libraries/base/System-Random.html) employs, so we can now 
elaborate on its concrete interface. The library uses two type classes: RandomGen and Random. Any instance of the 
former acts similar to our Seed, it's just called "random number generator", not "seed". This makes sense since 
the seed may have more complicated internals just an Int  and is closely linked to the function that generates 
new pseudo-random numbers. In any case, the module exports a convenient random number generate StdGen

and you most likely won't have to deal with the RandomGen-class at all.

The interesting functions are those of the class Random, in particular random  and randomR. They are implemented
for a few types like Bool , Char , Int  etc. so you can use them to generate different random things than numbers. 
The function randomR returns a random number in a specified range, so that we can conveniently write

As a final note, you may want to compare random number creation in Haskell to its counterpart in imperative 
languages like C. In the latter, there usually is a "function" rand()  that returns a different and random result at 
each call but internally updates the random seed. Since Haskell is pure, the result of a function is determined 
solely by its parameters and manipulating the random seed has to manifest itself in the type.

Exercises

Roll two dice! With sumTwoDice  that is :-) . Use fst  to extract the result.1.
Write a function rollNDice :: Int -> Seed -> ([Int],Seed)  that rolls dice n 
times and returns a list of the n results. Extra: If you know about infinite lists, use 
unfoldr  and take  to get the result list (but without seed this time).

2.

Reimplement Seed and rollDie  with StdGen  and random  from System.Random
(http://www.haskell.org/ghc/docs/latest/html/libraries/base/System-Random.html) 
.

3.

Now that you have random numbers, do some statistical experiments with the 
help of rollNDice . For example, do a sanity check that rollDie  is not skewed 
and returns each number with equal likelyhood. How is the sum of pips of a 
double dice roll distributed? The difference? And triple rolls?

4.

Threading the State with bind

sumTwoDice :: Seed -> (Int, Seed)
sumTwoDice seed0 =
  let (die1, seed1) = rollDie seed0
      (die2, seed2) = rollDie seed1
  in (die1 + die2, seed2)

import System.Random (http://www.haskell.org/ghc/do cs/latest/html/libraries/base/System-Random.html) 

rollDie :: StdGen -> (Int, StdGen)
rollDie = randomR (1,6) 



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

112 of 290 11/5/2007 9:02 PM

>> for the state monad is easier than >>=. But it's meaningless for random numbers :-/ PICTUREs for the
plumbing! Somehow shorten the discussion, mainly introduce return  more fluently. Expanding the definitions 
of the new combinators as exercises to check that the new code for sumTwoDice is the same as the old one.

In the last subsection, we've seen that state transformers like random number generators can be modeled by 
functions s -> (a,s)  where s is the type of the state. Such a function takes a state and returns a result of type a

and a transformed state. However, programming with these functions is a bit tedious since we have to explicitly 
pass the state from one computation to the next one like in the definition of sumTwoDice

Each state has to be named and we have to take care to not pass the wrong state to the next function by accident.

Of course, we are Haskell programmers: if there are common patterns or boilerplate in our code, we should 
search for a way to abstract and capture them in a higher order function. Thus, we want to find something that 
can combine state transformers s -> (a,s)  to larger ones by passing the state from one to the next. A first 
attempt is an operator named "then"

which passes the state from the first computation to the second

By nesting it, we can already roll a die multiple times

without seeing a single state! Unfortunately, (>>)  doesn't allow us to use the result of the first die roll in the 
following ones, it's simply ignored. In other words, this combinaton changes the random seed three times but 
only returns the pips from the last die roll. Rather pointless for random numbers, but we're on the right track. 
PICTURE FOR (>>) !

We somehow need a way to pass the result from the first computation to the second, "then" is not yet general 
enough to allow the implementation of sumTwoDice . But first, we should introduce a type synonym to simplify 
the type signatures

Astonishingly, this gives an entirely new point of view: a value of type Random a  can be seen as a value of type 

sumTwoDice :: Seed -> (Int, Seed)
sumTwoDice seed0 =
  let (die1, seed1) = rollDie seed0
      (die2, seed2) = rollDie seed1
  in (die1 + die2, seed2)

(>>) :: (Seed -> (a,Seed)) -> (Seed -> (b,Seed)) ->  (Seed -> (b,Seed))

(>>) f g seed0 = 
  let (result1, seed1) = f seed0
      (result2, seed2) = g seed1
  in (result2, seed2)

rollDie >> (rollDie >> rollDie)

type Random a = Seed -> (a, Seed)

(>>)       :: Random a -> Random b -> Random b
rollDie    :: Random Int
sumTwoDice :: Random Int



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

113 of 290 11/5/2007 9:02 PM

a that varies randomly. So, rollDie  can be interpreted as a number between 1 and 6 that "figdets" and is 
sometimes "here" and sometimes "there" when asked about is value. We will explore this idea further, but for 
now, let's stick to our initial goal that Random a  is a simple shortcut for a state transformer. Just take a mental 
note about the observation that our aim of explicitely removing the state from our functions naturally asks for 
removing the state from our types, too.

Now, how to pass the result from one computation to the next? Well, we may simply give it as parameter to the 
next one

In other words, the second state transformer is now replaced by a function so that its result of type b may depend
on the previous result a. The implementation is almost that of >>

with the only difference being that g now takes result1  as parameter. PICTURE!

This combinator named "bind" should finally allow us to implement sumTwoDice . Let's see: we roll the first die 
and feed the result to a function that adds a second die roll to that

Adding the second die roll uses the remaining code from our original definition of sumTwoDice .

(Remember that Random Int = Seed -> (Int, Seed) .) That's still unsatisfactory, since we would like to avoid 
all explicit state and just use >>= a second time to feed the second dice roll to the sum

That's the same as

which is almost

(>>=) :: Random a -> (a -> Random b) -> Random b

(>>=) f g seed0 = 
  let (result1, seed1) = f seed0
      (result2, seed2) = (g result1) seed1
  in (result2, seed2)

sumTwoDice :: Random Int
sumTwoDice = rollDie >>= (\die1 -> addToDie die1)

addToDie :: Int -> Random Int
addToDie die1 seed1 =
  let (die2, seed2) = rollDie seed1
  in (die1 + die2, seed2)

addToDie die1 = rollDie >>= (\die2 -> addThem die2)
  where
  addThem die2 seed2 = (die1 + die2, seed2)

addToDie die1 = rollDie >>= (\die2 -> (\seed2 -> (d ie1 + die2, seed2)) )

addToDie die1 = rollDie >>= (\die2 -> (die1 + die2)  )



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

114 of 290 11/5/2007 9:02 PM

though not quite since the latter doesn't type check since the sum has type Int  instead of the expected Random 

Int . But we can convert the former into the latter with a helper function called "return "!

So, return  doesn't change the state but simply returns its argument as result. For random numbers, this means 
that return  creates a number that isn't random at all. Last but not least, we can drop the definition of addToDie

and directly write

Exercises

Implement rollNDice :: Int -> Random [Int]  from the previous 
subsection with >>= and return .

1.

To conclude, the quest of automating the passing of state from one computation to the next led us to the two 
operations that define a monad. Of course, this is just the beginning. The reader is probably not yet accustomed 
to the >>=-combinator, how to program with it effectively? What about the three monad laws mentioned in the 
introduction? But before we embark to answer these questions in the next big section, let us emphasize the need 
for using >>= as a main primitive in a slightly different example in the next subsection.

Input/Output needs bind

IO  is the one type that requires the programmer to know what a monad is, the other monads are more or less 
optional. It makes abstract return  and bind  necessary. Explaining World -> (a, World) = IO a  and the need
to hide the World  naturally leads to return  and >>=. I guess we need to mention somewhere that main :: IO

()  is the link to the real world.

Performing input/output in a purely functional language like Haskell has long been a fundamental problem. How
to implement operations like getChar  which returns the latest character that the user has typed or putChar c

which prints the character c on the screen? Giving putChar  the type getChar :: Char  is not an option, since a 
pure function with no arguments must be constant. We somehow have to capture that getChar  also performs the 
side effect of interacting with the user. Likewise, a type putChar :: Char -> ()  is useless since the only value 
this function can return has to be () .

The breakthrough came when it was realized[16] that monads, i.e. the operations >>= and return  can be used to 
elegantly deal with side effects. The idea is to give our two primitive operations the types

and interpret a value of type IO a  as a computation or action that performs a side effect before returning the 

addToDie die1 = rollDie >>= (\die2 -> return (die1 + die2) )

return :: a -> Random a
return x = \seed0 -> (x, seed0)

sumTwoDice :: Random Int
sumTwoDice = rollDie >>= (\die1 -> rollDie >>= (\di e2 -> return (die1 + die2)))

getChar ::         IO Char
putChar :: Char -> IO ()



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

115 of 290 11/5/2007 9:02 PM

value a. This is rather abstract, so a more concrete way is to interpret IO  as a state transformer

that acts on and changes the "state of the world". In other words, printing a character takes the world and returns 
one where the character has been printed and reading a character returns a world where the character has been 
read. With this model, an action echo :: IO ()  that reads a character and immediately prints it to the screen 
would be written as

Of course, this is a case for the bind combinator that passes the state of the world for us:

But for IO a , the use of >>= is not a convenience, it is mandatory. This is because by passing around the world 
explicitly, we could write (either accidentally or even consiously) something that duplicates the world:

Now, where does putChar  get the character c from? Did the state of world roll back similar to a time travel? 
This makes no sense, we have to ensure that the world is used in a single-threaded way. But this is easy to 
achieve: we just make IO a  an abstract data type and export only >>= and return  for combining actions, 
together with primitive operations like putChar .

There's even more: the model World -> (a,World)  for input/output just doesn't work, one of the exercises 
shows why. Also, there is no hope to extend it to concurrency and exceptions. In other words, it is imperative to 
make >>= for composing effectful computations IO a  an abstract primitive operation.

Exercises

Write a function putString :: String -> IO ()  that outputs a 
sequence of characters with the help of putChar .

1.

The program

loops forever whereas

2.

type IO a = World -> (a, World)

echo world0 =
  let (c , world1) = getChar world0
      ((), world2) = putChar c world1
  in ((), wordl2)

echo = getChar >>= putChar

havoc world0 =
  let (c , world1) = getChar world0
      ((), world2) = putChar c world0
  in ((), world2)

 loop :: IO ()
 loop  = return ()   >> loop



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

116 of 290 11/5/2007 9:02 PM

prints an infinite sequence XXXXXX...  of X-s. Clearly, a user can 
easily distinguish them by looking on the screen. However, show 
that the model IO a = World -> (a, World)  gives the same 
denotation ⊥ for both. This means that we have to abandon this
model as possible semantics for IO a .

Programming with bind and return

Time to write programs! More complicated stuff for Random a . Examples to code: St.Petersburg paradox, Lewis 
Carroll's pillow problem. Somewhere make explicit instances of the Monad-class? Hm, we really need to 
incorporate the monad class in the type signatures. I'm not sure whether the nuclear waste metaphor is 
necessary?

In the last section, we showed how the two defining operations >>= and return  of a monad arise as abstraction 
for composing state transformers. We now want to focus on how to program effectively with these.

Nuclear Waste Containers

Random a  as fuzzy a. Programming would be so much easier if we had extract :: Random a -> a , bind is 
sooo unwieldy. Mental prevention: think of monads as "Nuclear waste containers", the waste may not leak 
outside at any cost. The thing closest to extract  we can have is join :: m (m a) -> m a . The text probably 
tells too much about "monads as containers", I'm not sure what to do.

We saw that the bind operation takes a computation, executes it, and feeds its result to the next, like in

(Note that for parsing, lambda expressions extend as far to the right as possible, so it's not necessary to put them 
in parantheses.) However, it could be tempting to "execute" a monadic action like IO a  with some hypothetical 
function

in order to conveniently formulate

Of course, such a function does not make sense. For state transformers like Random a = Seed -> (a, Seed) , it 
would have to invent a state and discard it again, thus regressing from our goal of passing the new state to the 
next computation.

 loopX :: IO ()
 loopX = putChar 'X' >> loopX

 echo       = getChar >>= \char -> putChar char
 sumTwoDice = rollDie >>= \die1 -> rollDie >>= \die 2 -> return (die1 + die2)

 extract  :: IO a -> a

 echo = return (putChar (extract getChar))



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

117 of 290 11/5/2007 9:02 PM

Here's a metaphor to strengthen your mind against extract :

Think of a monadic computation M a  as a container for a value of type a that is unfortunately paired with 
highly dangerous nuclear waste. Under no circumstance should this tightly sealed container be opened to 
extract  the a or the nuclear waste will leak out, resulting in a catastrophe!.

So, there are some like getChar :: IO Char  or rollDie :: Random Int  that produce a precious value but 
unfortunately cannot operate without tainting it with nuclear waste. But fortunately, we have our function

that nonetheless allows us to operate on the value contained in M a  by entering the container and applying the 
given function to the value inside it. This way, eveything happens inside the container and no nuclear materials 
leak out.

Arguably, this description of "bind" probably applies better to a function

that takes a pure function into the container to transform the value within. You may notice that this is the 
defining mapping for functors, i.e. every monad is a functor. Apparently, fmap  is less general than >>= since the 
latter excepts the function to be lifted into the container to produce nuclear waste, too. The best what fmap  can 
do is

to produce a nested container. Of course, it is safe to open the inner container since the outer container still 
shields the environment from the nuclear waste

In other words, we can describe the operation of >>= as

i.e. it lifts a waste-producing computation into the container and flattens the resulting nested containers.

We will explore this futher in #Monads as Containers.

Of course, we shouldn't take the nuclear waste metaphor too literally, since there usually is some way to "run" 
the computation. For instance, random numbers can be observed as an infinite list of random numbers produced 
by an initial random seed.

Only the IO  monad is a primitive in Haskell. How do we "run" it, then? The answer is that the link of a Haskell 

(>>=) :: Monad m => m a -> (a -> m b) -> m b

fmap :: Monad m => (a -> b) -> m a -> m b
fmap f m = m >>= \x -> return (f x)

fmap' :: Monad m => (a -> (m b)) -> m a -> m (m b)

join :: Monad m => m (m a) -> m a
join m = m >>= id

m >>= g = join (fmap g m)

 run :: Random a -> (Seed -> [a])



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

118 of 290 11/5/2007 9:02 PM

program to outside world is the function

which will be run by the operating system. In other words, the Haskell program itself ultimately produces 
nuclear waste, so there is no need to extract IO a -> a .

Exercises

Implement run  with unfoldr .1.

do-Notation

A common way to write the composition of multiple monadic computations is

Control Structures

Needs a better title. Introduce sequence, fmap, liftMn, forM, mapM  and friends.

The three Monad Laws

In the state monad, return  doesn't touch the state. That can be formulated abstractly with the first two monad 
laws. Hm, what about the third? How to motivate that?

Monads as containers

Needs a better title. Introduce the second instances of monads, namely [a]  and Maybe a . Shows that the 
operations return and bind are applicable to quite a range of problems. The more "exotic" example

belongs here, too, probably as exercise.

Lists

concatMap  and sequence ..

Maybe

Maybe Either , too?

 main :: IO ()

 sumTwoDice = do
   die1 <- rollDie
   die2 <- rollDie
   return (die1 + die2)

data Tree a = Leaf a | Branch (Tree a) (Tree a)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

119 of 290 11/5/2007 9:02 PM

References

↑ At least as far as types are concerned, but we're trying to avoid that word :)1.
↑ More technically, fst  and snd  have types which limit them to pairs. It would be impossible to define 
projection functions on tuples in general, because they'd have to be able to accept tuples of different sizes,
so the type of the function would vary.

2.

↑ In fact, these are one and the same concept in Haskell.3.
↑ This isn't quite what chr  and ord  do, but that description fits our purposes well, and it's close enough.4.
↑ To make things even more confusing, there's actually even more than one type for integers! Don't worry,
we'll come on to this in due course.

5.

↑ This has been somewhat simplified to fit our purposes. Don't worry, the essence of the function is there.6.
↑ Some of the newer type system extensions to GHC do break this, however, so you're better off just 
always putting down types anyway.

7.

↑ This is a slight lie. That type signature would mean that you can compare two values of any type 
whatsoever, but this clearly isn't true: how can you see if two functions are equal? Haskell includes a kind 
of 'restricted polymorphism' that allows type variables to range over some, but not all types. Haskell 
implements this using type classes, which we'll learn about later. In this case, the correct type of (==)  is Eq 

a => a -> a -> Bool .

8.

↑ In mathematics, n! normally means the factorial of n, but that syntax is impossible in Haskell, so we 
don't use it here.

9.

↑ Actually, defining the factorial of 0 to be 1 is not just arbitrary; it's because the factorial of 0 represents 
an empty product.

10.

↑ This is no coincidence; without mutable variables, recursion is the only way to implement control 
structures. This might sound like a limitation until you get used to it (it isn't, really).

11.

↑ Actually, it's using a function called foldl , which actually does the recursion.12.
↑ Moggi, Eugenio (1991). "Notions of Computation and Monads". Information and Computation 93 (1).13.
↑ w:Philip Wadler. Comprehending Monads (http://citeseer.ist.psu.edu/wadler92comprehending.html) . 
Proceedings of the 1990 ACM Conference on LISP and Functional Programming, Nice. 1990.

14.

↑ w:Philip Wadler. The Essence of Functional Programming
(http://citeseer.ist.psu.edu/wadler92essence.html) . Conference Record of the Nineteenth Annual ACM 
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 1992.

15.

↑ Simon Peyton Jones, Philip Wadler (1993). "Imperative functional programming"
(http://homepages.inf.ed.ac.uk/wadler/topics/monads.html#imperative) . 20'th Symposium on Principles of
Programming Languages.

16.

Advanced monads
This chapter follows on from Understanding monads, and explains a few more of the more advanced concepts.

Monads as computations

The concept

A metaphor we explored in the last chapter was that of monads as containers. That is, we looked at what 
monads are in terms of their structure. What was touched on but not fully explored is why we use monads. After 
all, monads structurally can be very simple, so why bother at all?



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

120 of 290 11/5/2007 9:02 PM

The secret is in the view that each monad represents a different type of computation. Here, and in the rest of this 
chapter, a 'computation' is simply a function call: we're computing the result of this function. In a minute, we'll 
give some examples to explain what we mean by this, but first, let's re-interpret our basic monadic operators:

>>=

The >>= operator is used to sequence two monadic computations. That means it runs the first computation, then 
feeds the output of the first computation into the second and runs that too.

return

return x , in computation-speak, is simply the computation that has result x, and 'does nothing'. The meaning of 
the latter phrase will become clear when we look at State below.

So how does the computations analogy work in practice? Let's look at some examples.

The Maybe monad

Computations in the Maybe monad (that is, function calls which result in a type wrapped up in a Maybe) 
represent computations that might fail. The easiest example is with lookup tables. A lookup table is a table 
which relates keys to values. You look up a value by knowing its key and using the lookup table. For example, 
you might have a lookup table of contact names as keys to their phone numbers as the values in a phonebook 
application. One way of implementing lookup tables in Haskell is to use a list of pairs: [(a, b)] . Here a is the 
type of the keys, and b the type of the values. Here's how the phonebook lookup table might look:

The most common thing you might do with a lookup table is look up values! However, this computation might 
fail. Everything's fine if we try to look up one of "Bob", "Fred", "Alice" or "Jane" in our phonebook, but what if 
we were to look up "Zoe"? Zoe isn't in our phonebook, so the lookup has failed. Hence, the Haskell function to 
look up a value from the table is a Maybe computation:

Lets explore some of the results from lookup:

Now let's expand this into using the full power of the monadic interface. Say, we're now working for the 
government, and once we have a phone number from our contact, we want to look up this phone number in a 
big, government-sized lookup table to find out the registration number of their car. This, of course, will be 

phonebook :: [(String, String)]
phonebook = [ ("Bob",   "01788 665242"),
              ("Fred",  "01624 556442"),
              ("Alice", "01889 985333"),
              ("Jane",  "01732 187565") ]

lookup :: Eq a => a  -- a key
       -> [(a, b)]   -- the lookup table to use
       -> Maybe b    -- the result of the lookup

Prelude> lookup "Bob" phonebook
Just "01788 665242"
Prelude> lookup "Jane" phonebook
Just "01732 187565"
Prelude> lookup "Zoe" phonebook
Nothing



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

121 of 290 11/5/2007 9:02 PM

another Maybe-computation. But if they're not in our phonebook, we certainly won't be able to look up their 
registration number in the governmental database! So what we need is a function that will take the results from 
the first computation, and put it into the second lookup, but only if we didn't get Nothing  the first time around. If 
we did indeed get Nothing  from the first computation, or if we get Nothing  from the second computation, our 
final result should be Nothing .

Observant readers may have guessed where we're going with this one. That's right, comb is just >>=, but 
restricted to Maybe-computations. So we can chain our computations together:

If we then wanted to use the result from the governmental database lookup in a third lookup (say we want to 
look up their registration number to see if they owe any car tax), then we could extend our 
getRegistrationNumber  function:

Or, using the do-block style:

Let's just pause here and think about what would happen if we got a Nothing  anywhere. Trying to use >>= to 
combine a Nothing  from one computation with another function will result in the Nothing  being carried on and 
the second function ignored (refer to our definition of comb above if you're not sure). That is, a Nothing  at any 
stage in the large computation will result in a Nothing  overall, regardless of the other functions! Thus we say 
that the structure of the Maybe monad propagates failures.

An important thing to note is that we're not by any means restricted to lookups! There are many, many functions 
whose results could fail and therefore use Maybe. You've probably written one or two yourself. Any 
computations in Maybe can be combined in this way.

Summary

The important features of the Maybe monad are that:

It represents computations that could fail.1.
It propagates failure.2.

The List monad

comb :: Maybe a -> (a -> Maybe b) -> Maybe b
comb Nothing  _ = Nothing
comb (Just x) f = f x 

getRegistrationNumber :: String       -- their name
                      -> Maybe String -- their regi stration number
getRegistrationNumber name = lookup name phonebook >>= (\number -> lookup number governmentalDatabase)

getTaxOwed :: String       -- their name
           -> Maybe Double -- the amount of tax the y owe
getTaxOwed name = lookup name phonebook >>= (\numbe r -> lookup number governmentalDatabase) >>=  (\registration -> lookup registration taxDatabase)

getTaxOwed name = do
  number       <- lookup name phonebook
  registration <- lookup number governmentalDatabas e
  lookup registration taxDatabase



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

122 of 290 11/5/2007 9:02 PM

Computations that are in the list monad (that is, they end in a type [a]) represent computations with zero or more
valid answers. For example, say we are modelling the game of noughts and crosses (known as tic-tac-toe in 
some parts of the world). An interesting (if somewhat contrived) problem might be to find all the possible ways 
the game could progress: find the possible states of the board 3 turns later, given a certain board configuration 
(i.e. a game in progress).

Here is the instance declaration for the list monad:

As monads are only really useful when we're chaining computations together, let's go into more detail on our 
example. The problem can be boiled down to the following steps:

Find the list of possible board configurations for the next turn.1.
Repeat the computation for each of these configurations: replace each configuration, call it C, with the list 
of possible configurations of the turn after C.

2.

We will now have a list of lists (each sublist representing the turns after a previous configuration), so in 
order to be able to repeat this process, we need to collapse this list of lists into a single list.

3.

This structure should look similar to the monadic instance declaration above. Here's how it might look, without 
using the list monad:

(concatMap  is a handy function for when you need to concat the results of a map: concatMap f xs = concat 

(map f xs) .) Alternatively, we could define this with the list monad:

List comprehensions

An interesting thing to note is how similar list comprehensions and the list monad are. For example, the classic 
function to find Pythagorean triples:

This can be directly translated to the list monad:

instance Monad [] where
  return a = [a]
  xs >>= f = concat (map f xs)

getNextConfigs :: Board -> [Board]
getNextConfigs = undefined -- details not important

tick :: [Board] -> [Board]
tick bds = concatMap getNextConfigs bds

find3rdConfig :: Board -> [Board]
find3rdConfig bd = tick $ tick $ tick [bd]

find3rdConfig :: Board -> [Board]
find3rdConfig bd0 = do
  bd1 <- getNextConfigs bd0
  bd2 <- getNextConfigs bd1
  bd3 <- getNextConfigs bd2
  return bd3

pythags = [ (x, y, z) | z <- [1..], x <- [1..z], y <- [x..z], x^2 + y^2 == z^2 ]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

123 of 290 11/5/2007 9:02 PM

The only non-trivial element here is guard . This is explained in the next module, Additive monads.

The State monad

The State monad actually makes a lot more sense when viewed as a computation, rather than a container. 
Computations in State represents computations that depend on and modify some internal state. For example, say 
you were writing a program to model the three body problem
(http://en.wikipedia.org/wiki/Three_body_problem#Three_body_problem) . The internal state would be the 
positions, masses and velocities of all three bodies. Then a function, to, say, get the acceleration of a specific 
body would need to reference this state as part of its calculations.

The other important aspect of computations in State is that they can modify the internal state. Again, in the 
three-body problem, you could write a function that, given an acceleration for a specific body, updates its 
position.

The State monad is quite different from the Maybe and the list monads, in that it doesn't represent the result of a 
computation, but rather a certain property of the computation itself.

What we do is model computations that depend on some internal state as functions which take a state parameter.
For example, if you had a function f :: String -> Int -> Bool , and we want to modify it to make it depend 
on some internal state of type s, then the function becomes f :: String -> Int -> s -> Bool . To allow the 
function to change the internal state, the function returns a pair of (new state, return value). So our function 
becomes f :: String -> Int -> s -> (s, Bool)

It should be clear that this method is a bit cumbersome. However, the types aren't the worst of it: what would 
happen if we wanted to run two stateful computations, call them f  and g, one after another, passing the result of 
f  into g? The second would need to be passed the new state from running the first computation, so we end up 
'threading the state':

All this 'plumbing' can be nicely hidden by using the State monad. The type constructor State  takes two type 
parameters: the type of its environment (internal state), and the type of its output. So State s a  indicates a 
stateful computation which depends on, and can modify, some internal state of type s, and has a result of type a. 
How is it defined? Well, simply as a function that takes some state and returns a pair of (new state, value):

The above example of fThenG  is, in fact, the definition of >>= for the State monad, which you probably 

import Control.Monad (guard)

pythags = do
  z <- [1..]
  x <- [1..z]
  y <- [x..z]
  guard (x^2 + y^2 == z^2)
  return (x, y, z)

fThenG :: (s -> (s, a)) -> (a -> s -> (s, b)) -> s -> (s, b)
fThenG f g s =
  let (s',  v ) = f s    -- run f with our initial state s.
      (s'', v') = g v s' -- run g with the new stat e s' and the result of f, v.
  in (s'', v')           -- return the latest state  and the result of g

newtype State s a = State (s -> (s, a))



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

124 of 290 11/5/2007 9:02 PM

remember from the first monads chapter.

The meaning of return

We mentioned right at the start that return x  was the computation that 'did nothing' and just returned x. This 
idea only really starts to take on any meaning in monads with side-effects, like State. That is, computations in 
State have the opportunity to change the outcome of later computations by modifying the internal state. It's a 
similar situation with IO (because, of course, IO is just a special case of State).

return x  doesn't do this. A computation produced by return  generally won't have any side-effects. The monad 
law return x >>= f == f x  basically guarantees this, for most uses of the term 'side-effect'.

Further reading

A tour of the Haskell Monad functions (http://members.chello.nl/hjgtuyl/tourdemonad.html) by Henk-Jan 
van Tuyl
All about monads (http://www.haskell.org/all_about_monads/html/index.html) by Jeff Newbern explains 
well the concept of monads as computations, using good examples. It also has a section outlining all the 
major monads, explains each one in terms of this computational view, and gives a full example.

MonadPlus

MonadPlus is a typeclass whose instances are monads which represent a number of computations.

Introduction

You may have noticed, whilst studying monads, that the Maybe and list monads are quite similar, in that they 
both represent the number of results a computation can have. That is, you use Maybe when you want to indicate 
that a computation can fail somehow (i.e. it can have 0 or 1 result), and you use the list monad when you want to
indicate a computation could have many valid answers (i.e. it could have 0 results -- a failure -- or many results).

Given two computations in one of these monads, it might be interesting to amalgamate these: find all the valid 
solutions. I.e. given two lists of valid solutions, to find all of the valid solutions, you simply concatenate the lists 
together. It's also useful, especially when working with folds, to require a 'zero results' value (i.e. failure). For 
lists, the empty list represents zero results.

We combine these two features into a typeclass:

Here are the two instance declarations for Maybe and the list monad:

class Monad m => MonadPlus m where
  mzero :: m a
  mplus :: m a -> m a -> m a



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

125 of 290 11/5/2007 9:02 PM

Also, if you import Control.Monad.Error, then (Either e) becomes an instance:

Remember that (Either e) is similar to Maybe in that it represents computations that can fail, but it allows the 
failing computations to include an error message. Typically, Left s  means a failed computation with error 
message s, and Right x  means a successful computation with result x.

Example

A traditional way of parsing an input is to write functions which consume it, one character at a time. That is, 
they take an input string, then chop off ('consume') some characters from the front if they satisfy certain criteria 
(for example, you could write a function which consumes one uppercase character). However, if the characters 
on the front of the string don't satisfy these criteria, the parsers have failed, and therefore they make a valid 
candidate for a Maybe.

Here we use mplus  to run two parsers in parallel. That is, we use the result of the first one if it succeeds, but if 
not, we use the result of the second. If that too fails, then our whole parser returns Nothing .

The MonadPlus laws

Instances of MonadPlus are required to fulfill several rules, just as instances of Monad are required to fulfill the 
three monad laws. Unfortunately, these laws aren't set in stone anywhere and aren't fully agreed on. For example,
the Haddock documentation
(http://haskell.org/ghc/docs/latest/html/libraries/base/Control-Monad.html#t%3AMonadPlus) for 
Control.Monad quotes them as:

instance MonadPlus [] where
  mzero = []
  mplus = (++)

instance MonadPlus Maybe where
  mzero                   = Nothing
  Nothing `mplus` Nothing = Nothing -- 0 solutions + 0 solutions = 0 solutions
  Just x  `mplus` Nothing = Just x  -- 1 solution  + 0 solutions = 1 solution
  Nothing `mplus` Just x  = Just x  -- 0 solutions + 1 solution  = 1 solution
  Just x  `mplus` Just y  = Just x  -- 1 solution  + 1 solution  = 2 solutions,
                                    -- but as Maybe  can only have up to one
                                    -- solution, we  disregard the second one.

instance (Error e) => MonadPlus (Either e) where
  mzero            = Left noMsg
  Left _  `mplus` n = n
  Right x `mplus` _ = Right x

-- | Consume a digit in the input, and return the d igit that was parsed. We use
--   a do-block so that if the pattern match fails at any point, fail of the
--   the Maybe monad (i.e. Nothing) is returned.
digit :: Int -> String -> Maybe Int
digit i s | i > 9 || i < 0 = Nothing
          | otherwise      = do
  let (c:_) = s
  if read [c] == i then Just i else Nothing

-- | Consume a binary character in the input (i.e. either a 0 or an 1)
binChar :: String -> Maybe Int
binChar s = digit 0 s `mplus` digit 1 s



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

126 of 290 11/5/2007 9:02 PM

All About Monads (http://www.haskell.org/all_about_monads/html/laws.html#zero) quotes the above two, but 
adds:

There are even more sets of laws available, and therefore you'll sometimes see monads like IO being used as a 
MonadPlus. The Haskell Wiki page (http://www.haskell.org/haskellwiki/MonadPlus) for MonadPlus has more 
information on this. TODO: should that information be copied here?

Useful functions

Beyond the basic mplus  and mzero  themselves, there are a few functions you should know about:

msum

A very common task when working with instances of MonadPlus is to take a list of the monad, e.g. [Maybe a]

or [[a]] , and fold down the list with mplus . msum fulfills this role:

A nice way of thinking about this is that it generalises the list-specific concat  operation. Indeed, for lists, the 
two are equivalent. For Maybe it finds the first Just x  in the list, or returns Nothing  if there aren't any.

guard

This is a very nice function which you have almost certainly used before, without knowing about it. It's used in 
list comprehensions, as we saw in the previous chapter. List comprehensions can be decomposed into the list 
monad, as we saw:

The previous can be considered syntactic sugar for:

guard  looks like this:

mzero >>= f  =  mzero
v >> mzero   =  mzero

mzero `mplus` m  =  m
m `mplus` mzero  =  m

msum :: MonadPlus m => [m a] -> m a
msum = foldr mplus mzero

pythags = [ (x, y, z) | x <- [1..], y <- [x..], z < - [y..], x^2 + y^2 == z^2 ]

pythags = do
  x <- [1..]
  y <- [x..]
  z <- [y..]
  guard (x^2 + y^2 == z^2)
  return (x, y, z)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

127 of 290 11/5/2007 9:02 PM

Concretely, guard  will reduce a do-block to mzero  if its predicate is False . By the very first law stated in the 
'MonadPlus laws' section above, an mzero  on the left-hand side of an >>= operation will produce mzero  again. 
As do-blocks are decomposed to lots of expressions joined up by >>=, an mzero at any point will cause the entire 
do-block to become mzero.

To further illustrate that, we will examine guard  in the special case of the list monad, extending on the pythags

function above. First, here is guard  defined for the list monad:

guard  blocks off a route. For example, in pythags , we want to block off all the routes (or combinations of x, y
and z) where x^2 + y^2 == z^2  is False . Let's look at the expansion of the above do-block to see how it 
works:

Replacing >>= and return  with their definitions for the list monad (and using some let-bindings to make things 
prettier), we obtain:

Remember that guard  returns the empty list in the case of its argument being False . Mapping across the empty 
list produces the empty list, no matter what function you pass in. So the empty list produced by the call to guard

in the binding of gd will cause gd to be the empty list, and therefore ret  to be the empty list.

To understand why this matters, think about list-computations as a tree. With our Pythagorean triple algorithm, 
we need a branch starting from the top for every choice of x, then a branch from each of these branches for every
value of y, then from each of these, a branch for every value of z. So the tree looks like this:

guard :: MonadPlus m => Bool -> m ()
guard True  = return ()
guard False = mzero

guard :: Bool -> [()]
guard True  = [()]
guard False = []

pythags =
  [1..] >>= \x ->
  [x..] >>= \y ->
  [y..] >>= \z ->
  guard (x^2 + y^2 == z^2) >>= \_
  return (x, y, z)

pythags =
 let ret x y z = [(x, y, z)]
     gd  x y z = concatMap (\_ -> ret x y z) (guard  $ x^2 + y^2 == z^2)
     doZ x y   = concatMap (gd  x y) [y..]
     doY x     = concatMap (doZ x  ) [x..]
     doX       = concatMap (doY    ) [1..]
 in doX

   start
   |____________________________________________ .. .
   |                     |                    |
x  1                     2                    3
   |_______________ ...  |_______________ ... |____ ___________ ...
   |      |      |       |      |      |      |      |      |
y  1      2      3       1      2      3      1      2      3
   |___...|___...|___... |___...|___...|___...|___. ..|___...|___...
   | | |  | | |  | | |   | | |  | | |  | | |  | | |   | | |  | | |
z  1 2 3  1 2 3  1 2 3   1 2 3  1 2 3  1 2 3  1 2 3   1 2 3  1 2 3



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

128 of 290 11/5/2007 9:02 PM

Any combination of x, y and z represents a route through the tree. Once all the functions have been applied, each
branch is concatenated together, starting from the bottom. Any route where our predicate doesn't hold evaluates 
to an empty list, and so has no impact on this concat operation.

Exercises

Prove the MonadPlus laws for Maybe and the list monad.1.
We could augment our above parser to involve a parser for any character:

It would then be possible to write a hexChar  function which parses any valid hexidecimal character (0-9 
or a-f). Try writing this function (hint: map digit [0..9] :: [Maybe Int] ).

2.

More to come...3.

Relationship with Monoids

TODO: is this at all useful? (If you don't know anything about the Monoid data structure, then don't worry about
this section. It's just a bit of a muse.)

Monoids are a data structure with two operations defined: an identity (or 'zero') and a binary operation (or 'plus'), 
which satisfy some axioms.

For example, lists form a trivial monoid:

Note the usage of [a], not [], in the instance declaration. Monoids are not necessarily 'containers' of anything. For 
example, the integers (or indeed even the naturals) form two possible monoids:

(A nice use of the latter is to keep track of probabilities.)

 -- | Consume a given character in the input, and r eturn the the character we 
 --   just consumed, paired with rest of the string . We use a do-block  so that
 --   if the pattern match fails at any point, fail  of the Maybe monad (i.e.
 --   Nothing) is returned.
 char :: Char -> String -> Maybe (Char, String)
 char c s = do
   let (c':s') = s
   if c == c' then Just (c, s') else Nothing

class Monoid m where 
  mempty  :: m
  mappend :: m -> m -> m

instance Monoid [a] where
  mempty  = []
  mappend = (++)

newtype AdditiveInt       = AI Int
newtype MultiplicativeInt = MI Int

instance Monoid AdditiveInt where
  mempty              = AI 0
  AI x `mappend` AI y = AI (x + y)

instance Monoid MultiplicativeInt where
  mempty              = MI 1
  MI x `mappend` MI y = MI (x * y)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

129 of 290 11/5/2007 9:02 PM

Monad 
transformers are 
monads too!

Monoids, then, look very similar to MonadPlus instances. Both feature concepts of a zero and plus, and indeed 
MonadPlus can be a subclass of Monoid (the following is not Haskell 98, but works with -fglasgow-exts ):

However, they work at different levels. As noted, there is no requirement for monoids to be any kind of 
container. More formally, monoids have kind *, but instances of MonadPlus, as they're Monads, have kind * -> 
*.

Monad transformers

Introduction

Monad transformers are special variants of standard monads that facilitate the 
combining of monads. For example, ReaderT Env IO a  is a computation which 
can read from some environment of type Env, can do some IO  and returns a type a. 
Their type constructors are parameterized over a monad type constructor, and they 
produce combined monadic types. In this tutorial, we will assume that you 
understand the internal mechanics of the monad abstraction, what makes monads 
"tick". If, for instance, you are not comfortable with the bind operator (>>=), we 

would recommend that you first read Understanding monads. 

Transformers are cousins

A useful way to look at transformers is as cousins of some base monad. For example, the monad ListT  is a 
cousin of its base monad List . Monad transformers are typically implemented almost exactly the same way that 
their cousins are, only more complicated because they are trying to thread some inner monad through.

The standard monads of the monad template library all have transformer versions which are defined consistently 
with their non-transformer versions. However, it is not the case that all monad transformers apply the same 
transformation. We have seen that the ContT  transformer turns continuations of the form (a->r)->r  into 
continuations of the form (a->m r)->m r . The StateT  transformer is different. It turns state transformer 
functions of the form s->(a,s)  into state transformer functions of the form s->m (a,s) . In general, there is no
magic formula to create a transformer version of a monad — the form of each transformer depends on what
makes sense in the context of its non-transformer type.

Standard Monad Transformer Version Original Type Combined Type

Error ErrorT Either e a m (Either e a)

State StateT s -> (a,s) s -> m (a,s)

Reader ReaderT r -> a r -> m a

instance MonadPlus m => Monoid (m a) where
  mempty  = mzero
  mappend = mplus



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

130 of 290 11/5/2007 9:02 PM

Writer WriterT (a,w) m (a,w)

Cont ContT (a -> r) -> r (a -> m r) -> m r

In the table above, most of the transformers FooT differ from their base monad Foo by the wrapping of the result 
type (right-hand side of the ->  for function kinds, or the whole type for non-function types) in the threaded 
monad (m). The Cont  monad has two "results" in its type (it maps functions to values), and so ContT  wraps both 
in the threaded monad. In other words, the commonality between all these transformers is like so, with some 
abuse of syntax:

Original Kind Combined Kind

* m *

* -> * * -> m *

(* -> *) -> * (* -> m *) -> m *

Implementing transformers

The key to understanding how monad transformers work is understanding how they implement the bind (>>=) 
operator. You'll notice that this implementation very closely resembles that of their standard, non-transformer 
cousins.

Transformer type constructors

Type constructors play a fundamental role in Haskell's monad support. Recall that Reader r a  is the type of 
values of type a within a Reader monad with environment of type r . The type constructor Reader r  is an 
instance of the Monad class, and the runReader::Reader r a->r->a  function performs a computation in the 
Reader monad and returns the result of type a.

A transformer version of the Reader monad, called ReaderT , exists which adds a monad type constructor as an 
addition parameter. ReaderT r m a  is the type of values of the combined monad in which Reader is the base 
monad and m is the inner monad.

ReaderT r m  is an instance of the monad class, and the runReaderT::ReaderT r m a->r->m a  function 
performs a computation in the combined monad and returns a result of type m a .

The Maybe transformer

We begin by defining the data type for the Maybe transformer. Our MaybeT constructor takes a single argument. 
Since transformers have the same data as their non-transformer cousins, we will use the newtype  keyword. We 
could very well have chosen to use data , but that introduces needless overhead.

newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe  a) }



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

131 of 290 11/5/2007 9:02 PM

syntactic sugarThis might seem a little off-putting at first, but it's actually simpler than it looks. 
The constructor for MaybeT takes a single argument, of type m (Maybe a) . That is 
all. We use some syntactic sugar so that you can see MaybeT as a record, and 
access the value of this single argument by calling runMaybeT . One trick to understanding this is to see monad 
transformers as sandwiches: the bottom slice of the sandwhich is the base monad (in this case, Maybe). The 
filling is the inner monad, m. And the top slice is the monad transformer MaybeT. The purpose of the runMaybeT

function is simply to remove this top slice from the sandwich. What is the type of runMaybeT ? It is (MaybeT m 

a) -> m (Maybe a) .

As we mentioned in the beginning of this tutorial, monad transformers are monads too. Here is a partial 
implementation of the MaybeT monad. To understand this implementation, it really helps to know how its 
simpler cousin Maybe works. For comparison's sake, we put the two monad implementations side by side

Note

Note the use of 't', 'm' and 'b' to mean 'top', 'middle', 'bottom' respectively

Maybe MaybeT

You'll notice that the MaybeT implementation looks a lot like the Maybe implementation of bind, with the 
exception that MaybeT is doing a lot of extra work. This extra work consists of unpacking the two extra layers of 
monadic sandwich (note the convention topMidBot  to reflect the sandwich layers) and packing them up. If you 
really want to cut into the meat of this, read on. If you think you've understood up to here, why not try the 
following exercises:

Exercises

Implement the return function for the MaybeT monad1.
Rewrite the implementation of the bind operator >>= to be more 
concise.

2.

Dissecting the bind operator

So what's going on here? You can think of this as working in three phases: first we remove the sandwich layer 
by layer, and then we apply a function to the data, and finally we pack the new value into a new sandwich

Unpacking the sandwich: Let us ignore the MaybeT constructor for now, but note that everything that's going on
after the $ is happening within the m monad and not the MaybeT monad!

instance Monad Maybe where
 b_v >>= f =
 --
 case b_v of
   Nothing -> Nothing
   Just v -> f v

instance (Monad m) => Monad (MaybeT m) where
 tmb_v >>= f =
 MaybeT $ runMaybeT tmb_v
 >>= \b_v -> case b_v of
   Nothing -> return Nothing
   Just v -> runMaybeT $ f v



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

132 of 290 11/5/2007 9:02 PM

The first step is to remove the top slice of the sandwich by calling runMaybeT topMidBotV1.
We use the bind operator (>>=) to remove the second layer of the sandwich -- remember that we are 
working in the confines of the m monad.

2.

Finally, we use case  and pattern matching to strip off the bottom layer of the sandwich, leaving behind the
actual data with which we are working

3.

Packing the sandwich back up:

If the bottom layer was Nothing , we simply return Nothing  (which gives us a 2-layer sandwich). This 
value then goes to the MaybeT constructor at the very beginning of this function, which adds the top layer 
and gives us back a full sandwich.
If the bottom layer was Just v  (note how we have pattern-matched that bottom slice of monad off): we 
apply the function f  to it. But now we have a problem: applying f  to v gives a full three-layer sandwich, 
which would be absolutely perfect except for the fact that we're now going to apply the MaybeT constructor 
to it and get a type clash! So how do we avoid this? By first running runMaybeT  to peel the top slice off so 
that the MaybeT constructor is happy when you try to add it back on.

The List transformer

Just as with the Maybe transformer, we create a datatype with a constructor that takes one argument:

The implementation of the ListT  monad is also strikingly similar to its cousin, the List  monad. We do exactly 
the same things for List , but with a little extra support to operate within the inner monad m, and to pack and 
unpack the monadic sandwich ListT  - m - List .

List ListT

Exercises

Dissect the bind operator for the (ListT m) monad. For example, 
which do we now have mapM and return?

1.

Now that you have seen two simple monad transformers, write a 
monad transformer IdentityT , which would be the transforming 
cousin of the Identity  monad.

2.

Would IdentityT SomeMonad  be equivalent to SomeMonadT 

Identity  for a given monad and its transformer cousin?
3.

Lifting

FIXME: insert introduction

newtype ListT m a = ListT { runListT :: m [a] }

instance Monad [] where
 b_v >>= f =
 --
 let x = map f b_v
 in concat x

instance (Monad m) => Monad (ListT m) where
 tmb_v >>= f =
 ListT $ runListT tmb_v
 >>= \b_v -> mapM (runListT . f) b_v
 >>= \x -> return (concat x)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

133 of 290 11/5/2007 9:02 PM

liftM

We begin with a notion which, strictly speaking, isn't about monad transformers. One small and surprisingly 
useful function in the standard library is liftM , which as the API states, is meant for lifting non-monadic 
functions into monadic ones. Let's take a look at that type:

So let's see here, it takes a function (a1 -> r) , takes a monad with an a1 in it, applies that function to the a1, 
and returns the result. In my opinion, the best way to understand this function is to see how it is used. The 
following pieces of code all mean the same thing

do notation liftM liftM as an operator

What made the light bulb go off for me is this third example, where we use liftM  as an operator. liftM  is just a 
monadic version of ($) !

non monadic monadic

Exercises

How would you write liftM ? You can inspire yourself from the the 
first example

1.

lift

When using combined monads created by the monad transformers, we avoid having to explicitly manage the 
inner monad types, resulting in clearer, simpler code. Instead of creating additional do-blocks within the 
computation to manipulate values in the inner monad type, we can use lifting operations to bring functions from 
the inner monad into the combined monad.

Recall the liftM  family of functions which are used to lift non-monadic functions into a monad. Each monad 
transformer provides a lift  function that is used to lift a monadic computation into a combined monad.

The MonadTrans  class is defined in Control.Monad.Trans
(http://www.haskell.org/ghc/docs/latest/html/base/Control.Monad.Trans.html) and provides the single function 
lift . The lift  function lifts a monadic computation in the inner monad into the combined monad.

liftM :: Monad m => (a1 -> r) -> m a1 -> m r

do foo <- someMonadicThing
return (myFn foo)

liftM myFn someMonadicThing myFn `liftM` someMonadicThing

myFn $ aNonMonadicThing myFn `liftM` someMonadicThing

class MonadTrans t where
 lift :: (Monad m) => m a -> t m a



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

134 of 290 11/5/2007 9:02 PM

Monads which provide optimized support for lifting IO operations are defined as members of the MonadIO class, 
which defines the liftIO  function.

Using lift

Implementing lift

Implementing lift  is usually pretty straightforward. Consider the transformer MaybeT:

We begin with a monadic value (of the inner monad), the middle layer, if you prefer the monadic sandwich 
analogy. Using the bind operator and a type constructor for the base monad, we slip the bottom slice (the base 
monad) under the middle layer. Finally we place the top slice of our sandwich by using the constructor MaybeT. 
So using the lift function, we have transformed a lowly piece of sandwich filling into a bona-fide three-layer 
monadic sandwich.

As with our implementation of the Monad class, the bind operator is working within the confines of the inner monad.

Exercises

Why is it that the lift  function has to be defined seperately for each 
monad, where as liftM  can be defined in a universal way?

1.

Implement the lift  function for the ListT  transformer.2.
How would you lift a regular function into a monad transformer? 
Hint: very easily.

3.

The State monad transformer

Previously, we have pored over the implementation of two very simple monad transformers, MaybeT and ListT . 
We then took a short detour to talk about lifting a monad into its transformer variant. Here, we will bring the two
ideas together by taking a detailed look at the implementation of one of the more interesting transformers in the 
standard library, StateT . Studying this transformer will build insight into the transformer mechanism that you 
can call upon when using monad transformers in your code. You might want to review the section on the State 
monad before continuing.

Just as the State monad was built upon the definition

the StateT transformer is built upon the definition

class (Monad m) => MonadIO m where
 liftIO :: IO a -> m a

instance MonadTrans MaybeT where
 lift mon = MaybeT (mon >>= return . Just)

newtype State s a = State { runState :: (s -> (a,s) ) }



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

135 of 290 11/5/2007 9:02 PM

State s  is an instance of both the Monad class and the MonadState s  class, so

StateT s m  should also be members of the Monad and MonadState s  classes. Furthermore, if m is an instance of 
MonadPlus ,

StateT s m  should also be a member of MonadPlus .

To define StateT s m  as a Monad instance:

State StateT

Our definition of return  makes use of the return  function of the inner monad, and the binding operator uses a 
do-block to perform a computation in the inner monad.

We also want to declare all combined monads that use the StateT  transformer to be instances of the MonadState

class, so we will have to give definitions for get  and put :

Finally, we want to declare all combined monads in which StateT  is used with an instance of MonadPlus  to be 
instances of MonadPlus :

The final step to make our monad transformer fully integrated with Haskell's monad classes is to make StateT s

an instance of the MonadTrans  class by providing a lift  function:

newtype StateT s m a = StateT { runStateT :: (s -> m (a,s)) }

newtype State s a = State { runState :: (s -> (a,s) ) }

instance Monad (State s) where
 return a = State $ \s -> (a,s)
 (State x) >>= f =
 State $ \s -> let (v,s') = x s
 in runState (f v) s'

newtype StateT s m a = StateT { runStateT :: (s -> m (a,s)) }

instance (Monad m) => Monad (StateT s m) where
 return a = StateT $ \s -> return (a,s)
 (StateT x) >>= f =
 StateT $ \s -> do -- get new value, state
 (v,s') <- x s
 -- apply bound function to get new state transform ation fn
 (StateT x') <- return $ f v
 -- apply the state transformation fn to the new st ate
 x' s'

instance (Monad m) => MonadState s (StateT s m) whe re
 get = StateT $ \s -> return (s,s)
 put s = StateT $ \_ -> return ((),s)

instance (MonadPlus m) => MonadPlus (StateT s m) wh ere
 mzero = StateT $ \s -> mzero
 (StateT x1) `mplus` (StateT x2) = StateT $ \s -> ( x1 s) `mplus` (x2 s)

instance MonadTrans (StateT s) where
 lift c = StateT $ \s -> c >>= (\x -> return (x,s))



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

136 of 290 11/5/2007 9:02 PM

The lift  function creates a StateT  state transformation function that binds the computation in the inner monad 
to a function that packages the result with the input state. The result is that a function that returns a list (i.e., a 
computation in the List monad) can be lifted into StateT s [] , where it becomes a function that returns a 
StateT (s -> [(a,s)]) . That is, the lifted computation produces multiple (value,state) pairs from its input 
state. The effect of this is to "fork" the computation in StateT, creating a different branch of the computation for 
each value in the list returned by the lifted function. Of course, applying StateT  to a different monad will 
produce different semantics for the lift  function.

Acknowledgements

This module uses a large amount of text from All About Monads with permission from its author Jeff Newbern.

Practical monads

Parsing monads

In the beginner's track of this book, we saw how monads were used for IO. We've also started working more 
extensively with some of the more rudimentary monads like Maybe, List  or State . Now let's try using monads 
for something quintessentially "practical". Let's try writing a very simple parser. We'll be using the Parsec
(http://www.cs.uu.nl/~daan/download/parsec/parsec.html) library, which comes with GHC but may need to be 
downloaded separately if you're using another compiler.

Start by adding this line to the import section:

This makes the Parsec library functions and getArgs available to us, except the "spaces" function, whose name 
conflicts with a function that we'll be defining later.

Now, we'll define a parser that recognizes one of the symbols allowed in Scheme identifiers:

This is another example of a monad: in this case, the "extra information" that is being hidden is all the info about
position in the input stream, backtracking record, first and follow sets, etc. Parsec takes care of all of that for us. 
We need only use the Parsec library function oneOf
(http://www.cs.uu.nl/~daan/download/parsec/parsec.html#oneOf) , and it'll recognize a single one of any of the 
characters in the string passed to it. Parsec provides a number of pre-built parsers: for example, letter
(http://www.cs.uu.nl/~daan/download/parsec/parsec.html#letter) and digit
(http://www.cs.uu.nl/~daan/download/parsec/parsec.html#digit) are library functions. And as you're about to 
see, you can compose primitive parsers into more sophisticated productions.

S Let's define a function to call our parser and handle any possible errors:

import System
import Text.ParserCombinators.Parsec hiding (spaces )

symbol :: Parser Char
symbol = oneOf "!$%&|*+-/:<=>?@^_~"



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

137 of 290 11/5/2007 9:02 PM

As you can see from the type signature, readExpr is a function (->) from a String to a String. We name the 
parameter input, and pass it, along with the symbol action we defined above and the name of the parser ("lisp"), 
to the Parsec function parse (http://www.cs.uu.nl/~daan/download/parsec/parsec.html#parse) .

Parse can return either the parsed value or an error, so we need to handle the error case. Following typical 
Haskell convention, Parsec returns an Either
(http://www.haskell.org/onlinereport/standard-prelude.html#$tEither) data type, using the Left constructor to 
indicate an error and the Right one for a normal value.

We use a case...of construction to match the result of parse against these alternatives. If we get a Left value 
(error), then we bind the error itself to err and return "No match" with the string representation of the error. If we
get a Right value, we bind it to val, ignore it, and return the string "Found value".

The case...of construction is an example of pattern matching, which we will see in much greater detail 
[evaluator1.html#primitiveval later on].

Finally, we need to change our main function to call readExpr and print out the result:

To compile and run this, you need to specify "-package parsec" on the command line, or else there will be link 
errors. For example:

Whitespace

Next, we'll add a series of improvements to our parser that'll let it recognize progressively more complicated 
expressions. The current parser chokes if there's whitespace preceding our symbol:

readExpr :: String -> String
readExpr input = case parse symbol "lisp" input of
    Left err -> "No match: " ++ show err
    Right val -> "Found value"

main :: IO ()
main = do args <- getArgs
          putStrLn (readExpr (args !! 0))

debian:/home/jdtang/haskell_tutorial/code# ghc -pac kage parsec -o simple_parser [../code/listing3.1.hs  listing3.1.hs]
debian:/home/jdtang/haskell_tutorial/code# ./simple _parser $
Found value
debian:/home/jdtang/haskell_tutorial/code# ./simple _parser a
No match: "lisp" (line 1, column 1):
unexpected "a"

debian:/home/jdtang/haskell_tutorial/code# ./simple _parser "   %"
No match: "lisp" (line 1, column 1):
unexpected " "



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

138 of 290 11/5/2007 9:02 PM

Let's fix that, so that we ignore whitespace.

First, lets define a parser that recognizes any number of whitespace characters. Incidentally, this is why we 
included the "hiding (spaces)" clause when we imported Parsec: there's already a function "spaces
(http://www.cs.uu.nl/~daan/download/parsec/parsec.html#spaces) " in that library, but it doesn't quite do what 
we want it to. (For that matter, there's also a parser called lexeme
(http://www.cs.uu.nl/~daan/download/parsec/parsec.html#lexeme) that does exactly what we want, but we'll 
ignore that for pedagogical purposes.)

Just as functions can be passed to functions, so can actions. Here we pass the Parser action space
(http://www.cs.uu.nl/~daan/download/parsec/parsec.html#space) to the Parser action skipMany1
(http://www.cs.uu.nl/~daan/download/parsec/parsec.html#skipMany1) , to get a Parser that will recognize one or 
more spaces.

Now, let's edit our parse function so that it uses this new parser. Changes are in red:

We touched briefly on the >> ("bind") operator in lesson 2, where we mentioned that it was used behind the 
scenes to combine the lines of a do-block. Here, we use it explicitly to combine our whitespace and symbol 
parsers. However, bind has completely different semantics in the Parser and IO monads. In the Parser monad, 
bind means "Attempt to match the first parser, then attempt to match the second with the remaining input, and 
fail if either fails." In general, bind will have wildly different effects in different monads; it's intended as a 
general way to structure computations, and so needs to be general enough to accomodate all the different types 
of computations. Read the documentation for the monad to figure out precisely what it does.

Compile and run this code. Note that since we defined spaces in terms of skipMany1, it will no longer recognize 
a plain old single character. Instead you have to preceed a symbol with some whitespace. We'll see how this is 
useful shortly:

Return Values

spaces :: Parser ()
spaces = skipMany1 space

readExpr input = case parse (spaces >> symbol) "lis p" input of
    Left err -> "No match: " ++ show err
    Right val -> "Found value"

debian:/home/jdtang/haskell_tutorial/code# ghc -pac kage parsec -o simple_parser [../code/listing3.2.hs  listing3.2.hs]
debian:/home/jdtang/haskell_tutorial/code# ./simple _parser "   %" Found value
debian:/home/jdtang/haskell_tutorial/code# ./simple _parser %
No match: "lisp" (line 1, column 1):
unexpected "%"
expecting space
debian:/home/jdtang/haskell_tutorial/code# ./simple _parser "   abc"
No match: "lisp" (line 1, column 4):
unexpected "a"
expecting space



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

139 of 290 11/5/2007 9:02 PM

Right now, the parser doesn't do much of anything - it just tells us whether a given string can be recognized or 
not. Generally, we want something more out of our parsers: we want them to convert the input into a data 
structure that we can traverse easily. In this section, we learn how to define a data type, and how to modify our 
parser so that it returns this data type.

First, we need to define a data type that can hold any Lisp value:

This is an example of an algebraic data type: it defines a set of possible values that a variable of type LispVal 
can hold. Each alternative (called a constructor and separated by |) contains a tag for the constructor along with 
the type of data that that constructor can hold. In this example, a LispVal can be:

An Atom, which stores a String naming the atom1.
A List, which stores a list of other LispVals (Haskell lists are denoted by brackets)2.
A DottedList, representing the Scheme form (a b . c). This stores a list of all elements but the last, and 
then stores the last element as another field

3.

A Number, containing a Haskell Integer4.
A String, containing a Haskell String5.
A Bool, containing a Haskell boolean value6.

Constructors and types have different namespaces, so you can have both a constructor named String and a type 
named String. Both types and constructor tags always begin with capital letters.

Next, let's add a few more parsing functions to create values of these types. A string is a double quote mark, 
followed by any number of non-quote characters, followed by a closing quote mark:

We're back to using the do-notation instead of the >> operator. This is because we'll be retrieving the value of 
our parse (returned by many (http://www.cs.uu.nl/~daan/download/parsec/parsec.html#many) (noneOf
(http://www.cs.uu.nl/~daan/download/parsec/parsec.html#noneOf) "\"")) and manipulating it, interleaving some 
other parse operations in the meantime. In general, use >> if the actions don't return a value, >>= if you'll be 
immediately passing that value into the next action, and do-notation otherwise.

Once we've finished the parse and have the Haskell String returned from many, we apply the String constructor 
(from our LispVal data type) to turn it into a LispVal. Every constructor in an algebraic data type also acts like a 
function that turns its arguments into a value of its type. It also serves as a pattern that can be used in the 
left-hand side of a pattern-matching expression; we saw an example of this in [#symbols Lesson 3.1] when we 
matched our parser result against the two constructors in the Either data type.

data LispVal = Atom String
             | List [LispVal]
             | DottedList [LispVal] LispVal
             | Number Integer
             | String String
             | Bool Bool

parseString :: Parser LispVal
parseString = do char '"'
                 x <- many (noneOf "\"")
                 char '"'
                 return $ String x



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

140 of 290 11/5/2007 9:02 PM

We then apply the built-in function return
(http://www.haskell.org/onlinereport/standard-prelude.html#$tMonad) to lift our LispVal into the Parser monad.
Remember, each line of a do-block must have the same type, but the result of our String constructor is just a 
plain old LispVal. Return lets us wrap that up in a Parser action that consumes no input but returns it as the 
inner value. Thus, the whole parseString action will have type Parser LispVal.

The $ operator is infix function application: it's the same as if we'd written return (String x), but $ is 
right-associative, letting us eliminate some parentheses. Since $ is an operator, you can do anything with it that 
you'd normally do to a function: pass it around, partially apply it, etc. In this respect, it functions like the Lisp 
function apply (http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%_sec_6.4) .

Now let's move on to Scheme variables. An atom
(http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-5.html#%_sec_2.1) is a letter or 
symbol, followed by any number of letters, digits, or symbols:

Here, we introduce another Parsec combinator, the choice operator <|>
(http://www.cs.uu.nl/~daan/download/parsec/parsec.html#or) . This tries the first parser, then if it fails, tries the 
second. If either succeeds, then it returns the value returned by that parser. The first parser must fail before it 
consumes any input: we'll see later how to implement backtracking.

Once we've read the first character and the rest of the atom, we need to put them together. The "let" statement 
defines a new variable "atom". We use the list concatenation operator ++ for this. Recall that first is just a single 
character, so we convert it into a singleton list by putting brackets around it. If we'd wanted to create a list 
containing many elements, we need only separate them by commas.

Then we use a case statement to determine which LispVal to create and return, matching against the literal 
strings for true and false. The otherwise alternative is a readability trick: it binds a variable named otherwise, 
whose value we ignore, and then always returns the value of atom

Finally, we create one more parser, for numbers. This shows one more way of dealing with monadic values:

It's easiest to read this backwards, since both function application ($) and function composition (.) associate to 
the right. The parsec combinator many1 (http://www.cs.uu.nl/~daan/download/parsec/parsec.html#many1) 
matches one or more of its argument, so here we're matching one or more digits. We'd like to construct a number
LispVal from the resulting string, but we have a few type mismatches. First, we use the built-in function read
(http://www.haskell.org/onlinereport/standard-prelude.html#$vread) to convert that string into a number. Then 
we pass the result to Number to get a LispVal. The function composition operator "." creates a function that 

parseAtom :: Parser LispVal
parseAtom = do first <- letter <|> symbol
               rest <- many (letter <|> digit <|> s ymbol)
               let atom = [first] ++ rest
               return $ case atom of 
                          "#t" -> Bool True
                          "#f" -> Bool False
                          otherwise -> Atom atom

parseNumber :: Parser LispVal
parseNumber = liftM (Number . read) $ many1 digit



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

141 of 290 11/5/2007 9:02 PM

applies its right argument and then passes the result to the left argument, so we use that to combine the two 
function applications.

Unfortunately, the result of many1 digit is actually a Parser String, so our combined Number . read still can't 
operate on it. We need a way to tell it to just operate on the value inside the monad, giving us back a Parser 
LispVal. The standard function liftM does exactly that, so we apply liftM to our Number . read function, and 
then apply the result of that to our Parser.

We also have to import the Monad module up at the top of our program to get access to liftM:

This style of programming - relying heavily on function composition, function application, and passing functions
to functions - is very common in Haskell code. It often lets you express very complicated algorithms in a single 
line, breaking down intermediate steps into other functions that can be combined in various ways. Unfortunately,
it means that you often have to read Haskell code from right-to-left and keep careful track of the types. We'll be 
seeing many more examples throughout the rest of the tutorial, so hopefully you'll get pretty comfortable with it.

Let's create a parser that accepts either a string, a number, or an atom:

And edit readExpr so it calls our new parser:

Compile and run this code, and you'll notice that it accepts any number, string, or symbol, but not other strings:

import Monad

parseExpr :: Parser LispVal
parseExpr = parseAtom
        <|> parseString
        <|> parseNumber

readExpr :: String -> String
readExpr input = case parse parseExpr "lisp" input of
    Left err -> "No match: " ++ show err
    Right _ -> "Found value"

debian:/home/jdtang/haskell_tutorial/code# ghc -pac kage parsec -o simple_parser [.../code/listing3.3.h s listing3.3.hs]
debian:/home/jdtang/haskell_tutorial/code# ./simple _parser "\"this is a string\""
Found value
debian:/home/jdtang/haskell_tutorial/code# ./simple _parser 25 Found value
debian:/home/jdtang/haskell_tutorial/code# ./simple _parser symbol
Found value
debian:/home/jdtang/haskell_tutorial/code# ./simple _parser (symbol)
bash: syntax error near unexpected token `symbol'
debian:/home/jdtang/haskell_tutorial/code# ./simple _parser "(symbol)"
No match: "lisp" (line 1, column 1):
unexpected "("
expecting letter, "\"" or digit



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

142 of 290 11/5/2007 9:02 PM

Exercises

Rewrite parseNumber using
do-notation1.
explicit sequencing with the >>=
(http://www.haskell.org/onlinereport/standard-prelude.html#tMonad) operator

2.

1.

Our strings aren't quite R5RS compliant
(http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%_sec_6.3.5) 
, because they don't support escaping of internal quotes within the string. Change parseString 
so that \" gives a literal quote character instead of terminating the string. You may want to 
replace noneOf "\"" with a new parser action that accepts either a non-quote character or a 
backslash followed by a quote mark.

2.

Modify the previous exercise to support \n, \r, \t, \\, and any other desired escape characters3.
Change parseNumber to support the Scheme standard for different bases
(http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%_sec_6.2.4) 
. You may find the readOct and readHex
(http://www.haskell.org/onlinereport/numeric.html#sect14) functions useful.

4.

Add a Character constructor to LispVal, and create a parser for character literals
(http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%_sec_6.3.4) 
as described in R5RS.

5.

Add a Float constructor to LispVal, and support R5RS syntax for decimals
(http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%_sec_6.2.4) 
. The Haskell function readFloat (http://www.haskell.org/onlinereport/numeric.html#sect14) 
may be useful.

6.

Add data types and parsers to support the full numeric tower
(http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%_sec_6.2.1) 
of Scheme numeric types. Haskell has built-in types to represent many of these; check the 
Prelude (http://www.haskell.org/onlinereport/standard-prelude.html#$tNum) . For the others, 
you can define compound types that represent eg. a Rational as a numerator and denominator, 
or a Complex as a real and imaginary part (each itself a Real number).

7.

Recursive Parsers: Adding lists, dotted lists, and quoted datums

Next, we add a few more parser actions to our interpreter. Start with the parenthesized lists that make Lisp 
famous:

This works analogously to parseNumber, first parsing a series of expressions separated by whitespace (sepBy 
parseExpr spaces) and then apply the List constructor to it within the Parser monad. Note too that we can pass 
parseExpr to sepBy (http://www.cs.uu.nl/~daan/download/parsec/parsec.html#sepBy) , even though it's an 
action we wrote ourselves.

The dotted-list parser is somewhat more complex, but still uses only concepts that we're already familiar with:

parseList :: Parser LispVal
parseList = liftM List $ sepBy parseExpr spaces



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

143 of 290 11/5/2007 9:02 PM

Note how we can sequence together a series of Parser actions with >> and then use the whole sequence on the 
right hand side of a do-statement. The expression char '.' >> spaces returns a Parser (), then combining that with 
parseExpr gives a Parser LispVal, exactly the type we need for the do-block.

Next, let's add support for the single-quote syntactic sugar of Scheme:

Most of this is fairly familiar stuff: it reads a single quote character, reads an expression and binds it to x, and 
then returns (quote x), to use Scheme notation. The Atom constructor works like an ordinary function: you pass 
it the String you're encapsulating, and it gives you back a LispVal. You can do anything with this LispVal that 
you normally could, like put it in a list.

Finally, edit our definition of parseExpr to include our new parsers:

This illustrates one last feature of Parsec: backtracking. parseList and parseDottedList recognize identical strings
up to the dot; this breaks the requirement that a choice alternative may not consume any input before failing. The
try (http://www.cs.uu.nl/~daan/download/parsec/parsec.html#try) combinator attempts to run the specified 
parser, but if it fails, it backs up to the previous state. This lets you use it in a choice alternative without 
interfering with the other alternative.

Compile and run this code:

parseDottedList :: Parser LispVal
parseDottedList = do
    head <- endBy parseExpr spaces
    tail <- char '.' >> spaces >> parseExpr
    return $ DottedList head tail

 parseQuoted :: Parser LispVal
 parseQuoted = do
     char '\''
     x <- parseExpr
     return $ List [Atom "quote", x]
 

parseExpr :: Parser LispVal
parseExpr = parseAtom
        <|> parseString
        <|> parseNumber
        <|> parseQuoted
        <|> do char '('
               x <- (try parseList) <|> parseDotted List
               char ')'
               return x

debian:/home/jdtang/haskell_tutorial/code# ghc -pac kage parsec -o simple_parser [../code/listing3.4.hs  listing3.4.hs]
debian:/home/jdtang/haskell_tutorial/code# ./simple _parser "(a test)"
Found value
debian:/home/jdtang/haskell_tutorial/code# ./simple _parser "(a (nested) test)" Found value
debian:/home/jdtang/haskell_tutorial/code# ./simple _parser "(a (dotted . list) test)"
Found value
debian:/home/jdtang/haskell_tutorial/code# ./simple _parser "(a '(quoted (dotted . list)) test)"
Found value
debian:/home/jdtang/haskell_tutorial/code# ./simple _parser "(a '(imbalanced parens)"
No match: "lisp" (line 1, column 24):
unexpected end of input
expecting space or ")"



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

144 of 290 11/5/2007 9:02 PM

Note that by referring to parseExpr within our parsers, we can nest them arbitrarily deep. Thus, we get a full Lisp
reader with only a few definitions. That's the power of recursion.

Exercises

Add support for the backquote
(http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-7.html#%_sec_4.2.6) 
syntactic sugar: the Scheme standard details what it should expand into (quasiquote/unquote).

1.

Add support for vectors
(http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%_sec_6.3.6) 
. The Haskell representation is up to you: GHC does have an Array
(http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-Array.html) data type, but it 
can be difficult to use. Strictly speaking, a vector should have constant-time indexing and 
updating, but destructive update in a purely functional language is difficult. You may have a 
better idea how to do this after the section on set!, later in this tutorial.

2.

Instead of using the try combinator, left-factor the grammar so that the common subsequence 
is its own parser. You should end up with a parser that matches a string of expressions, and 
one that matches either nothing or a dot and a single expressions. Combining the return values 
of these into either a List or a DottedList is left as a (somewhat tricky) exercise for the reader: 
you may want to break it out into another helper function

3.

Generic monads

Write me: The idea is that this section can show some of the benefits of not tying yourself to one single 
monad, but writing your code for any arbitrary monad m. Maybe run with the idea of having some 
elementary monad, and then deciding it's not good enough, so replacing it with a fancier one... and then 
deciding you need to go even further and just plug in a monad transformer

For instance: Using the Identity Monad:

In another File

module Identity(Id(Id)) where

newtype Id a = Id a
instance Monad Id where
    (>>=) (Id x) f = f x
    return = Id

instance (Show a) => Show (Id a) where
    show (Id x) = show x

import Identity
type M = Id

my_fib :: Integer -> M Integer
my_fib = my_fib_acc 0 1

my_fib_acc :: Integer -> Integer -> Integer -> M In teger
my_fib_acc _ fn1 1 = return fn1
my_fib_acc fn2 _ 0 = return fn2
my_fib_acc fn2 fn1 n_rem = do
    val <- my_fib_acc fn1 (fn2+fn1) (n_rem - 1)
    return val



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

145 of 290 11/5/2007 9:02 PM

Doesn't seem to accomplish much, but It allows to you add debugging facilities to a part of your program on the 
fly. As long as you've used return instead of explicit Id constructors, then you can drop in the following monad:

If we wanted to debug our fibonacci program above, We could modify it as follows:

All we had to change is the lines where we wanted to print something for debugging, and add some code 
wherever you extracted the value from the Id Monad to execute the resulting IO () you've returned. Something 
like

for the Id Monad vs.

For the Pmd Monad. Notice that we didn't have to touch any of the functions that we weren't debugging.

Advanced Haskell

module PMD (Pmd(Pmd)) where --PMD = Poor Man's Debu gging, Now available for haskell

import IO

newtype Pmd a = Pmd (a, IO ())

instance Monad Pmd where
    (>>=)  (Pmd (x, prt)) f = let (Pmd (v, prt')) =  f x 
                              in Pmd (v, prt >> prt ')
    return x = Pmd (x, return ())

instance (Show a) => Show (Pmd a) where
    show (Pmd (x, _) ) = show x

import Identity
import PMD
import IO
type M = Pmd
...
my_fib_acc :: Integer -> Integer -> Integer -> M In teger
my_fib_acc _ fn1 1 = return fn1
my_fib_acc fn2 _ 0 = return fn2
my_fib_acc fn2 fn1 n_rem =
    val <- my_fib_acc fn1 (fn2+fn1) (n_rem - 1)
    Pmd (val, putStrLn (show fn1))

main :: IO ()
main = do
    let (Id f25) = my_fib 25
    putStrLn ("f25 is: " ++ show f25)

main :: IO ()
main = do
    let (Pmd (f25, prt)) = my_fib 25
    prt
    putStrLn ("f25 is: " ++ show f25)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

146 of 290 11/5/2007 9:02 PM

Arrows

Introduction

Arrows are a generalization of monads. They can do everything monads can do, and more. They serve much the 
same purpose as monads -- providing a common structure for libraries -- but are more general. In particular they 
allow notions of computation that may be partially static (independent of the input) or may take multiple inputs. 
If your application works fine with monads, you might as well stick with them. But if you're using a structure 
that's very like a monad, but isn't one, maybe it's an arrow.

proc and the arrow tail

Let's begin by getting to grips with the arrows notation. We'll work with the simplest possible arrow there is (the 
function) and build some toy programs strictly in the aims of getting acquainted with the syntax.

Fire up your text editor and create a Haskell file, say toyArrows.hs:

These are our first two arrows. The first is the identity function in arrow form, and second, slightly more 
exciting, is an arrow that adds one to its input. Load this up in GHCi, using the -farrows extension and see what 
happens.

Thrilling indeed. Up to now, we have seen three new constructs in the arrow notation:

the keyword proc

-<

the imported function returnA

Now that we know how to add one to a value, let's try something twice as difficult: adding TWO:

import Control.Arrow (returnA)

idA :: a -> a
idA = proc a -> returnA -< a

plusOne :: Int -> Int
plusOne = proc a -> returnA -< (a+1)

% ghci -farrows toyArrows.hs   
   ___         ___ _
  / _ \ /\  /\/ __(_)
 / /_\// /_/ / /  | |      GHC Interactive, version  6.4.1, for Haskell 98.
/ /_\\/ __  / /___| |      http://www.haskell.org/g hc/
\____/\/ /_/\____/|_|      Type :? for help.

Loading package base-1.0 ... linking ... done.
Compiling Main             ( toyArrows.hs, interpre ted )
Ok, modules loaded: Main.
*Main> idA 3
3
*Main> idA "foo"
"foo"
*Main> plusOne 3
4
*Main> plusOne 100
101



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

147 of 290 11/5/2007 9:02 PM

One simple approach is to feed (a+1) as input into the plusOne  arrow. Note the similarity between plusOne  and 
plusTwo . You should notice that there is a basic pattern here which goes a little something like this: proc FOO 
-> SOME_ARROW -< (SOMETHING_WITH_FOO)

Exercises

plusOne  is an arrow, so by the pattern above returnA  must be an 
arrow too. What do you think returnA  does?

1.

do notation

Our current implementation of plusTwo  is rather disappointing actually... shouldn't it just be plusOne  twice? We 
can do better, but to do so, we need to introduce the do notation:

Now try this out in GHCi:

You can use this do notation to build up sequences as long as you would like:

Monads and arrows

FIXME: I'm no longer sure, but I believe the intention here was to show what the difference is having this 
proc notation instead to just a regular chain of dos

plusOne = proc a -> returnA -< (a+1)
plusTwo = proc a -> plusOne -< (a+1)

plusTwoBis = 
 proc a -> do b <- plusOne -< a
              plusOne -< b

Prelude> :r
Compiling Main             ( toyArrows.hs, interpre ted )
Ok, modules loaded: Main.
*Main> plusTwoBis 5
7

plusFive =
 proc a -> do b <- plusOne -< a
              c <- plusOne -< b
              d <- plusOne -< c
              e <- plusOne -< d
              plusOne -< e



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

148 of 290 11/5/2007 9:02 PM

Understanding arrows
We have permission to import material from the Haskell arrows page (http://www.haskell.org/arrows) . See the 
talk page for details.

The factory and conveyor belt metaphor

In this tutorial, we shall present arrows from the perspective of stream processors, using the factory metaphor 
from the monads module as a support. Let's get our hands dirty right away.

You are a factory owner, and as before you own a set of processing machines. Processing machines are just a 
metaphor for functions; they accept some input and produce some output. Your goal is to combine these 
processing machines so that they can perform richer, and more complicated tasks. Monads allow you to combine
these machines in a pipeline. Arrows allow you to combine them in more interesting ways. The result of this is 
that you can perform certain tasks in a less complicated and more efficient manner.

In a monadic factory, we took the approach of wrapping the outputs of our machines in containers. The arrow 
factory takes a completely different route: rather than wrapping the outputs in containers, we wrap the machines 
themselves. More specifically, in an arrow factory, we attach a pair of conveyor belts to each machine, one for 
the input and one for the output.

So given a function of type b -> c , we can construct an equivalent a arrow by attaching a b and c conveyer belt 
to the machine. The equivalent arrow is of type a b c , which we can pronounce as an arrow a from b to c.

Plethora of robots

We mentioned earlier that arrows give you more ways to combine machines together than monads did. Indeed, 
the arrow type class provides six distinct robots (compared to the two you get with monads).

arr

The simplest robot is arr  with the type signature arr :: (b -> c) -> a b c . In other words, the arr robot 
takes a processing machine of type b -> c , and adds conveyor belts to form an a arrow from b to c.

(>>>)

The next, and probably the most important, robot is (>>>) . This is basically the arrow equivalent to the monadic 
bind robot (>>=) . The arrow version of bind (>>>)  puts two arrows into a sequence. That is, it connects the 
output conveyor belt of the first arrow to the input conveyor belt of the second one.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

149 of 290 11/5/2007 9:02 PM

What we get out of this is a new arrow. One consideration to make, though is what input and output types our 
arrows may take. Since we're connecting output and the input conveyor belts of the first and second arrows, the 
second arrow must accept the same kind of input as what the first arrow outputs. If the first arrow is of type a b 

c, the second arrow must be of type a c d . Here is the same diagram as above, but with things on the conveyor 
belts to help you see the issue with types.

Exercises
What is the type of the combined arrow?

first

Up to now, our arrows can only do the same things that monads can. Here is where things get interesting! The 
arrows type class provides functions which allow arrows to work with pairs of input. As we will see later on, 
this leads us to be able to express parallel computation in a very succinct manner. The first of these functions, 
naturally enough, is first .

If you are skimming this tutorial, it is probably a good idea to slow down at least in this section, because the 
first  robot is one of the things that makes arrows truly useful.

Given an arrow f , the first  robot attaches some conveyor belts and extra machinery to form a new, more 
complicated arrow. The machines that bookend the input arrow split the input pairs into their component parts, 
and put them back together. The idea behind this is that the first part of every pair is fed into the f , whilst the 
second part is passed through on an empty conveyor belt. When everything is put back together, we have same 
pairs that we fed in, except that the first part of every pair has been replaced by an equivalent output from f .



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

150 of 290 11/5/2007 9:02 PM

Now the question we need to ask ourselves is that of types. Say that the input tuples are of type (b,d)  and the 
input arrow is of type a b c  (that is, it is an arrow from b to c). What is the type of the output? Well, the arrow 
converts all bs into cs, so when everything is put back together, the type of the output must be (c,d) .

Exercises
What is the type of the first  robot?

second

If you understand the first  robot, the second  robot is a piece of cake. It does the same exact thing, except that it 
feeds the second part of every input pair into the given arrow f  instead of the first part.

What makes the second  robot interesting is that it can be derived from the previous robots! Strictly speaking, the 
only robots you need to for arrows are arr , (>>>)  and first . The rest can be had "for free".

Exercises

Write a function to swap two components of a tuple.1.
Combine this helper function with the robots arr , (>>>)  and first

to implement the second  robot
2.

***

One of the selling points of arrows is that you can use them to express parallel computation. The (***)  robot is 
just the right tool for the job. Given two arrows, f  and g, the (***)  combines them into a new arrow using the 
same bookend-machines we saw in the previous two robots



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

151 of 290 11/5/2007 9:02 PM

Conceptually, this isn't very much different from the robots first  and second . As before, our new arrow accepts
pairs of inputs. It splits them up, sends them on to separate conveyor belts, and puts them back together. The 
only difference here is that, rather than having one arrow and one empty conveyor belt, we have two distinct 
arrows. But why not?

Exercises

What is the type of the (***)  robot?1.
Given the (>>>) , first  and second  robots, implement the (***)

robot.
2.

&&&

The final robot in the Arrow class is very similar to the (***)  robot, except that the resulting arrow accepts a 
single input and not a pair. Yet, the rest of the machine is exactly the same. How can we work with two arrows, 
when we only have one input to give them?

The answer is simple: we clone the input and feed a copy into each machine!



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

152 of 290 11/5/2007 9:02 PM

Exercises

Write a simple function to clone an input into a pair.1.
Using your cloning function, as well as the robots arr , (>>>)  and 
*** , implement the &&& robot

2.

Similarly, rewrite the following function without using &&&:3.

Functions are arrows

Now that we have presented the 6 arrow robots, we would like to make sure that you have a more solid grasp of 
them by walking through a simple implementations of the Arrow class. As in the monadic world, there are many 
different types of arrows. What is the simplest one you can think of? Functions.

Put concretely, the type constructor for functions (->)  is an instance of Arrow

Now let's examine this in detail:

arr  - Converting a function into an arrow is trivial. In fact, the function already is an arrow.
(>>>)  - we want to feed the output of the first function into the input of the second function. This is 
nothing more than function composition.
first  - this is a little more elaborate. Given a function f , we return a function which accepts a pair of 
inputs (x,y) , and runs f  on x, leaving y untouched.

And that, strictly speaking, is all we need to have a complete arrow, but the arrow typeclass also allows you to 
make up your own definition of the other three robots, so let's have a go at that:

And that's it! Nothing could be simpler.

addA f g = f &&& g >>> arr (\ (y, z) -> y + z)

instance Arrow (->) where
  arr f = f
  f >>> g  = g . f
  first  f = \(x,y) -> (f x, y)

  first  f = \(x,y) -> (f x,   y) -- for comparison 's sake
  second f = \(x,y) -> (  x, f y) -- like first
  f *** g  = \(x,y) -> (f x, g y) -- takes two arro ws, and not just one
  f &&& g  = \x     -> (f x, g x) -- feed the same input into both functions



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

153 of 290 11/5/2007 9:02 PM

Note that this is not the official instance of functions as arrows. You should take a look at the haskell library
(http://darcs.haskell.org/packages/base/Control/Arrow.hs) if you want the real deal.

The arrow notation

In the introductory Arrows chapter, we introduced the proc  and -<  notation. How does this tie in with all the 
arrow robots we just presented? Sadly, it's a little bit less straightforward than do-notation, but let's have a look.

Maybe functor

It turns out that any monad can be made into arrow. We'll go into that later on, but for now, FIXME: transition

Using arrows

At this point in the tutorial, you should have a strong enough grasp of the arrow machinery that we can start to 
meaningfully tackle the question of what arrows are good for.

Stream processing

Avoiding leaks

Arrows were originally motivated by an efficient parser design found by Swierstra & Duponcheel.

To describe the benefits of their design, let's examine exactly how monadic parsers work.

If you want to parse a single word, you end up with several monadic parsers stacked end to end. Taking Parsec 
as an example, the parser string "word" can also be viewed as

Each character is tried in order, if "worg" is the input, then the first three parsers will succeed, and the last one 
will fail, making the entire string "word" parser fail.

If you want to parse one of two options, you create a new parser for each and they are tried in order. The first 
one must fail and then the next will be tried with the same input.

To parse "c" successfully, both 'a' and 'b' must have been tried.

word = do char 'w' >> char 'o' >> char 'r' >> char 'd'
          return "word"

ab = do char 'a' <|> char 'b' <|> char 'c'



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

154 of 290 11/5/2007 9:02 PM

With these three parsers, you can't know that the string "four" will fail the parser nums until the last parser has 
failed.

If one of the options can consume much of the input but will fail, you still must descend down the chain of 
parsers until the final parser fails. All of the input that can possibly be consumed by later parsers must be 
retained in memory in case one of them does consume it. That can lead to much more space usage than you 
would naively expect, this is often called a space leak.

The general pattern of monadic parsers is that each option must fail or one option must succeed.

So what's better?

Swierstra & Duponcheel (1996) noticed that a smarter parser could immediately fail upon seeing the very first 
character. For example, in the nums parser above, the choice of first letter parsers was limited to either the letter 
'o' for "one" or the letter 't' for both "two" and "three". This smarter parser would also be able to garbage collect 
input sooner because it could look ahead to see if any other parsers might be able to consume the input, and drop
input that could not be consumed. This new parser is a lot like the monadic parsers with the major difference 
that it exports static information. It's like a monad, but it also tells you what it can parse.

There's one major problem. This doesn't fit into the monadic interface. Monads are (a -> m b), they're based 
around functions only. There's no way to attach static information. You have only one choice, throw in some 
input, and see if it passes or fails.

The monadic interface has been touted as a general purpose tool in the functional programming community, so 
finding that there was some particularly useful code that just couldn't fit into that interface was something of a 
setback. This is where Arrows come in. John Hughes's Generalising monads to arrows proposed the arrows 
abstraction as new, more flexible tool.

Static and dynamic parsers

Let us examine Swierstra & Duponcheel's parser in greater detail, from the perspective of arrows. The parser has
two components: a fast, static parser which tells us if the input is worth trying to parse; and a slow, dynamic 
parser which does the actual parsing work.

The static parser consists of a flag, which tells us if the parser can accept the empty input, and a list of possible 
starting characters. For example, the static parser for a single character would be as follows:

one = do char 'o' >> char 'n' >> char 'e'
      return "one"

two = do char 't' >> char 'w' >> char 'o'
      return "two"

three = do char 't' >> char 'h' >> char 'r' >> char  'e' >> char 'e'
        return "three"

nums = do one <|> two <|> three

data Parser s a b = P (StaticParser s) (DynamicPars er s a b)
data StaticParser s = SP Bool [s]
newtype DynamicParser s a b = DP ((a,[s]) -> (b,[s] ))



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

155 of 290 11/5/2007 9:02 PM

It does not accept the empty string (False ) and the list of possible starting characters consists only of c.

The dynamic parser needs a little more dissecting : what we see is a function that goes from (a,[s])  to (b,[s]) . 
It is useful to think in terms of sequencing two parsers : Each parser consumes the result of the previous parser
(a), along with the remaining bits of input stream ([s] ), it does something with a to produce its own result b, 
consumes a bit of string and returns that. Ooof. So, as an example of this in action, consider a dynamic parser 
(Int,String) -> (Int,String) , where the Int  represents a count of the characters parsed so far. The table 
belows shows what would happen if we sequence a few of them together and set them loose on the string
"cake" :

result remaining

before 0 cake

after first parser 1 ake

after second parser 2 ke

after third parser 3 e

So the point here is that a dynamic parser has two jobs : it does something to the output of the previous parser
(informally, a -> b ), and it consumes a bit of the input string, (informally, [s] -> [s] ), hence the type DP 

((a,[s]) -> (b,[s]) . Now, in the case of a dynamic parser for a single character, the first job is trivial. We 
ignore the output of the previous parser. We return the character we have parsed. And we consume one character
off the stream :

This might lead you to ask a few questions. For instance, what's the point of accepting the output of the previous
parser if we're just going to ignore it? The best answer we can give right now is "wait and see". If you're 
comfortable with monads, consider the bind operator (>>=) . While bind is immensely useful by itself, 
sometimes, when sequencing two monadic computations together, we like to ignore the output of the first 
computation by using the anonymous bind (>>) . This is the same situation here. We've got an interesting little 
bit of power on our hands, but we're not going to use it quite yet.

The next question, then, shouldn't the dynamic parser be making sure that the current charcter off the stream 
matches the character to be parsed? Shouldn't x == c  be checked for? No. And in fact, this is part of the point; 
the work is not neccesary because the check would already have been performed by the static parser.

Anyway, let us put this together. Here is our S+D style parser for a single character:

Arrow combinators (robots)

spCharA :: Char -> StaticParser Char
spCharA c = SP False [c]

dpCharA :: Char -> DynamicParser Char Char Char
dpCharA c = DP (\(_,x:xs) -> (c,xs))

charA :: Char -> Parser Char Char Char
charA c = P (SP False [c]) (DP \(_,x:xs) -> (c,xs))



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

156 of 290 11/5/2007 9:02 PM

Up to this point, we have explored two somewhat independent trains of thought. On the one hand, we've taken a 
look at some arrow machinery, the combinators/robots from above, although we don't exactly know what it's for.
On the other hand, we have introduced a type of parser using the Arrow class. We know that the goal is to avoid 
space leaks and that it somehow involves separating a fast static parser from its slow dynamic part, but we don't 
really understand how that ties in to all this arrow machinery. In this section, we will attempt to address both of 
these gaps in our knowledge and merge our twin trains of thought into one. We're going to implement the Arrow
class for Parser s , and by doing so, give you a glimpse of what makes arrows useful. So let's get started:

One of the simplest things we can do is to convert an arbitrary function into a parsing arrow. We're 
going to use "parse" in the loose sense of the term: our resulting arrow accepts the empty string, and 
only the empty string (its set of first characters is [] ). Its sole job is take the output of the previous 
parsing arrow and do something with it. Otherwise, it does not consume any input.

Likewise, the first  combinator is relatively straightforward. Recall the conveyor belts from 
above. Given a parser, we want to produce a new parser that accepts a pair of inputs (b,d) . 
The first part of the input b, is what we actually want to parse. The second part is passed 
through completely untouched:

On the other hand, the implementation of (>>>)  requires a little more thought. We want to 
take two parsers, and returns a combined parser incorporating the static and dynamic parsers 
of both arguments:

Combining the dynamic parsers is easy enough; we just do function composition. Putting the static parsers 
together requires a little bit of thought. First of all, the combined parser can only accept the empty string if both
parsers do. Fair enough, now how about the starting symbols? Well, the parsers are supposed to be in a 
sequence, so the starting symbols of the second parser shouldn't really matter. If life were simple, the starting 
symbols of the combined parser would only be start1 . Alas, life is NOT simple, because parsers could very 
well accept the empty input. If the first parser accepts the empty input, then we have to account for this 
possibility by accepting the starting symbols from both the first and the second parsers.

Exercises

Consider the charA  parser from above. What would charA 'o' >>> 

charA 'n' >>> charA 'e'  result in?
1.

Write a simplified version of that combined parser. That is: does it 
accept the empty string? What are its starting symbols? What is the 

2.

instance Arrow (Parser s) where

 arr f = P (SP True []) (DP (\(b,s) -> (f b,s))

 first (P sp (DP p)) = (P sp (\((b,d),s) -> let (c,  s') = p (b,s) in ((c,d),s')

 (P (SP empty1 start1) (DP p1)) >>>
 (P (SP empty2 start2) (DP p2)) =
   P (SP (empty1 && empty2))
         (if not empty1 then start1 else start1 `un ion` start2)
     (DP (p2.p1))



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

157 of 290 11/5/2007 9:02 PM

dynamic parser for this?

So what do arrows buy us in all this?

Monads can be arrows too

The real flexibility with arrows comes with the ones that aren't monads, otherwise it's just a clunkier 
syntax -- Philippa Cowderoy

It turns out that all monads can be made into arrows. Here's a central quote from the original arrows papers:

Just as we think of a monadic type m a as representing a 'computation delivering an a '; so we think 
of an arrow type a b c, (that is, the application of the parameterised type a to the two parameters b 
and c) as representing 'a computation with input of type b delivering a c'; arrows make the 
dependence on input explicit.

One way to look at arrows is the way the English language allows you to noun a verb, for example, "I had a 
chat." Arrows are much like that, they turn a function from a to b into a value. This value is a first class 
transformation from a to b.

Arrows in practice

Arrows are a relatively new abstraction, but they already found a number of uses in the Haskell world

Hughes' arrow-style parsers were first described in his 2000 paper, but a usable implementation wasn't 
available until May 2005. Einar Karttunen wrote an implementation called PArrows that approaches the 
features of standard Haskell parser combinator library, Parsec.
The Fudgets library for building graphical interfaces FIXME: complete this paragraph
Yampa - FIXME: talk briefly about Yampa
The Haskell XML Toolbox (HXT (http://www.fh-wedel.de/~si/HXmlToolbox/index.html) ) uses arrows 
for processing XML. There is a Wiki page in the Haskell Wiki with a somewhat Gentle Introduction to 
HXT (http://www.haskell.org/haskellwiki/HXT) .

Arrows Aren't The Answer To Every Question

Arrows do have some problems. Several people on the #haskell irc channel have done nifty arrows experiments, 
and some of those experiments ran into problems. Some notable obstacles were typified by experiments done by 
Jeremy Shaw, Einar Karttunen, and Peter Simons. If you would like to learn more about the limitations behind 
arrows, follow the references at the end of this article

See also

Generalising Monads to Arrows - John Hughes



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

158 of 290 11/5/2007 9:02 PM

http://www.haskell.org/arrows/biblio.html

Arrow uses

Arrow limitations

Jeremy Shaw -
Einar Kartunnen -
Peter Simons -

Current research

Acknowledgements

This module uses text from An Introduction to Arrows by Shae Erisson, originally written for The 
Monad.Reader 4

Continuation passing style

Continuation passing style, or CPS, is a style of programming where functions never return values, but instead
take an extra parameter which they give their result to — this extra parameter represents what to do next, and is 
called a continuation.

Starting simple

To begin with, we're going to explore two simple examples which illustrate what CPS and continuations are.

square

Let's start with a very simple module which squares a number, then outputs it:

Example: A simple module, no continuations

We're clearly doing two things here. First, we square four, then we print the result. If we were to make the 
square  function take a continuation, we'd end up with something like the following:

square :: Int -> Int
square x = x ^ 2

main = do
  let x = square 4
  print x



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

159 of 290 11/5/2007 9:02 PM

Example: A simple module, using continuations

That is, square  takes an extra parameter which is the function that represents what to do next — the
continuation of the computation.

quadRoots

Consider the quadratic equation. Recall that for the equation ax2 + bx + c = 0, the quadratic equation states that:

When considering only real numbers, we may have zero, one, or two roots. The quantity under the radical, 
 is known as the determinant. When d < 0, there are no (real) roots; when d = 0 we have one 

real root; and finally, with d > 0, we have two real roots. We then write a Haskell function to compute the roots 
of a quadratic as follows:

Example: quadRoots , no continuations

To use this function, we need to pattern match on the result, for instance:

Example: Using the result of quadRoots , still no continuations

To write this in continuation passing style, we will begin by modifying the quadRoots  function. It will now take 
three additional parameters: functions that will be called with the resulting number of roots.

square :: Int -> (Int -> a) -> a
square x k = k (x ^ 2)

main = square 4 print

data Roots = None | One Double | Two Double Double
quadRoots :: Double -> Double -> Double -> Roots
quadRoots a b c
  | d < 0 = None
  | d == 0 = One $ -b/2/a
  | d > 0 = Two ((-b + sqrt d)/2/a) ((-b - sqrt d)/ 2/a)
  where d = b*b - 4*a*c

printRoots :: Double -> Double -> Double -> IO ()
printRoots a b c = case quadRoots a b c of
  None -> putStrLn "There were no roots."
  One x -> putStrLn $ showString "There was one roo t: " $ show x
  Two x x' -> putStrLn $ showString "There were two  roots found: " $
    shows x $ showString " and " $ show x'



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

160 of 290 11/5/2007 9:02 PM

This is how data is 
often expressed in 
lambda calculi: 
note that 
quadRoots'

doesn't use Roots

at all.

Example: quadRoots'  using continuations

One may notice that the body of quadRoots'  is identical to quadRoots , except that 
we've substituted arbitrary functions for the constructors of Roots . Indeed, 
quadRoots  may be rewritten to use quadRoots' , by passing the constructors for 
Roots . Now we no longer need to pattern match on the result, we just pass in the 
expressions from the case matches.

Example: Using the result of quadRoots , with continuations

Exercises

FIXME: write some exercises

Using the Cont monad

By now, you should be used to the pattern that whenever we find a pattern we like (here the pattern is using 
continuations), but it makes our code a little ugly, we use a monad to encapsulate the 'plumbing'. Indeed, there is
a monad for modelling computations which use CPS.

Example: The Cont monad

Removing the newtype and record cruft, we obtain that Cont r a  expands to (a -> r) -> r . So how does this 
fit with our idea of continuations we presented above? Well, remember that a function in CPS basically took an 
extra parameter which represented 'what to do next'. So, here, the type of Cont r a  expands to be an extra 

quadRoots' :: Double -> Double -> Double -- The thr ee coefficients
           -> a                          -- What to  do with no roots
           -> (Double -> a)              -- What to  do with one root
           -> (Double -> Double -> a)    -- What to  do with two roots
           -> a                          -- The fin al result
quadRoots' a b c f0 f1 f2
  | d < 0 = f0
  | d == 0 = f1 $ -b/2/a
  | d > 0 = f2 ((-b + sqrt d)/2/a) ((-b - sqrt d)/2 /a)
  where d = b*b - 4*a*c

printRoots :: Double -> Double -> Double -> IO ()
printRoots a b c = quadRoots' a b c f0 f1 f2
  where
    f0      = putStrLn "There were no roots."
    f1 x    = putStrLn $ "There was one root: " ++ show x
    f2 x x' = putStrLn $ "There were two roots foun d: " 
                             ++ show x ++ " and " + + show x'

newtype Cont r a = Cont { runCont :: (a -> r) -> r }



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

161 of 290 11/5/2007 9:02 PM

function (the continuation), which is a function from things of type a (what the result of the function would have
been, if we were returning it normally instead of throwing it into the continuation), to things of type r , which 
becomes the final result type of our function.

All of that was a little vague and abstract so let's crack out an example.

Example: The square  module, using the Cont monad

If we expand the type of square , we obtain that square :: Int -> (Int -> r) -> r , which is precisely what 
we had before we introduced Cont into the picture. So we can see that type Cont r a  expands into a type which 
fits our notion of a continuation, as defined above. Every function that returns a Cont-value actually takes an 
extra parameter, which is the continuation. Using return  simply throws its argument into the continuation.

How does the Cont implementation of (>>=)  work, then? It's easiest to see it at work:

Example: The (>>=)  function for the Cont monad

The Monad instance for (Cont r) is given below:

So return n  is Cont-value that throws n straight away into whatever continuation it is applied to. m >>= f  is a 
Cont-value that runs m with the continuation \a -> f a k , which receives the result of m, then applies it to f  to 
get another Cont-value. This is then called with the continuation we got at the top level; in essence m >>= f  is a 
Cont-value that takes the result from m, applies it to f , then throws that into the continuation.

Exercises
To come.

callCC

square :: Int -> Cont r Int
square x = return (x ^ 2)

main = runCont (square 4) print
{- Result: 16 -}

square :: Int -> Cont r Int
square x = return (x ^ 2)

addThree :: Int -> Cont r Int
addThree x = return (x + 3)

main = runCont (square 4 >>= addThree) print
{- Result: 19 -}

instance Monad (Cont r) where
  return n = Cont (\k -> k n)
  m >>= f  = Cont (\k -> runCont m (\a -> runCont ( f a) k))



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

162 of 290 11/5/2007 9:02 PM

By now you should be fairly confident using the basic notions of continuations and Cont, so we're going to skip 
ahead to the next big concept in continuation-land. This is a function called callCC , which is short for 'call with 
current continuation'. We'll start with an easy example.

Example: square  using callCC

We pass a function to callCC  that accepts one parameter that is in turn a function. This function (k in our 
example) is our tangible continuation: we can see here we're throwing a value (in this case, n ^ 2 ) into our 
continuation. We can see that the callCC  version is equivalent to the return  version stated above because we 
stated that return n  is just a Cont-value that throws n into whatever continuation that it is given. Here, we use 
callCC  to bring the continuation 'into scope', and immediately throw a value into it, just like using return .

However, these versions look remarkably similar, so why should we bother using callCC  at all? The power lies 
in that we now have precise control of exactly when we call our continuation, and with what values. Let's 
explore some of the surprising power that gives us.

Deciding when to use k

We mentioned above that the point of using callCC  in the first place was that it gave us extra power over what 
we threw into our continuation, and when. The following example shows how we might want to use this extra 
flexibility.

Example: Our first proper callCC  function

foo  is a slightly pathological function that computes the square of its input and adds three; if the result of this 
computation is greater than 20, then we return from the function immediately, throwing the String value "over 

twenty"  into the continuation that is passed to foo . If not, then we subtract four from our previous computation, 
show it, and throw it into the computation. If you're used to imperative languages, you can think of k like the 
'return' statement that immediately exits the function. Of course, the advantages of an expressive language like 
Haskell are that k is just an ordinary first-class function, so you can pass it to other functions like when, or store 
it in a Reader , etc.

Naturally, you can embed calls to callCC  within do-blocks:

-- Without callCC
square :: Int -> Cont r Int
square n = return (n ^ 2)

-- With callCC
square :: Int -> Cont r Int
square n = callCC $ \k -> k (n ^ 2)

foo :: Int -> Cont r String
foo n =
  callCC $ \k -> do
    let n' = n ^ 2 + 3
    when (n' > 20) $ k "over twenty"
    return (show $ n' - 4)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

163 of 290 11/5/2007 9:02 PM

Example: More developed callCC  example involving a do-block

When you call k with a value, the entire callCC  call takes that value. In other words, k is a bit like a 'goto' 
statement in other languages: when we call k in our example, it pops the execution out to where you first called 
callCC , the msg <- callCC $ ...  line. No more of the argument to callCC  (the inner do-block) is executed. 
Hence the following example contains a useless line:

Example: Popping out a function, introducing a useless line

bar  will always return 5, and never 25, because we pop out of bar  before getting to the return 25  line.

A note on typing

Why do we exit using return  rather than k the second time within the foo  example? It's to do with types. Firstly, 
we need to think about the type of k. We mentioned that we can throw something into k, and nothing after that 
call will get run (unless k is run conditionally, like when wrapped in a when). So the return type of k doesn't 
matter; we can never do anything with the result of running k. We say, therefore, that the type of k is:

We universally quantify the return type of k. This is possible for the aforementioned reasons, and the reason it's 
advantageous is that we can do whatever we want with the result of k. In our above code, we use it as part of a 
when construct:

As soon as the compiler sees k being used in this when, it infers that we want a ()  result type for k [17]. So the 
final expression in that inner do-block has type Cont r ()  too. This is the crux of our problem. There are two 
possible execution routes: either the condition for the when succeeds, in which case the do-block returns 
something of type Cont r String . (The call to k makes the entire do-block have a type of Cont r t , where t  is 
the type of the argument given to k. Note that this is different from the return type of k itself, which is just the 

bar :: Char -> String -> Cont r Int
bar c s = do
  msg <- callCC $ \k -> do
    let s' = c : s
    when (s' == "hello") $ k "They say hello."
    let s'' = show s'
    return ("They appear to be saying " ++ s'')
  return (length msg)

bar :: Cont r Int
bar = callCC $ \k -> do
  let n = 5
  k n
  return 25

k :: a -> Cont r b

when :: Monad m => Bool -> m () -> m ()



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

164 of 290 11/5/2007 9:02 PM

return type of the expression involving the call to k, not the entire do-block.) If the condition fails, execution 
pases on and the do-block returns something of type Cont r () . This is a type mismatch.

If you didn't follow any of that, just make sure you use return  at the end of a do-block inside a call to callCC , 
not k.

The type of callCC

We've deliberately broken a trend here: normally when we've introduced a function, we've given its type straight 
away, but in this case we haven't. The reason is simple: the type is rather horrendously complex, and it doesn't 
immediately give insight into what the function does, or how it works. Nevertheless, you should be familiar with
it, so now you've hopefully understood the function itself, here's it's type:

This seems like a really weird type to begin with, so let's use a contrived example.

You pass a function to callCC . This in turn takes a parameter, k, which is another function. k, as we remarked 
above, has the type:

The entire argument to callCC , then, is a function that takes something of the above type and returns Cont r t , 
where t  is whatever the type of the argument to k was. So, callCC 's argument has type:

Finally, callCC  is therefore a function which takes that argument and returns its result. So the type of callCC  is:

The implementation of callCC

So far we have looked at the use of callCC  and its type. This just leaves its implementation, which is:

This code is far from obvious. However, the amazing fact is that the implementations for callCC f , return n

and m >>= f  can all be produced automatically from their type signatures - Lennart Augustsson's Djinn [1]
(http://lambda-the-ultimate.org/node/1178) is a program that will do this for you. See Phil Gossart's Google tech 
talk: [2] (http://video.google.com/videoplay?docid=-4851250372422374791) for background on the theory 
behind Djinn; and Dan Piponi's article: [3] (http://www.haskell.org/sitewiki/images/1/14/TMR-Issue6.pdf) 
which uses Djinn in deriving Continuation Passing Style.

callCC :: ((a -> Cont r b) -> Cont r a) -> Cont r a

callCC $ \k -> k 5

k :: a -> Cont r b

(a -> Cont r b) -> Cont r a

callCC :: ((a -> Cont r b) -> Cont r a) -> Cont r a

 callCC f = Cont $ \k -> runCont (f (\a -> Cont $ \ _ -> k a)) k



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

165 of 290 11/5/2007 9:02 PM

Example: a complicated control structure

This example was originally taken from the 'The Continuation monad' section of the All about monads tutorial
(http://www.haskell.org/all_about_monads/html/index.html) , used with permission.

Example: Using Cont for a complicated control structure

Because it isn't initially clear what's going on, especially regarding the usage of callCC , we will explore this 
somewhat.

Analysis of the example

Firstly, we can see that fun  is a function that takes an integer n. We basically implement a control structure 
using Cont and callCC  that does different things based on the range that n falls in, as explained with the 
comment at the top of the function. Let's dive into the analysis of how it works.

Firstly, the (`runCont` id)  at the top just means that we run the Cont block that follows with a final 
continuation of id . This is necessary as the result type of fun  doesn't mention Cont.

1.

We bind str  to the result of the following callCC  do-block:
If n is less than 10, we exit straight away, just showing n.1.
If not, we proceed. We construct a list, ns , of digits of n `div` 2 .2.
n'  (an Int) gets bound to the result of the following inner callCC  do-block.

If length ns < 3 , i.e., if n `div` 2  has less than 3 digits, we pop out of this inner do-block 
with the number of digits as the result.

1.

If n `div` 2  has less than 5 digits, we pop out of the inner do-block returning the original n.2.
If n `div` 2  has less than 7 digits, we pop out of both the inner and outer do-blocks, with the
result of the digits of n `div` 2  in reverse order (a String).

3.

Otherwise, we end the inner do-block, returning the sum of the digits of n `div` 2 .4.

3.

We end this do-block, returning the String "(ns = X) Y" , where X is ns , the digits of n `div` 2 , 
and Y is the result from the inner do-block, n' .

4.

2.

{- We use the continuation monad to perform "escape s" from code blocks.
   This function implements a complicated control s tructure to process
   numbers:

   Input (n)       Output                       Lis t Shown
   =========       ======                       === =======
   0-9             n                            non e
   10-199          number of digits in (n/2)    dig its of (n/2)
   200-19999       n                            dig its of (n/2)
   20000-1999999   (n/2) backwards              non e
   >= 2000000      sum of digits of (n/2)       dig its of (n/2)
-}  
fun :: Int -> String
fun n = (`runCont` id) $ do
        str <- callCC $ \exit1 -> do                        -- define "exit1"
          when (n < 10) (exit1 $ show n)
          let ns = map digitToInt (show $ n `div` 2 )
          n' <- callCC $ \exit2 -> do                       -- define "exit2"
            when (length ns < 3) (exit2 $ length ns )
            when (length ns < 5) (exit2 n)
            when (length ns < 7) $ do 
              let ns' = map intToDigit (reverse ns)
              exit1 (dropWhile (=='0') ns')                 -- escape 2 levels
            return $ sum ns
          return $ "(ns = " ++ show ns ++ ") " ++ s how n'
        return $ "Answer: " ++ str



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

166 of 290 11/5/2007 9:02 PM

Finally, we return out of the entire function, with our result being the string "Answer: Z", where Z is the 
string we got from the callCC  do-block.

3.

Example: exceptions

One use of continuations is to model exceptions. To do this, we hold on to two continuations: one that takes us 
out to the handler in case of an exception, and one that takes us to the post-handler code in case of a success. 
Here's a simple function that takes two numbers and does integer division on them, failing when the 
denominator is zero.

Example: An exception-throwing div

How does it work? We use two nested calls to callCC . The first labels a continuation that will be used when 
there's no problem. The second labels a continuation that will be used when we wish to throw an exception. If 
the denominator isn't 0, x `div` y  is thrown into the ok  continuation, so the execution pops right back out to 
the top level of divExcpt . If, however, we were passed a zero denominator, we throw an error message into the 
notOk  continuation, which pops us out to the inner do-block, and that string gets assigned to err  and given to 
handler .

A more general approach to handling exceptions can be seen with the following function. Pass a computation as 
the first parameter (which should be a function taking a continuation to the error handler) and an error handler as
the second parameter. This example takes advantage of the generic MonadCont class which covers both Cont

and ContT  by default, plus any other continuation classes the user has defined.

Example: General try  using continuations.

For an example using try , see the following program.

 divExcpt :: Int -> Int -> (String -> Cont r Int) - > Cont r Int
 divExcpt x y handler =
   callCC $ \ok -> do
     err <- callCC $ \notOk -> do
       when (y == 0) $ notOk "Denominator 0"
       ok $ x `div` y
     handler err
 
 {- For example,
 runCont (divExcpt 10 2 error) id  -->  5
 runCont (divExcpt 10 0 error) id  -->  *** Excepti on: Denominator 0
 -}

 tryCont :: MonadCont m => ((err -> m a) -> m a) ->  (err -> m a) -> m a
 tryCont c h =
   callCC $ \ok -> do
     err <- callCC $ \notOk -> do x <- c notOk; ok x
     h err



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

167 of 290 11/5/2007 9:02 PM

Example: Using try

Example: coroutines

Notes

↑ At least as far as types are concerned, but we're trying to avoid that word :)1.
↑ More technically, fst  and snd  have types which limit them to pairs. It would be impossible to define 
projection functions on tuples in general, because they'd have to be able to accept tuples of different sizes, 
so the type of the function would vary.

2.

↑ In fact, these are one and the same concept in Haskell.3.
↑ This isn't quite what chr  and ord  do, but that description fits our purposes well, and it's close enough.4.
↑ To make things even more confusing, there's actually even more than one type for integers! Don't worry,
we'll come on to this in due course.

5.

↑ This has been somewhat simplified to fit our purposes. Don't worry, the essence of the function is there.6.
↑ Some of the newer type system extensions to GHC do break this, however, so you're better off just 
always putting down types anyway.

7.

↑ This is a slight lie. That type signature would mean that you can compare two values of any type 
whatsoever, but this clearly isn't true: how can you see if two functions are equal? Haskell includes a kind 
of 'restricted polymorphism' that allows type variables to range over some, but not all types. Haskell 
implements this using type classes, which we'll learn about later. In this case, the correct type of (==)  is Eq 

a => a -> a -> Bool .

8.

↑ In mathematics, n! normally means the factorial of n, but that syntax is impossible in Haskell, so we 
don't use it here.

9.

↑ Actually, defining the factorial of 0 to be 1 is not just arbitrary; it's because the factorial of 0 represents 
an empty product.

10.

↑ This is no coincidence; without mutable variables, recursion is the only way to implement control 
structures. This might sound like a limitation until you get used to it (it isn't, really).

11.

↑ Actually, it's using a function called foldl , which actually does the recursion.12.
↑ Moggi, Eugenio (1991). "Notions of Computation and Monads". Information and Computation 93 (1).13.
↑ w:Philip Wadler. Comprehending Monads (http://citeseer.ist.psu.edu/wadler92comprehending.html) . 
Proceedings of the 1990 ACM Conference on LISP and Functional Programming, Nice. 1990.

14.

↑ w:Philip Wadler. The Essence of Functional Programming
(http://citeseer.ist.psu.edu/wadler92essence.html) . Conference Record of the Nineteenth Annual ACM 
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 1992.

15.

↑ Simon Peyton Jones, Philip Wadler (1993). "Imperative functional programming"16.

data SqrtException = LessThanZero deriving (Show, E q)

sqrtIO :: (SqrtException -> ContT r IO ()) -> ContT  r IO ()
sqrtIO throw = do 
  ln <- lift (putStr "Enter a number to sqrt: " >> readLn)
  when (ln < 0) (throw LessThanZero)
  lift $ print (sqrt ln)

main = runContT (tryCont sqrtIO (lift . print)) ret urn



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

168 of 290 11/5/2007 9:02 PM

(http://homepages.inf.ed.ac.uk/wadler/topics/monads.html#imperative) . 20'th Symposium on Principles of
Programming Languages.
↑ It infers a monomorphic type because k is bound by a lambda expression, and things bound by lambdas 
always have monomorphic types. See Polymorphism.

17.

Mutable objects

As one of the key strengths of Haskell is its purity: all side-effects are encapsulated in a monad. This makes 
reasoning about programs much easier, but many practical programming tasks require manipulating state and 
using imperative structures. This chapter will discuss advanced programming techniques for using imperative 
constructs, such as references and mutable arrays, without compromising (too much) purity.

The ST and IO monads

Recall the The State Monad and The IO monad from the chapter on Monads. These are two methods of 
structuring imperative effects. Both references and arrays can live in state monads or the IO monad, so which 
one is more appropriate for what, and how does one use them?

State references: STRef and IORef

Mutable arrays

Examples

Zippers

Theseus and the Zipper

The Labyrinth

"Theseus, we have to do something" said Homer, chief marketing officer of Ancient Geeks Inc.. Theseus put the
Minotaur action figure™ back onto the shelf and nods. "Today's children are no longer interested in the ancient
myths, they prefer modern heroes like Spiderman or Sponge Bob." Heroes. Theseus knew well how much he has

been a hero in the labyrinth back then on Crete[18]. But those "modern heroes" did not even try to appear 
realistic. What made them so successful? Anyway, if the pending sales problems could not be resolved, the 
shareholders would certainly arrange a passage over the Styx for Ancient Geeks Inc.

"Heureka! Theseus, I have an idea: we implement your story with the Minotaur as a computer game! What do
you say?" Homer was right. There had been several books, epic (and chart breaking) songs, a mandatory movie
trilogy and uncountable Theseus & the Minotaur™ gimmicks, but a computer game was missing. "Perfect, then.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

169 of 290 11/5/2007 9:02 PM

Now, Theseus, your task is to implement the game".

A true hero, Theseus chose Haskell as the language to implement the company's redeeming product in. Of 
course, exploring the labyrinth of the Minotaur was to become one of the game's highlights. He pondered: "We 
have a two-dimensional labyrinth whose corridors can point in many directions. Of course, we can abstract from 
the detailed lengths and angles: for the purpose of finding the way out, we only need to know how the path 
forks. To keep things easy, we model the labyrinth as a tree. This way, the two branches of a fork cannot join 
again when walking deeper and the player cannot go round in circles. But I think there is enough opportunity to 
get lost; and this way, if the player is patient enough, he can explore the entire labyrinth with the left-hand rule."

Theseus made the nodes of the labyrinth carry an extra parameter of type a. Later on, it may hold game relevant 
information like the coordinates of the spot a node designates, the ambience around it, a list of game items that 
lie on the floor, or a list of monsters wandering in that section of the labyrinth. We assume that two helper 
functions

retrieve and change the value of type a stored in the first argument of every constructor of Node a .

Exercises

Implement get  and put . One case for get  is
get (Passage x _) = x .

1.

To get a concrete example, write down the labyrinth shown in the 
picture as a value of type Node (Int,Int) . The extra parameter 
(Int,Int)  holds the cartesian coordinates of a node.

2.

"Mh, how to represent the player's current position in the labyrinth? The player can explore deeper by choosing 
left or right branches, like in"

data Node a = DeadEnd a
            | Passage a (Node a)
            | Fork    a (Node a) (Node a)

An example labyrinth and its representation as tree.

get :: Node a -> a
put :: a -> Node a -> Node a



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

170 of 290 11/5/2007 9:02 PM

"But replacing the current top of the labyrinth with the corresponding sub-labyrinth this way is not an option, 
because he cannot go back then." He pondered. "Ah, we can apply Ariadne's trick with the thread for going 
back. We simply represent the player's position by the list of branches his thread takes, the labyrinth always 
remains the same."

"For example, a thread [TurnRight,KeepStraightOn]  means that the player took the right branch at the 
entrance and then went straight down a Passage  to reach its current position. With the thread, the player can 
now explore the labyrinth by extending or shortening it. For instance, the function turnRight  extends the thread 
by appending the TurnRight  to it."

"To access the extra data, i.e. the game relevant items and such, we simply follow the thread into the labyrinth."

Exercises
Write a function update  that applies a function of type a -> a  to the extra 
data at the player's position.

Theseus' satisfaction over this solution did not last long. "Unfortunately, if we want to extend the path or go 
back a step, we have to change the last element of the list. We could store the list in reverse, but even then, we 
have to follow the thread again and again to access the data in the labyrinth at the player's position. Both actions 
take time proportional to the length of the thread and for large labyrinths, this will be too long. Isn't there 

 turnRight :: Node a -> Maybe (Node a)
 turnRight (Fork _ l r) = Just r
 turnRight _            = Nothing

data Branch = KeepStraightOn
            | TurnLeft
            | TurnRight
type Thread = [Branch]

Representation of the player's position by 
Ariadne's thread.

turnRight :: Thread -> Thread
turnRight t = t ++ [TurnRight]

retrieve :: Thread -> Node a -> a
retrieve []                  n             = get n
retrieve (KeepStraightOn:bs) (Passage _ n) = retrie ve bs n
retrieve (TurnLeft      :bs) (Fork _ l r)  = retrie ve bs l
retrieve (TurnRight     :bs) (Fork _ l r)  = retrie ve bs r



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

171 of 290 11/5/2007 9:02 PM

another way?"

Ariadne's Zipper

While Theseus was a skillful warrior, he did not train much in the art of programming and could not find a 
satisfying solution. After intense but fruitless cogitation, he decided to call his former love Ariadne to ask her for 
advice. After all, it was she who had the idea with the thread.
"Ariadne Consulting. What can I do for you?"
Our hero immediately recognized the voice.
"Hello Ariadne, it's Theseus."
An uneasy silence paused the conversation. Theseus remembered well that he had abandoned her on the island 
of Naxos and knew that she would not appreciate his call. But Ancient Geeks Inc. was on the road to Hades and 
he had no choice.
"Uhm, darling, ... how are you?"
Ariadne retorted an icy response, "Mr. Theseus, the times of darling are long over. What do you want?"
"Well, I uhm ... I need some help with a programming problem. I'm programming a new Theseus & the
Minotaur™ computer game."
She jeered, "Yet another artifact to glorify your 'heroic being'? And you want me of all people to help you?"
"Ariadne, please, I beg of you, Ancient Geeks Inc. is on the brink of insolvency. The game is our last resort!"
After a pause, she came to a decision.
"Fine, I will help you. But only if you transfer a substantial part of Ancient Geeks Inc. to me. Let's say thirty 
percent."
Theseus turned pale. But what could he do? The situation was desperate enough, so he agreed but only after 
negotiating Ariadne's share to a tenth.

After Theseus told Ariadne of the labyrinth representation he had in mind, she could immediately give advice,
"You need a zipper."
"Huh? What does the problem have to do with my fly?"

"Nothing, it's a data structure first published by Gérard Huet[19]."
"Ah."
"More precisely, it's a purely functional way to augment tree-like data structures like lists or binary trees with a 
single focus or finger that points to a subtree inside the data structure and allows constant time updates and 

lookups at the spot it points to[20]. In our case, we want a focus on the player's position."
"I know for myself that I want fast updates, but how do I code it?"
"Don't get impatient, you cannot solve problems by coding, you can only solve them by thinking. The only place 

where we can get constant time updates in a purely functional data structure is the topmost node[21][22]. So, the 
focus necessarily has to be at the top. Currently, the topmost node in your labyrinth is always the entrance, but 
your previous idea of replacing the labyrinth by one of its sub-labyrinths ensures that the player's position is at 
the topmost node."
"But then, the problem is how to go back, because all those sub-labyrinths get lost that the player did not choose 
to branch into."
"Well, you can use my thread in order not to lose the sub-labyrinths."
Ariadne savored Theseus' puzzlement but quickly continued before he could complain that he already used 
Ariadne's thread,
"The key is to glue the lost sub-labyrinths to the thread so that they actually don't get lost at all. The intention is 
that the thread and the current sub-labyrinth complement one another to the whole labyrinth. With 'current' 
sub-labyrinth, I mean the one that the player stands on top of. The zipper simply consists of the thread and the 
current sub-labyrinth."



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

172 of 290 11/5/2007 9:02 PM

Theseus didn't say anything.
"You can also view the thread as a context in which the current sub-labyrinth resides. Now, let's find out how to
define Thread a . By the way, Thread  has to take the extra parameter a because it now stores sub-labyrinths. The
thread is still a simple list of branches, but the branches are different from before."

"Most importantly, TurnLeft  and TurnRight  have a sub-labyrinth glued to them. When the player chooses say 
to turn right, we extend the thread with a TurnRight  and now attach the untaken left branch to it, so that it 
doesn't get lost."
Theseus interrupts, "Wait, how would I implement this behavior as a function turnRight ? And what about the 
first argument of type a for TurnRight ? Ah, I see. We not only need to glue the branch that would get lost, but 
also the extra data of the Fork  because it would otherwise get lost as well. So, we can generate a new branch by 
a preliminary"

"Now, we have to somehow extend the existing thread with it."
"Indeed. The second point about the thread is that it is stored backwards. To extend it, you put a new branch in 
front of the list. To go back, you delete the topmost element."
"Aha, this makes extending and going back take only constant time, not time proportional to the length as in my 
previous version. So the final version of turnRight  is"

type Zipper a = (Thread a, Node a)

The zipper is a pair of Ariadne's thread and 
the current sub-labyrinth that the player 

stands on top. The main thread is colored red
and has sub-labyrinths attached to it, such 

that the whole labyrinth can be reconstructed
from the pair.

data Branch a  = KeepStraightOn a
               | TurnLeft  a (Node a)
               | TurnRight a (Node a)
type Thread a  = [Branch a]

branchRight (Fork x l r) = TurnRight x l

turnRight :: Zipper a -> Maybe (Zipper a)
turnRight (t, Fork x l r) = Just (TurnRight x l : t , r)
turnRight _               = Nothing



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

173 of 290 11/5/2007 9:02 PM

"That was not too difficult. So let's continue with keepStraightOn  for going down a passage. This is even easier
than choosing a branch as we only need to keep the extra data:"

Exercises
Write the function turnLeft .

Pleased, he continued, "But the interesting part is to go back, of course. Let's see..."

"If the thread is empty, we're already at the entrance of the labyrinth and cannot go back. In all other cases, we 
have to wind up the thread. And thanks to the attachments to the thread, we can actually reconstruct the 
sub-labyrinth we came from."
Ariadne remarked, "Note that a partial test for correctness is to check that each bound variable like x, l  and r  on 
the left hand side appears exactly once at the right hands side as well. So, when walking up and down a zipper, 
we only redistribute data between the thread and the current sub-labyrinth."

Taking the right subtree from the entrance. Of course, the thread is initially empty. Note that the thread 
runs backwards, i.e. the topmost segment is the most recent.

keepStraightOn :: Zipper a -> Maybe (Zipper a)
keepStraightOn (t, Passage x n) = Just (KeepStraigh tOn x : t, n)
keepStraightOn _                = Nothing

Now going down a passage.

back :: Zipper a -> Maybe (Zipper a)
back ([]                   , _) = Nothing
back (KeepStraightOn x : t , n) = Just (t, Passage x n)
back (TurnLeft  x r    : t , l) = Just (t, Fork x l  r)
back (TurnRight x l    : t , r) = Just (t, Fork x l  r)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

174 of 290 11/5/2007 9:02 PM

Exercises

Now that we can navigate the zipper, code the functions get , put

and update  that operate on the extra data at the player's position.
1.

Zippers are by no means limited to the concrete example Node a , 
they can be constructed for all tree-like data types. Go on and 
construct a zipper for binary trees

Start by thinking about the possible branches Branch a  that a thread 
can take. What do you have to glue to the thread when exploring the 
tree?

2.

Simple lists have a zipper as well.

What does it look like?

3.

Write a complete game based on Theseus' labyrinth.4.

Heureka! That was the solution Theseus sought and Ancient Geeks Inc. should prevail, even if partially sold to 
Ariadne Consulting. But one question remained:
"Why is it called zipper?"
"Well, I would have called it 'Ariadne's pearl necklace'. But most likely, it's called zipper because the thread is in 
analogy to the open part and the sub-labyrinth is like the closed part of a zipper. Moving around in the data 
structure is analogous to zipping or unzipping the zipper."
"'Ariadne's pearl necklace'," he articulated disdainfully. "As if your thread was any help back then on Crete."
"As if the idea with the thread was yours," she replied.
"Bah, I need no thread," he defied the fact that he actually did need the thread to program the game.
Much to his surprise, she agreed, "Well, indeed you don't need a thread. Another view is to literally grab the tree
at the focus with your finger and lift it up in the air. The focus will be at the top and all other branches of the tree 
hang down. You only have to assign the resulting tree a suitable algebraic data type, most likely that of the 
zipper."

 data Tree a = Leaf a | Bin (Tree a) (Tree a)

 data List a = Empty | Cons a (List a)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

175 of 290 11/5/2007 9:02 PM

"Ah." He didn't need Ariadne's thread but he needed Ariadne to tell him? That was too much.
"Thank you, Ariadne, good bye."
She did not hide her smirk as he could not see it anyway through the phone.

Exercises

Take a list, fix one element in the middle with your finger and lift the list 
into the air. What type can you give to the resulting tree?

Half a year later, Theseus stopped in front of a shop window, defying the cold rain that tried to creep under his 
buttoned up anorak. Blinking letters announced

"Spider-Man: lost in the Web"

- find your way through the labyrinth of threads -
the great computer game by Ancient Geeks Inc.

He cursed the day when he called Ariadne and sold her a part of the company. Was it she who contrived the
unfriendly takeover by WineOS Corp., led by Ariadne's husband Dionysus? Theseus watched the raindrops
finding their way down the glass window. After the production line was changed, nobody would produce
Theseus and the Minotaur™ merchandise anymore. He sighed. His time, the time of heroes, was over. Now
came the super-heroes.

Differentiation of data types

The previous section has presented the zipper, a way to augment a tree-like data structure Node a  with a finger 
that can focus on the different subtrees. While we constructed a zipper for a particular data structure Node a , the 
construction can be easily adapted to different tree data structures by hand.

Exercises

Start with a ternary tree

Grab the focus with your finger, lift it in the air and the 
hanging branches will form new tree with your finger at the

top, ready to be structured by an algebraic data type.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

176 of 290 11/5/2007 9:02 PM

and derive the corresponding Thread a  and Zipper a .

Mechanical Differentiation

But there is also an entirely mechanical way to derive the zipper of any (suitably regular) data type. 
Surprisinigly, 'derive' is to be taken literally, for the zipper can obtained by the derivative of the data type, a 

discovery first described by Conor McBride[23]. The subsequent section is going to explicate this truly 
wonderful mathematical gem.

For a systematic construction, we need to calculate with types. The basics of structural calculations with types 
are outlined in a separate chapter Generic Programming and we will heavily rely on this material.

Let's look at some examples to see what their zippers have in common and how they hint differentiation. The 
type of binary tree is the fixed point of the recursive equation

.

When walking down the tree, we iteratively choose to enter the left or the right subtree and then glue the 
not-entered subtree to Ariadne's thread. Thus, the branches of our thread have the type

.

Similarly, the thread for a ternary tree

has branches of type

because at every step, we can choose between three subtrees and have to store the two subtrees we don't enter. 

Isn't this strikingly similar to the derivatives  and ?

The key to the mystery is the notion of the one-hole context of a data structure. Imagine a data structure 
parameterised over a type X, like the type of trees . If we were to remove one of the items of this type 
X from the structure and somehow mark the now empty position, we obtain a structure with a marked hole. The 
result is called "one-hole context" and inserting an item of type X into the hole gives back a completely filled 

. The hole acts as a distinguished position, a focus. The figures illustrate this.

 data Tree a = Leaf a | Node (Tree a) (Tree a) (Tre e a)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

177 of 290 11/5/2007 9:02 PM

Of course, we are interested in the type to give to a one-hole context, i.e. how to represent it in Haskell. The 
problem is how to efficiently mark the focus. But as we will see, finding a representation for one-hole contexts 
by induction on the structure of the type we want to take the one-hole context of automatically leads to an 

efficient data type[24]. So, given a data structure  with a functor F and an argument type X, we want to 
calculate the type  of one-hole contexts from the structure of F. As our choice of notation  already 
reveals, the rules for constructing one-hole contexts of sums, products and compositions are exactly Leibniz' 
rules for differentiation.

One-hole context Illustration

There is no X in , so the type of its one-hole 
contexts must be empty.

There is only one position for items X in . 
Removing one X leaves no X in the result. And as there is only 
one position we can remove it from, there is exactly one 
one-hole context for . Thus, the type of one-hole 
contexts is the singleton type.

As an element of type F + G is either of type F or of type G, a 
one-hole context is also either  or .

The hole in a one-hole context of a pair is either in the first or 
in the second component.

Removing a value of type X from a 
leaves a hole at that position.

A more abstract illustration of plugging X into a one-hole 
context.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

178 of 290 11/5/2007 9:02 PM

Chain rule. The hole in a composition arises by making a 
hole in the enclosing structure and fitting the enclosed 
structure in.

Of course, the function plug  that fills a hole has the type .

So far, the syntax  denotes the differentiation of functors, i.e. of a kind of type functions with one argument. 
But there is also a handy expression oriented notation  slightly more suitable for calculation. The subscript 
indicates the variable with respect to which we want to differentiate. In general, we have

An example is

Of course,  is just point-wise whereas  is point-free style.

Exercises

Rewrite some rules in point-wise style. For example, the left hand 
side of the product rule becomes .

1.

To get familiar with one-hole contexts, differentiate the product 
 of exactly n factors formally and 

convince yourself that the result is indeed the corresponding 
one-hole context.

2.

Of course, one-hole contexts are useless if we cannot plug values of 
type X back into them. Write the plug  functions corresponding to the 
five rules.

3.

Formulate the chain rule for two variables and prove that it yields 
one-hole contexts. You can do this by viewing a bifunctor 
as an normal functor in the pair (X,Y). Of course, you may need a 
handy notation for partial derivatives of bifunctors in point-free 
style.

4.

Zippers via Differentiation



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

179 of 290 11/5/2007 9:02 PM

The above rules enable us to construct zippers for recursive data types  where F is a 
polynomial functor. A zipper is a focus on a particular subtree, i.e. substructure of type µF inside a large tree of 
the same type. As in the previous chapter, it can be represented by the subtree we want to focus at and the 
thread, that is the context in which the subtree resides

.

Now, the context is a series of steps each of which chooses a particular subtree µF among those in . 

Thus, the unchosen subtrees are collected together by the one-hole context . The hole of this context 

comes from removing the subtree we've chosen to enter. Putting things together, we have

.

or equivalently

.

To illustrate how a concrete calculation proceeds, let's systematically construct the zipper for our labyrinth data 
type

This recursive type is the fixed point

of the functor

.

In other words, we have

.

The derivative reads

and we get

.

Thus, the context reads

.

Comparing with

data Node a = DeadEnd a
            | Passage a (Node a)
            | Fork a (Node a) (Node a)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

180 of 290 11/5/2007 9:02 PM

we see that both are exactly the same as expected!

Exercises

Redo the zipper for a ternary tree, but with differentiation this time.1.
Construct the zipper for a list.2.
Rhetorical question concerning the previous exercise: what's the 
difference between a list and a stack?

3.

Differentation of Fixed Point

There is more to data types than sums and products, we also have a fixed point operator with no direct 
correspondence in calculus. Consequently, the table is missing a rule of differentiation, namely how to 
differentiate fixed points :

.

As its formulation involves the chain rule in two variables, we delegate it to the exercises. Instead, we will 
calculate it for our concrete example type :

Of course, expanding  further is of no use, but we can see this as a fixed point equation and arrive 
at

with the abbreviations

and

.

The recursive type is like a list with element types , only that the empty list is replaced by a base case of 
type . But given that the list is finite, we can replace the base case with 1 and pull  out of the list:

.

Comparing with the zipper we derived in the last paragraph, we see that the list type is our context

data Branch a  = KeepStraightOn a
               | TurnLeft  a (Node a)
               | TurnRight a (Node a)
data Thread a  = [Branch a]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

181 of 290 11/5/2007 9:02 PM

and that

.

In the end, we have

.

Thus, differentiating our concrete example  with respect to A yields the zipper up to an A!

Exercises

Use the chain rule in two variables to formulate a rule for the 
differentiation of a fixed point.

1.

Maybe you know that there are inductive (µ) and coinductive fixed 
points (ν). What's the rule for coinductive fixed points?

2.

Zippers vs Contexts

In general however, zippers and one-hole contexts denote different things. The zipper is a focus on arbitrary 
subtrees whereas a one-hole context can only focus on the argument of a type constructor. Take for example the 
data type

which is the fixed point

.

The zipper can focus on subtrees whose top is Bin  or Leaf  but the hole of one-hole context of  may only
focus a Leaf s because this is where the items of type A reside. The derivative of  only turned out to be 
the zipper because every top of a subtree is always decorated with an A.

Exercises

Surprisingly,  and the zipper for  again 
turn out to be the same type. Doing the calculation is not difficult 
but can you give a reason why this has to be the case?

1.

Prove that the zipper construction for µF can be obtained by 
introducing an auxiliary variable Y, differentiating 
with respect to it and re-substituting Y = 1. Why does this work?

2.

Find a type  whose zipper is different from the one-hole 
context.

3.

Conclusion

 data Tree a = Leaf a | Bin (Tree a) (Tree a)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

182 of 290 11/5/2007 9:02 PM

We close this section by asking how it may happen that rules from calculus appear in a discrete setting. 
Currently, nobody knows. But at least, there is a discrete notion of linear, namely in the sense of "exactly once". 
The key feature of the function that plugs an item of type X into the hole of a one-hole context is the fact that the 
item is used exactly once, i.e. linearly. We may think of the plugging map as having type

where  denotes a linear function, one that does not duplicate or ignore its argument like in linear logic. 
In a sense, the one-hole context is a representation of the function space , which can be thought of 
being a linear approximation to .

Notes

↑ At least as far as types are concerned, but we're trying to avoid that word :)1.
↑ More technically, fst  and snd  have types which limit them to pairs. It would be impossible to define 
projection functions on tuples in general, because they'd have to be able to accept tuples of different sizes, 
so the type of the function would vary.

2.

↑ In fact, these are one and the same concept in Haskell.3.
↑ This isn't quite what chr  and ord  do, but that description fits our purposes well, and it's close enough.4.
↑ To make things even more confusing, there's actually even more than one type for integers! Don't worry,
we'll come on to this in due course.

5.

↑ This has been somewhat simplified to fit our purposes. Don't worry, the essence of the function is there.6.
↑ Some of the newer type system extensions to GHC do break this, however, so you're better off just 
always putting down types anyway.

7.

↑ This is a slight lie. That type signature would mean that you can compare two values of any type 
whatsoever, but this clearly isn't true: how can you see if two functions are equal? Haskell includes a kind 
of 'restricted polymorphism' that allows type variables to range over some, but not all types. Haskell 
implements this using type classes, which we'll learn about later. In this case, the correct type of (==)  is Eq 

a => a -> a -> Bool .

8.

↑ In mathematics, n! normally means the factorial of n, but that syntax is impossible in Haskell, so we 
don't use it here.

9.

↑ Actually, defining the factorial of 0 to be 1 is not just arbitrary; it's because the factorial of 0 represents 
an empty product.

10.

↑ This is no coincidence; without mutable variables, recursion is the only way to implement control 
structures. This might sound like a limitation until you get used to it (it isn't, really).

11.

↑ Actually, it's using a function called foldl , which actually does the recursion.12.
↑ Moggi, Eugenio (1991). "Notions of Computation and Monads". Information and Computation 93 (1).13.
↑ w:Philip Wadler. Comprehending Monads (http://citeseer.ist.psu.edu/wadler92comprehending.html) . 
Proceedings of the 1990 ACM Conference on LISP and Functional Programming, Nice. 1990.

14.

↑ w:Philip Wadler. The Essence of Functional Programming
(http://citeseer.ist.psu.edu/wadler92essence.html) . Conference Record of the Nineteenth Annual ACM 
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 1992.

15.

↑ Simon Peyton Jones, Philip Wadler (1993). "Imperative functional programming"
(http://homepages.inf.ed.ac.uk/wadler/topics/monads.html#imperative) . 20'th Symposium on Principles of
Programming Languages.

16.

↑ It infers a monomorphic type because k is bound by a lambda expression, and things bound by lambdas 
always have monomorphic types. See Polymorphism.

17.

↑ Ian Stewart. The true story of how Theseus found his way out of the labyrinth. Scientific American, 
February 1991, page 137.

18.

↑ Gérard Huet. The Zipper. Journal of Functional Programming, 7 (5), Sept 1997, pp. 549--554. PDF
(http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf) 

19.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

183 of 290 11/5/2007 9:02 PM

↑ Note the notion of zipper as coined by Gérard Huet also allows to replace whole subtrees even if there is
no extra data associated with them. In the case of our labyrinth, this is irrelevant. We will come back to 
this in the section Differentiation of data types.

20.

↑ Of course, the second topmost node or any other node at most a constant number of links away from the 
top will do as well.

21.

↑ Note that changing the whole data structure as opposed to updating the data at a node can be achieved in
amortized constant time even if more nodes than just the top node is affected. An example is incrementing
a number in binary representation. While incrementing say 111..11  must touch all digits to yield 
1000..00 , the increment function nevertheless runs in constant amortized time (but not in constant worst 
case time).

22.

↑ Conor Mc Bride. The Derivative of a Regular Type is its Type of One-Hole Contexts. Available online. 
PDF (http://www.cs.nott.ac.uk/~ctm/diff.pdf) 

23.

↑ This phenomenon already shows up with generic tries.24.

See Also

Zipper (http://www.haskell.org/haskellwiki/Zipper) on the haskell.org wiki
Generic Zipper and its applications (http://okmij.org/ftp/Computation/Continuations.html#zipper) 
Zipper-based file server/OS (http://okmij.org/ftp/Computation/Continuations.html#zipper-fs) 

Fun with Types

Existentially quantified types
Existential types, or 'existentials' for short, are a way of 'squashing' a group of types into one, single type.

Firstly, a note to those of you following along at home: existentials are part of GHC's type system extensions. 
They aren't part of Haskell98, and as such you'll have to either compile any code that contains them with an 
extra command-line parameter of -fglasgow-exts , or put {-# LANGUAGE ExistentialQuantification #-}  at 
the top of your sources that use existentials.

The forall keyword

The forall  keyword is used to explicitly bring type variables into scope. For example, consider something 
you've innocuously seen written a hundred times so far:

Example: A polymorphic function

map :: (a -> b) -> [a] -> [b]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

184 of 290 11/5/2007 9:02 PM

But what are these a and b? Well, they're type variables, you answer. The compiler sees that they begin with a 
lowercase letter and as such allows any type to fill that role. Another way of putting this is that those variables 
are 'universally quantified'. If you've studied formal logic, you will have undoubtedly come across the 
quantifiers: 'for all' (or ) and 'exists' (or ). They 'quantify' whatever comes after them: for example, 
(where P is any assertion. For example, P could be x > 5) means that there is at least one x such that P. 
means that for every x you could imagine, P.

The forall  keyword quantifies types in a similar way. We would rewrite map's type as follows:

Example: Explicitly quantifying the type variables

The forall  can be seen to be 'bringing the type variables a and b into scope'. In Haskell, any use of a lowercase 
type implicitly begins with a forall  keyword, so the two type declarations for map are equivalent, as are the 
declarations below:

Example: Two equivalent type statements

What makes life really interesting is that you can override this default behaviour by explicitly telling Haskell 
where the forall  keyword goes. One use of this is for building existentially quantified types, also known as 
existential types, or simply existentials.

But wait... isn't forall  the universal quantifier? How do you get an existential type out of that? We look at this 
in a later section. However, first, let's see an example of the power of existential types in action.

Example: heterogeneous lists

Haskell's typeclass system is powerful because it allows extensible groupings of types. So if you know a type 
instantiates some class C, you know certain things about that type. For example, Int  instantiates Eq, so we know 
that Int s can be compared for equality.

Suppose we have a group of values. We don't know if they are all the same type, but we do know they all 
instantiate some class, i.e. we know we can do a certain thing with all the values (like compare them for equality
were the class Eq). It might be useful to throw all these values into a list. We can't do this normally because lists 
are homogeneous with respect to types: they can only contain a single type. However, existential types allow us 
to loosen this requirement by defining a 'type hider' or 'type box':

map :: forall a b. (a -> b) -> [a] -> [b]

id :: a -> a
id :: forall a . a -> a



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

185 of 290 11/5/2007 9:02 PM

Since you can get 
existential types 
with forall , 
Haskell forgoes 
the use of an 
exists  keyword, 
which would just 

Example: Constructing a heterogeneous list

Now we know something about all the elements of this list: they can be converted to a string via show. In fact, 
that's pretty much the only thing we know about them.

Example: Using our heterogeneous list

How does this work? In the definition of show for ShowBox, we don't know the type of s: when we originally 
wrapped the value, it didn't matter what its type was (as long as it was an instance of Show), so its type has been 
forgotten. We do know that the type is an instance of Show due to the constraint on the SB constructor. 
Therefore, it's legal to use the function show on s, as seen in the right-hand side of the function definition.

As for main , recall the type of print:

Example: Types of the functions involved

As we just declared ShowBox an instance of Show, we can print the values in the list.

True existential types

Let's get back to the question we asked ourselves a couple of sections back. Why 
are we calling these existential types if forall  is the universal quantifier?

Firstly, forall  really does mean 'for all'. One way of thinking about types is as sets
of values with that type, for example, Bool is the set {True, False, } (remember 
that bottom (often written ) is a member of every type!), Integer is the set of 
integers (and bottom), String the set of all possible strings (and bottom), and so on.
forall  serves as an intersection over those sets. For example, forall a. a  is the 
intersection over all types, { }, that is, the type (i.e. set) whose only value (i.e. 
element) is bottom. Why? Think about it: how many of the elements of Bool 

 data ShowBox = forall s. Show s => SB s
 
 hetroList :: [ShowBox]
 hetroList = [SB (), SB 5, SB True]

 instance Show ShowBox where
  show (SB s) = show s
 
 main :: IO ()
 main = mapM_ print hetroList

 print :: Show s => s -> IO () -- print x = putStrL n (show x)
 mapM_ :: (a -> m b) -> [a] -> m ()
 mapM_ print :: Show s => [s] -> IO ()



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

186 of 290 11/5/2007 9:02 PM

be redundant.appear in String? Bottom is the only value common to all types.

A few more examples:

[forall a. a]  is the type of a list whose elements all have the type forall a. a , i.e. a list of bottoms.1.
[forall a. Show a => a]  is the type of a list whose elements all have the type forall a. Show a => 

a. The Show class constraint limits the sets you intersect over (here we're only intersect over instances of 
Show), but  is still the only value common to all these types, so this too is a list of bottoms.

2.

[forall a. Num a => a] . Again, the list where each element is a member of all types that instantiate 
Num. This could involve numeric literals, which have the type forall a. Num a => a , as well as bottom.

3.

forall a. [a]  is the type of the list whose elements have some (the same) type a, which can be assumed 
to be any type at all by a callee (and therefore this too is a list of bottoms).

4.

In the last section, we developed a heterogeneous list using a 'type hider'. Conceptually, the type of a 
heterogeneous list is [exists a. a] , i.e. the list where all elements have type exists a. a . This 'exists ' 
keyword (which isn't present in Haskell) is, as you may guess, a union of types. Therefore the aforementioned 
type is that of a list where all elements could take any type at all (and the types of different elements needn't be 
the same).

We can't get the same behaviour using forall s except by using the approach we showed above: datatypes. Let's 
declare one.

Example: An existential datatype

This means that:

Example: The type of our existential constructor

So we can pass any type we want to MkT and it'll convert it into a T. So what happens when we deconstruct a MkT

value?

Example: Pattern matching on our existential constructor

As we've just stated, x could be of any type. That means it's a member of some arbitrary type, so has the type 
x :: exists a. a . In other words, our declaration for T is isomorphic to the following one:

 data T = forall a. MkT a

MkT :: forall a. a -> T

 foo (MkT x) = ... -- what is the type of x?



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

187 of 290 11/5/2007 9:02 PM

Example: An equivalent version of our existential datatype (pseudo-Haskell)

And suddenly we have existential types. Now we can make a heterogeneous list:

Example: Constructing the hetereogeneous list

Of course, when we pattern match on heteroList  we can't do anything with its elements[25], as all we know is 
that they have some arbitrary type. However, if we are to introduce class constraints:

Example: A new existential datatype, with a class constraint

Which is isomorphic to:

Example: The new datatype, translated into 'true' existential types

Again the class constraint serves to limit the types we're unioning over, so that now we know the values inside a 
MkT'  are elements of some arbitrary type which instantiates Show. The implication of this is that we can apply 
show to a value of type exists a. Show a => a . It doesn't matter exactly which type it turns out to be.

Example: Using our new heterogenous setup

 data T = MkT (exists a. a)

 heteroList = [MkT 5, MkT (), MkT True, MkT map]

 data T' = forall a. Show a => MkT' a

 data T' = MkT' (exists a. Show a => a)

 heteroList' = [MkT' 5, MkT' (), MkT' True]
 main = mapM_ (\(MkT' x) -> print x) heteroList'

 {- prints:
 5
 ()
 True
 -}



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

188 of 290 11/5/2007 9:02 PM

To summarise, the interaction of the universal quantifier with datatypes produces existential types. As most 
interesting applications of forall -involving types use this interaction, we label such types 'existential'.

Example: runST

One monad that you haven't come across so far is the ST monad. This is essentially the State  monad on 
steroids: it has a much more complicated structure and involves some more advanced topics. It was originally 
written to provide Haskell with IO. As we mentioned in the Understanding monads chapter, IO is basically just a 
State monad with an environment of all the information about the real world. In fact, inside GHC at least, ST is 
used, and the environment is a type called RealWorld .

To get out of the State monad, you can use runState . The analogous function for ST is called runST , and it has a 
rather particular type:

Example: The runST  function

This is actually an example of a more complicated language feature called rank-2 polymorphism, which we don't
go into detail here. It's important to notice that there is no parameter for the initial state. Indeed, ST uses a 
different notion of state to State; while State allows you to get  and put  the current state, ST provides an 
interface to references. You create references, which have type STRef , with newSTRef :: a -> ST s (STRef s

a) , providing an initial value, then you can use readSTRef :: STRef s a -> ST s a  and writeSTRef ::

STRef s a -> a -> ST s ()  to manipulate them. As such, the internal environment of a ST computation is not 
one specific value, but a mapping from references to values. Therefore, you don't need to provide an initial state 
to runST, as the initial state is just the empty mapping containing no references.

However, things aren't quite as simple as this. What stops you creating a reference in one ST computation, then 
using it in another? We don't want to allow this because (for reasons of thread-safety) no ST computation should
be allowed to assume that the initial internal environment contains any specific references. More concretely, we 
want the following code to be invalid:

Example: Bad ST code

What would prevent this? The effect of the rank-2 polymorphism in runST 's type is to constrain the scope of the 
type variable s to be within the first parameter. In other words, if the type variable s appears in the first 
parameter it cannot also appear in the second. Let's take a look at how exactly this is done. Say we have some 
code like the following:

runST :: forall a. (forall s. ST s a) -> a

 let v = runST (newSTRef True)
 in runST (readSTRef v)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

189 of 290 11/5/2007 9:02 PM

Example: Briefer bad ST code

The compiler tries to fit the types together:

Example: The compiler's typechecking stage

The importance of the forall  in the first bracket is that we can change the name of the s. That is, we could 
write:

Example: A type mismatch!

This makes sense: in mathematics, saying  is precisely the same as saying ; you're just 
giving the variable a different label. However, we have a problem with our above code. Notice that as the 
forall  does not scope over the return type of runST , we don't rename the s there as well. But suddenly, we've 
got a type mismatch! The result type of the ST computation in the first parameter must match the result type of 
runST , but now it doesn't!

The key feature of the existential is that it allows the compiler to generalise the type of the state in the first 
parameter, and so the result type cannot depend on it. This neatly sidesteps our dependence problems, and 
'compartmentalises' each call to runST  into its own little heap, with references not being able to be shared 
between different calls.

Further reading

GHC's user guide contains useful information
(http://haskell.org/ghc/docs/latest/html/users_guide/type-extensions.html#existential-quantification) on 
existentials, including the various limitations placed on them (which you should know about).
Lazy Functional State Threads (http://citeseer.ist.psu.edu/launchbury94lazy.html) , by Simon 
Peyton-Jones and John Launchbury, is a paper which explains more fully the ideas behind ST.

Polymorphism

... runST (newSTRef True) ...

newSTRef True :: forall s. ST s (STRef s Bool)
runST :: forall a. (forall s. ST s a) -> a
together, forall a. (forall s. ST s (STRef s Bool))  -> STRef s Bool

together, forall a. (forall s'. ST s' (STRef s' Boo l)) -> STRef s Bool



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

190 of 290 11/5/2007 9:02 PM

Terms depending on types

Ad-hoc and parametric polymorphism

Polymorphism in Haskell

Higher-rank polymorphism

Advanced type classes
Type classes may seem innocuous, but research on the subject has resulted in several advancements and 
generalisations which make them a very powerful tool.

Multi-parameter type classes

Multi-parameter type classes are a generalisation of the single parameter type classes, and are supported by some
Haskell implementations.

Suppose we wanted to create a 'Collection' type class that could be used with a variety of concrete data types, 
and supports two operations -- 'insert' for adding elements, and 'member' for testing membership. A first attempt 
might look like this:

This won't compile, however. The problem is that the 'e' type variable in the Collection operations comes from 
nowhere -- there is nothing in the type of an instance of Collection that will tell us what the 'e' actually is, so we 
can never define implementations of these methods. Multi-parameter type classes solve this by allowing us to 
put 'e' into the type of the class. Here is an example that compiles and can be used:

Functional dependencies

class Collection c where
    insert :: c -> e -> c
    member :: c -> e -> Bool

-- Make lists an instance of Collection:
instance Collection [a] where
    insert xs x = x:xs
    member = flip elem

class Eq e => Collection c e where
    insert :: c -> e -> c
    member :: c -> e -> Bool

instance Eq a => Collection [a] a where
    insert = flip (:)
    member = flip elem



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

191 of 290 11/5/2007 9:02 PM

A problem with the above example is that, in this case, we have extra information that the compiler doesn't 
know, which can lead to false ambiguities and over-generalised function signatures. In this case, we can see 
intuitively that the type of the collection will always determine the type of the element it contains - so if c is [a] , 
then e will be a. If c is Hashmap a , then e will be a. (The reverse is not true: many different collection types can 
hold the same element type, so knowing the element type was e.g. Int , would not tell you the collection type).

In order to tell the compiler this information, we add a functional dependency, changing the class declaration to

A functional dependency is a constraint that we can place on type class parameters. Here, the extra | c -> e

should be read 'c uniquely identifies e', meaning for a given c, there will only be one e. You can have more than 
one functional dependency in a class -- for example you could have c -> e, e -> c  in the above case. And you
can have more than two parameters in multi-parameter classes.

Examples

Matrices and vectors

Suppose you want to implement some code to perform simple linear algebra:

You want these to behave as much like numbers as possible. So you might start by overloading Haskell's Num 
class:

The problem comes when you want to start multiplying quantities. You really need a multiplication function 
which overloads to different types:

How do we specify a type class which allows all these possibilities?

We could try this:

class Eq e => Collection c e | c -> e where ...

data Vector = Vector Int Int deriving (Eq, Show)
data Matrix = Matrix Vector Vector deriving (Eq, Sh ow)

instance Num Vector where
  Vector a1 b1 + Vector a2 b2 = Vector (a1+a2) (b1+ b2)
  Vector a1 b1 - Vector a2 b2 = Vector (a1-a2) (b1- b2)
  {- ... and so on ... -}

instance Num Matrix where
  Matrix a1 b1 + Matrix a2 b2 = Matrix (a1+a2) (b1+ b2)
  Matrix a1 b1 - Matrix a2 b2 = Matrix (a1-a2) (b1- b2)
  {- ... and so on ... -}

(*) :: Matrix -> Matrix -> Matrix
(*) :: Matrix -> Vector -> Vector
(*) :: Matrix -> Int -> Matrix
(*) :: Int -> Matrix -> Matrix
{- ... and so on ... -}



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

192 of 290 11/5/2007 9:02 PM

That, however, isn't really what we want. As it stands, even a simple expression like this has an ambiguous type 
unless you supply an additional type declaration on the intermediate expression:

After all, nothing is stopping someone from coming along later and adding another instance:

The problem is that c shouldn't really be a free type variable. When you know the types of the things that you're 
multiplying, the result type should be determined from that information alone.

You can express this by specifying a functional dependency:

This tells Haskell that c is uniquely determined from a and b.

At least part of this page was imported from the Haskell wiki article Functional 
depedencies (http://www.haskell.org/haskellwiki/Functional_dependencies) , in 
accordance to its Simple Permissive License. If you wish to modify this page 
and if your changes will also be useful on that wiki, you might consider 
modifying that source page instead of this one, as changes from that page may 
propagate here, but not the other way around. Alternately, you can explicitly 
dual license your contributions under the Simple Permissive License.

Phantom types
Phantom types are a way to embed a language with a stronger type system than Haskell's. FIXME: that's about 

class Mult a b c where
  (*) :: a -> b -> c

instance Mult Matrix Matrix Matrix where
  {- ... -}

instance Mult Matrix Vector Vector where
  {- ... -}

m1, m2, m3 :: Matrix
(m1 * m2) * m3              -- type error; type of (m1*m2) is ambiguous
(m1 * m2) :: Matrix * m3    -- this is ok

instance Mult Matrix Matrix (Maybe Char) where
  {- whatever -}

class Mult a b c | a b -> c where
  (*) :: a -> b -> c



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

193 of 290 11/5/2007 9:02 PM

all I know, and it's probably wrong. :) I'm yet to be convinced of PT's usefulness, I'm not sure they should have
such a prominent position. DavidHouse 17:42, 1 July 2006 (UTC)

Phantom types

An ordinary type

its phantom type version

Nothing's changed - just a new argument a that we don't touch. But magic!

Now we can enforce a little bit more!

This is useful if you want to increase the type-safety of your code, but not impose additional runtime overhead:

GADT

Introduction

Explain what a GADT (Generalised Algebraic Datatype) is, and what it's for

data T = TI Int | TS String

plus :: T -> T -> T
concat :: T -> T -> T

data T a = TI Int | TS String

plus :: T Int -> T Int -> T Int
concat :: T String -> T String -> T String

-- Peano numbers at the type level.
data Zero = Zero
data Succ a = Succ a
-- Example: 3 can be modeled as the type
-- Succ (Succ (Succ Zero)))

data Vector n a = Vector [a] deriving (Eq, Show)

vector2d :: Vector (Succ (Succ Zero)) Int
vector2d = Vector [1,2]

vector3d :: Vector (Succ (Succ (Succ Zero))) Int
vector3d = Vector [1,2,3]

-- vector2d == vector3d raises a type error
-- at compile-time, while vector2d == Vector [2,3] works.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

194 of 290 11/5/2007 9:02 PM

GADT-style syntax

Before getting into GADT-proper, let's start out by getting used to the new syntax. Here is a representation for 
the familiar List  type in both normal Haskell style and the new GADT one:

normal style GADT style

Up to this point, we have not introduced any new capabilities, just a little new syntax. Strictly speaking, we are 
not working with GADTs yet, but GADT syntax. The new syntax should be very familiar to you in that it closely
resembles typeclass declarations. It should also be easy to remember if you like to think of constructors as just 
being functions. Each constructor is just defined like a type signature for any old function.

What GADTs give us

Given a data type Foo a , a constructor for Foo is merely a function that takes some number of arguments and 
gives you back a Foo a . So what do GADTs add for us? The ability to control exactly what kind of Foo you 
return. With GADTs, a constructor for Foo a  is not obliged to return Foo a ; it can return any Foo ???  that you 
can think of. In the code sample below, for instance, the GadtedFoo  constructor returns a GadtedFoo Int  even 
though it is for the type GadtedFoo x .

Example: GADT gives you more control

But note that you can only push the idea so far... if your datatype is a Foo, you must return some kind of Foo or 
another. Returning anything else simply wouldn't work

Example: Try this out. It doesn't work

Safe Lists

data List x =
 Nil  |
 Cons x (List x)

data List x where
 Nil  :: List x
 Cons :: x -> List x -> List x

data BoringFoo x where
 MkBoringFoo :: x -> BoringFoo x

data GadtedFoo x where
 MkGadtedFoo :: x -> GadtedFoo Int

data Bar where
  MkBar :: Bar -- This is ok

data Foo where
  MkFoo :: Bar -- This is bad



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

195 of 290 11/5/2007 9:02 PM

Prerequisite: We assume in this section that you know how a List tends to be represented in functional 
languages

We've now gotten a glimpse of the extra control given to us by the GADT syntax. The only thing new is that you
can control exactly what kind of data structure you return. Now, what can we use it for? Consider the humble 
Haskell list. What happens when you invoke head [] ? Haskell blows up. Have you ever wished you could have 
a magical version of head  that only accepts lists with at least one element, lists on which it will never blow up?

To begin with, let's define a new type, SafeList x y . The idea is to have something similar to normal Haskell 
lists [x] , but with a little extra information in the type. This extra information (the type variable y) tells us 
whether or not the list is empty. Empty lists are represented as SafeList x Empty , whereas non-empty lists are 
represented as SafeList x NonEmpty .

Since we have this extra information, we can now define a function safeHead  on only the non-empty lists! 
Calling safeHead  on an empty list would simply refuse to type-check.

So now that we know what we want, safeHead , how do we actually go about getting it? The answer is GADT. 
The key is that we take advantage of the GADT feature to return two different kinds of lists, SafeList x Empty

for the Nil  constructor, and SafeList x NonEmpty  for the Cons constructors respectively:

This wouldn't have been possible without GADT, because all of our constructors would have been required to 
return the same type of list; whereas with GADT we can now return different types of lists with different 
constructors. Anyway, let's put this altogether, along with the actual definition of SafeList :

Example: safe lists via GADT

-- we have to define these types
data Empty
data NonEmpty

-- the idea is that you can have either 
--    SafeList x Empty
-- or SafeList x NonEmpty
data SafeList x y where
-- to be implemented

safeHead :: SafeList x NonEmpty -> x

data SafeList x y where
  Nil  :: SafeList x Empty
  Cons :: x -> SafeList x y -> SafeList x NonEmpty

data Empty
data NonEmpty

data SafeList x y where
     Nil :: SafeList x Empty
     Cons:: x -> SafeList x y  -> SafeList x NonEmp ty

safeHead :: SafeList x NonEmpty -> x
safeHead (Cons x _) = x



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

196 of 290 11/5/2007 9:02 PM

Copy this listing into a file and load in ghci -fglasgow-exts . You should notice the following difference, 
calling safeHead  on an non-empty and an empty-list respectively:

Example: safeHead  is... safe

This complaint is a good thing: it means that we can now ensure during compile-time if we're calling safeHead

on an appropriate list. However, this is a potential pitfall that you'll want to look out for.

Consider the following function. What do you think its type is?

Example: Trouble with GADTs

Now try loading the example up in GHCi. You'll notice the following complaint:

Example: Trouble with GADTs - the complaint

FIXME: insert discussion

Exercises

Could you implement a safeTail  function?1.

A simple expression evaluator

Insert the example used in Wobbly Types paper... I thought that was quite pedagogical

Prelude Main> safeHead (Cons "hi" Nil)
"hi"
Prelude Main> safeHead Nil

<interactive>:1:9:
    Couldn't match `NonEmpty' against `Empty'
      Expected type: SafeList a NonEmpty
      Inferred type: SafeList a Empty
    In the first argument of `safeHead', namely `Ni l'
    In the definition of `it': it = safeHead Nil

silly 0 = Nil
silly 1 = Cons 1 Nil

Couldn't match `Empty' against `NonEmpty'
     Expected type: SafeList a Empty
     Inferred type: SafeList a NonEmpty
   In the application `Cons 1 Nil'
   In the definition of `silly': silly 1 = Cons 1 N il



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

197 of 290 11/5/2007 9:02 PM

Discussion

More examples, thoughts

From FOSDEM 2006, I vaguely recall that there is some relationship between GADT and the below... 
what?

Phantom types

Existential types

If you like Existentially quantified types, you'd probably want to notice that they are now subsumbed by GADTs.
As the GHC manual says, the following two type declarations give you the same thing.

Heterogeneous lists are accomplished with GADTs like this:

Witness types

References

At least part of this page was imported from the Haskell wiki article Generalised 
algebraic datatype
(http://www.haskell.org/haskellwiki/Generalised_algebraic_datatype) , in 
accordance to its Simple Permissive License. If you wish to modify this page 
and if your changes will also be useful on that wiki, you might consider 
modifying that source page instead of this one, as changes from that page may 
propagate here, but not the other way around. Alternately, you can explicitly 
dual license your contributions under the Simple Permissive License.

Wider Theory

 data TE a = forall b. MkTE b (b->a)
 data TG a where { MkTG :: b -> (b->a) -> TG a }

 data TE2 = forall b. Show b => MkTE2 [b]
 data TG2 where
   MkTG2 :: Show b => [b] -> TG2



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

198 of 290 11/5/2007 9:02 PM

Denotational semantics

New readers: Please report stumbling blocks! While the material on this page 
is intended to explain clearly, there are always mental traps that innocent readers 
new to the subject fall in but that the authors are not aware of. Please report any 
tricky passages to the Talk page or the #haskell IRC channel so that the style of 
exposition can be improved.

Introduction

This chapter explains how to formalize the meaning of Haskell programs, the denotational semantics. It may 
seem to be nit-picking to formally specify that the program square x = x*x  means the same as the 
mathematical square function that maps each number to its square, but what about the meaning of a program like
f x = f (x+1)  that loops forever? In the following, we will exemplify the approach first taken by Scott and 
Strachey to this question and obtain a foundation to reason about the correctness of functional programs in 
general and recursive definitions in particular. Of course, we will concentrate on those topics needed to 

understand Haskell programs[26].

Another aim of this chapter is to illustrate the notions strict  and lazy that capture the idea that a function needs 
or needs not to evaluate its argument. This is a basic ingredient to predict the course of evaluation of Haskell 
programs and hence of primary interest to the programmer. Interestingly, these notions can be formulated 
consisely with denotational semantics alone, no reference to an execution model is necessary. They will be put 
to good use in Graph Reduction, but it is this chapter that will familiarize the reader with the denotational
definition and involved notions such as ⊥ ("Bottom"). The reader only interested in strictness may wish to poke
around in section Bottom and Partial Functions and quickly head over to Strict and Non-Strict Semantics.

What are Denotational Semantics and what are they for?

What does a Haskell program mean? This question is answered by the denotational semantics of Haskell. In 
general, the denotational semantics of a programming language map each of its programs to a mathematical 
object, the meaning of the program in question. As an example, the mathematical object for the Haskell 
programs 10, 9+1 , 2*5  and sum [1..4]  is likely to be the integer 10. We say that all those programs denote the 
integer 10. The collection of mathematical objects is called the semantic domain.

The mapping from program codes to a semantic domain is commonly written down with double square brackets 
(Wikibooks doesn't seem to support \llbrackets in math formulas...) as

It is compositional, i.e. the meaning of a program like 1+9  only depends on the meaning of its constituents:

The same notation is used for types, i.e.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

199 of 290 11/5/2007 9:02 PM

For simplicity however, we will silently identify expressions with their semantic objects in subsequent chapters 
and use this notation only when clarification is needed.

It is one of the key properties of purely functional languages like Haskell that a direct mathematical 
interpretation like "1+9  denotes 10" carries over to functions, too: in essence, the denotation of a program of 
type Integer -> Integer  is a mathematical function  between integers. While we will see that this 
needs refinement to include non-termination, the situation for imperative languages is clearly worse: a 
procedure with that type denotes something that changes the state of a machine in possibly unintended ways. 
Imperative languages are tied tightly to an operational semantics which describes how they are executed on a 
machine. It is possible to define a denotational semantics for imperative programs and to use it to reason about 
such programs, but the semantics often has an operational nature and sometimes must extend on the denotational

semantics for functional languages.[27] In contrast, the meaning of purely functional languages is by default
completely independent from their execution. The Haskell98 standard even goes as far as to only specify 
Haskell's non-strict denotational semantics and leaving open how to implement them.

In the end, denotational semantics enables us to develop formal proofs that programs indeed do what we want 
them to do mathematically. Ironically, for proving program properties in day-to-day Haskell, one can use 
Equational reasoning which transform programs into equivalent ones without seeing much of the underlying 
mathematical objects we are concentrating on in this chapter. But the denotational semantics actually show up 
whenever we have to reason about non-terminating programs, for instance in Infinite Lists.

Of course, because they only state what a program is, denotational semantics cannot answer questions about how
long a program takes or how much memory it eats. This is governed by the evaluation strategy which dictates 
how the computer calculates the normal form of an expression. But on the other hand, the implementation has to
respect the semantics and to a certain extend, they determine how Haskell programs must to be evaluated on a 
machine. We will elaborate this in Strict and Non-Strict Semantics.

What to choose as Semantic Domain?

We are now looking for suitable mathematical objects that we can attribute to every Haskell program. In case of 
the example 10, 2*5  and sum [1..4] , it is clear that all expressions should denote the integer 10. Generalizing, 
every value x of type Integer  is likely to be an element of the set . The same can be done with values of type 
Bool . For functions like f :: Integer -> Integer , we can appeal to the mathematical definition of "function" 
as a set of (argument,value)-pairs, its graph.

But interpreting functions as their graph was too quick, because it does not work well with recursive definitions. 
Consider the definition

We can think of 0,1 and 2 as being male persons with long beards and the question is who shaves whom. Person 
1 shaves himself, but 2 gets shaved by the barber 0 because evaluating the third equation yields 0 `shaves` 2 

== True . In general, the third line says that the barber 0 shaves all persons that do not shave themselves.

What about the barber himself, is 0 `shaves` 0  true or not? If it is, then the third equation says that it is not. If 

shaves :: Integer -> Integer -> Bool
1 `shaves` 1 = True
2 `shaves` 2 = False
0 `shaves` x = not (x `shaves` x)
_ `shaves` _ = False



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

200 of 290 11/5/2007 9:02 PM

it is not, then the third equation says that it is. Puzzled, we see that we just cannot attribute True  or False  to 0 

`shaves` 0 , the graph we use as interpretation for the function shaves  must have a empty spot. We realize that 
our semantic objects must be able to incorporate partial functions , functions that are undefined for some 
arguments.

It is well known that this famous example gave rise to serious foundational problems in set theory. It's an 
example of an impredicative definition, a definition which uses itself, a logical circle. Unfortunately for 
recursive definitions, the circle is not the problem but the feature.

Bottom and Partial Functions

⊥⊥⊥⊥ Bottom

To handle partial functions, we introduce , named bottom and commonly written _|_  in typewriter font. We 
say that  is the completely "undefined" value  or function. Every data type like Integer , ()  or Integer -> 

Integer  contains one  besides their usual elements. So the possible values of type Integer  are

Adding  to the set of values is also called lifting . This is often depicted by a subscript like in . While this 
is the correct notation for the mathematical set "lifted integers", we prefer to talk about "values of type 
Integer ". We do this because  suggests that there are "real" integers , but inside Haskell, the "integers" are 
Integer .

As another example, the type ()  with only one element actually has two inhabitants:

For now, we will stick to programming with Integer s. Arbitrary algebraic data types will be treated in section 
Algebraic Data Types as strict and non-strict languages diverge on how these include .

In Haskell, the expression undefined  denotes . With its help, one can indeed verify some semantic properties
of actual Haskell programs. undefined  has the polymorphic type forall a . a  which of course can be 
specialized to undefined :: Integer , undefined :: () , undefined :: Integer -> Integer  and so on. In 
the Haskell Prelude, it is defined as

undefined = error "Prelude: undefined"

As a side note, it follows from the Curry-Howard isomorphism that any value of the polymorphic type forall a 

. a  must denote .

Partial Functions and the Semantic Approximation Order

Now,  gives us the possibility to denote partial functions:



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

201 of 290 11/5/2007 9:02 PM

Here, f(n) yields well defined values for n = 0 and n = 1 but gives  for all other n. Note that the notation 
is overloaded: the function :: Integer -> Integer  is given by

 for all n

where the  on the right hand side denotes a value of type Integer .

To formalize, partial functions  say of type Integer -> Integer  are at least mathematical mappings from the 
lifted integers  to the lifted integers. But this is not enough, it does not 
merit the special role of . For example, the definition

intuitively does not make sense. Why does  yield a defined value whereas g(1) is undefined? The 

intuition is that every partial function g should yield more defined answers for more defined arguments. To 
formalize, we can say that every concrete number is more defined than :

Here,  denotes that b is more defined than a. Likewise,  will denote that either b is more defined 
than a or both are equal (and so have the same definedness).  is also called the semantic approximation 
order because we can approximate defined values by less defined ones thus interpreting "more defined" as 
"approximating better". Of course,  is designed to be the least element of a data type, we always have

 for all other x.

As no number is more defined than another, the mathematical relation  does not relate different numbers:

neither  nor  hold.

This is contrasted to the ordinary order  between integers which can compare any two numbers. That's also 
why we use the different symbol . A quick way to remember this is the sentence: "1 and 2 are different in 
information content but the same in information quantity".

One says that  specifies a partial order  and that the values of type Integer  form a partially ordered set
(poset for short). A partial order is characterized by the following three laws

Reflexivity, everything is just as defined as itself:  for all x
Transitivity: if  and , then 
Antisymmetry: if both  and  hold, then x and y must be equal: x = y.

Exercises
Do the integers form a poset with respect to the order ?

We can depict the order  on the values of type Integer  by the following graph



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

202 of 290 11/5/2007 9:02 PM

where every link between two nodes specifies that the one above is more defined than the one below. Because 
there is only one level (excluding ), one says that Integer  is a flat domain. The picture also explains the 
name of : it's called bottom because it always sits at the bottom.

Monotonicity

Our intuition about partial functions now can be formulated as following: every partial function f is a monotone
mapping between partially ordered sets. More defined arguments will yield more defined values:

In particular, a function h with  must be constant: h(n) = 1 for all n. Note that here it is crucial that 

 etc. don't hold.

Translated to Haskell, monotonicity means that we cannot pattern match on  or its equivalent undefined . 
Otherwise, the example g from above could be expressed as a Haskell program. As we shall see later,  also 
denotes non-terminating programs, so that the inability to observe  inside Haskell is related to the halting 
problem.

Of course, the notion of more defined than can be extended to partial functions by saying that a function is more 
defined than another if it is so at every possible argument:

Thus, the partial functions also form a poset with the undefined function  being the least element.

Recursive Definitions as Fixed Point Iterations

Approximations of the Factorial Function

Now that we have a means to describe partial functions, we can give an interpretation to recursive definitions. 
Lets take the prominent example of the factorial function f(n) = n! whose recursive definition is

Although we saw that interpreting this directly as a set description leads to problems, we intuitively know how 
to calculate f(n) for every given n by iterating the right hand side. This iteration can be formalized as follows: we
calculate a sequence of functions fk with the property that each one arises from the right hand side applied to the 
previous one, that is



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

203 of 290 11/5/2007 9:02 PM

Starting with the undefined function , the resulting sequence of partial functions reads

and so on. Clearly,

and we expect that the sequence converges to the factorial function.

The iteration follows the well known scheme of a fixed point iteration

In our case, x0 is a function and g is a functional, a mapping between functions. We have

 and

Now, since g is monotone, and , the iteration sequence is monotone:

(The proof is roughly as follows: since , and  anything, . Since g is monotone, we can 
successively apply g to both sides of this relation, yielding , , 
and so on.)

So each successive application of g, starting with x0, transforms a less defined function to a more defined one.

It is very illustrative to formulate this iteration scheme in Haskell. As functionals are just ordinary higher order 
functions, we have

We can now evaluate the functions f0,f1,...  at sample arguments and see whether they yield undefined  or 
not:

g :: (Integer -> Integer) -> (Integer -> Integer)
g x = \n -> if n == 0 then 1 else n * x (n-1)

x0 :: Integer -> Integer
x0 = undefined

(f0:f1:f2:f3:f4:fs) = iterate g x0



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

204 of 290 11/5/2007 9:02 PM

Of course, we cannot use this to check whether f4 is really undefined for all arguments.

Convergence

To the mathematician, the question whether this sequence of approximations converges is still to be answered. 
For that, we say that a poset is a directed complete partial order (dcpo) iff every monotone sequence 

 (also called chain) has a least upper bound (supremum)

.

If that's the case for the semantic approximation order, we clearly can be sure that monotone sequence of 
functions approximating the factorial function indeed has a limit. For our denotational semantics, we will only 
meet dcpos which have a least element  which are called complete partial orders (cpo).

The Integer s clearly form a (d)cpo, because the monotone sequences consisting of more than one element must 
be of the form

where n is an ordinary number. Thus, n is already the least upper bound.

For functions Integer -> Integer , this argument fails because monotone sequences may be of infinite length. 
But because Integer  is a (d)cpo, we know that for every point n, there is a least upper bound

.

As the semantic approximation order is defined point-wise, the function f is the supremum we looked for.

These have been the last touches for our aim to transform the impredicative definition of the factorial function 
into a well defined construction. Of course, it remains to be shown that f(n) actually yields a defined value for 
every n, but this is not hard and far more reasonable than a completely ill-formed definition.

Bottom includes Non-Termination

It is instructive to try our newly gained insight into recursive definitions on an example that does not terminate:

f(n) = f(n + 1)

The approximating sequence reads

 > f3 0
 1
 > f3 1
 1
 > f3 2
 2
 > f3 5
 *** Exception: Prelude.undefined
 > map f3 [0..]
 [1,1,2,*** Exception: Prelude.undefined
 > map f4 [0..]
 [1,1,2,6,*** Exception: Prelude.undefined
 > map f1 [0..]
 [1,*** Exception: Prelude.undefined



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

205 of 290 11/5/2007 9:02 PM

and consists only of . Clearly, the resulting limit is  again. From an operational point of view, a machine 
executing this program will loop indefinitely. We thus see that  may also denote a non-terminating function 
or value. Hence, given the halting problem, pattern matching on  in Haskell is impossible.

Interpretation as Least Fixed Point

Earlier, we called the approximating sequence an example of the well known "fixed point iteration" scheme. 
And of course, the definition of the factorial function f can also be thought as the specification of a fixed point of 
the functional g:

However, there might be multiple fixed points. For instance, there are several f which fulfill the specification

,

Of course, when executing such a program, the machine will loop forever on f(1) or f(2) and thus not produce 
any valuable information about the value of f(1). This corresponds to choosing the least defined fixed point as 
semantic object f and this is indeed a canonical choice. Thus, we say that

f = g(f),

defines the least fixed point f of g. Clearly, least is with respect to our semantic approximation order .

The existence of a least fixed point is guaranteed by our iterative construction if we add the condition that g
must be continuous (sometimes also called "chain continuous"). That simply means that g respects suprema of 
monotone sequences:

We can then argue that with

, we have

and the iteration limit is indeed a fixed point of g. You may also want to convince yourself that the fixed point 
iteration yields the least fixed point possible.

Exercises



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

206 of 290 11/5/2007 9:02 PM

Prove that the fixed point obtained by fixed point iteration starting with 
 is also the least one, that it is smaller than any other fixed point. 

(Hint:  is the least element of our cpo and g is monotone)

By the way, how do we know that each Haskell function we write down indeed is continuous? Just as with 
monotonicity, this has to be enforced by the programming language. Admittedly, these properties can somewhat 
be enforced or broken at will, so the question feels a bit void. But intuitively, monotonicity is guaranteed by not 
allowing pattern matches on . For continuity, we note that for an arbitrary type a, every simple function a -> 

Integer  is automatically continuous because the monotone sequences of Integer 's are of finite length. Any 
infinite chain of values of type a gets mapped to a finite chain of Integer s and respect for suprema becomes a 
consequence of monotonicity. Thus, all functions of the special case Integer -> Integer  must be continuous. 
For functionals like g::(Integer -> Integer) -> (Integer -> Integer) , the continuity then materializes 
due to currying, as the type is isomorphic to ::((Integer -> Integer), Integer) -> Integer  and we can 
take a=((Integer -> Integer), Integer) .

In Haskell, the fixed interpretation of the factorial function can be coded as

factorial = fix g

with the help of the fixed point combinator

fix :: (a -> a) -> a .

We can define it by

fix f = let x = f x in x

which leaves us somewhat puzzled because when expanding factorial, the result is not anything different from 
how we would have defined the factorial function in Haskell in the first place. But of course, the construction 
this whole section was about is not at all present when running a real Haskell program. It's just a means to put 
the mathematical interpretation a Haskell programs to a firm ground. Yet it is very nice that we can explore these
semantics in Haskell itself with the help of undefined .

Strict and Non-Strict Semantics

After having elaborated on the denotational semantics of Haskell programs, we will drop the mathematical 
function notation f(n) for semantic objects in favor of their now equivalent Haskell notation f n .

Strict Functions

A function f  with one argument is called strict , if and only if

f ⊥ = ⊥.

Here are some examples of strict functions



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

207 of 290 11/5/2007 9:02 PM

and there is nothing unexpected about them. But why are they strict? It is instructive to prove that these 
functions are indeed strict. For id , this follows from the definition. For succ , we have to ponder whether ⊥ + 1

is ⊥ or not. If it was not, then we should for example have ⊥ + 1 = 2  or more general ⊥ + 1 = k for some 
concrete number k. We remember that every function is monotone, so we should have for example

2 = ⊥ + 1  4 + 1 = 5

as ⊥  4 . But neither of 2  5 , 2 = 5  nor 2  5  is valid so that k cannot be 2. In general, we obtain the 
contradiction

k  = ⊥ + 1  k  + 1 = k  + 1 .

and thus the only possible choice is

succ ⊥ = ⊥ + 1 = ⊥

and succ  is strict.

Exercises
Prove that power2  is strict. While one can base the proof on the "obvious" 

fact that power2 n is 2n, the latter is preferably proven using fixed point 
iteration.

Non-Strict and Strict Languages

Searching for non-strict functions, it happens that there is only one prototype of a non-strict function of type 
Integer -> Integer :

Its variants are constk x = k for every concrete number k. Why are these the only ones possible? Remember 
that one n has to be more defined than one ⊥. As Integer  is a flat domain, both must be equal.

Why is one  non-strict? To see that it is, we use a Haskell interpreter and try

which is not ⊥. This is reasonable as one  completely ignores its argument. When interpreting ⊥ in an operational
sense as "non-termination", one may say that the non-strictness of one  means that it does not force its argument
to be evaluated and therefore avoids the infinite loop when evaluating the argument ⊥. But one might as well
say that every function must evaluate its arguments before computing the result which means that one ⊥ should

be ⊥, too. That is, if the program computing the argument does not halt, one  should not halt as well.[28] It shows

id     x = x
succ   x = x + 1
power2 0 = 1
power2 n = 2 * power2 (n-1)

one x = 1

> one (undefined :: Integer)
1



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

208 of 290 11/5/2007 9:02 PM

up that one can choose freely this or the other design for a functional programming language. One says that the 
language is strict or non-strict depending on whether functions are strict or non-strict by default. The choice for 
Haskell is non-strict. In contrast, the functional languages ML and LISP choose strict semantics.

Functions with several Arguments

The notion of strictness extends to functions with several variables. For example, a function f  of two arguments 
is strict in the second argument if and only of

f x ⊥ = ⊥

for every x. But for multiple arguments, mixed forms where the strictness depends on the given value of the 
other arguments, are much more common. An example is the conditional

We see that it is strict in y depending on whether the test b is True  or False :

and likewise for x. Apparently, cond  is certainly ⊥ if both x and y are, but not necessarily when at least one of 
them is defined. This behavior is called joint strictness.

Clearly, cond  behaves like the if-then-else statement where it is crucial not to evaluate both the then  and the 
else  branches:

Here, the else part is ⊥ when the condition is met. Thus, in a non-strict language, we have the possibility to wrap
primitive control statements such as if-then-else into functions like cond . This way, we can define our own 
control operators. In a strict language, this is not possible as both branches will be evaluated when calling cond

which makes it rather useless. This is a glimpse of the general observation that non-strictness offers more 

flexibility for code reuse than strictness. See the chapter Laziness[29] for more on this subject.

Not all Functions in Strict Languages are Strict

It is important to note that even in a strict language, not all functions are strict. The choice whether to have 
strictness and non-strictness by default only applies to certain argument data types. Argument types that solely 
contain data like Integer , (Bool,Integer)  or Either String [Integer]  impose strictness, but functions are 
not necessarily strict in function types like Integer -> Bool . Thus, in a hypothetical strict language with 
Haskell-like syntax, we would have the interpreter session

cond b x y = if b then x else y

cond True  ⊥ y = ⊥

cond False ⊥ y = y

if null xs then 'a' else head xs
if n == 0  then  1  else 5 / n



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

209 of 290 11/5/2007 9:02 PM

Why are strict languages not strict in arguments of function type? If they were, fixed point iteration would 
crumble to dust! Remember the fixed point iteration

for a functional g::(Integer -> Integer) -> (Integer -> Integer) . If g would be strict, the sequence 
would read

which obviously converges to a useless . It is crucial that g makes the argument function more defined. This 
means that g must not be strict in its argument to yield a useful fixed point.

As a side note, the fact that things must be non-strict in function types can be used to recover some non-strict 
behavior in strict languages. One simply replaces a data type like Integer  with () -> Integer  where ()
denotes the well known singleton type. It is clear that every such function has the only possible argument ()
(besides ⊥) and therefore corresponds to a single integer. But operations may be non-strict in arguments of type
() -> Integer .

Exercises

It's tedious to lift every Integer  to a () -> Integer  for using non-strict 
behavior in strict languages. Can you write a function

lift :: Integer -> (() -> Integer)

that does this for us? Where is the trap?

Algebraic Data Types

After treating the motivation case of partial functions between Integer s, we now want to extend the scope of 
denotational semantics to arbitrary algebraic data types in Haskell.

A word about nomenclature: the collection of semantic objects for a particular type is usually called a domain. 
This term is more a generic name than a particular definition and we decide that our domains are cpos (complete
partial orders), that is sets of values together with a relation more defined that obeys some conditions to allow 
fixed point iteration. Usually, one adds additional conditions to the cpos that ensure that the values of our 
domains can be represented in some finite way on a computer and thereby avoiding to ponder the twisted ways 
of uncountable infinite sets. But as we are not going to prove general domain theoretic theorems, the conditions 
will just happen to hold by construction.

Constructors

!> let const1 _ = 1

!> const1 (undefined :: Integer)
!!! Exception: Prelude.undefined

!> const1 (undefined :: Integer -> Bool)
1



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

210 of 290 11/5/2007 9:02 PM

Let's take the example types

Here, True , False  and Nothing  are nullary constructors whereas Just  is an unary constructor. The inhabitants of
Bool  form the following domain:

Remember that ⊥ is added as least element to the set of values True  and False , we say that the type is lifted [30]. 
A domain whose poset diagram consists of only one level is called a flat domain. We already know that Integer
is a flat domain as well, it's just that the level above ⊥ has an infinite number of elements.

What are the possible inhabitants of Maybe Bool ? They are

So the general rule is to insert all possible values into the unary (binary, ternary, ...) constructors as usual but
without forgetting ⊥. Concerning the partial order, we remember the condition that the constructors should be
monotone just as any other functions. Hence, the partial order looks as follows

But there is something to ponder: why isn't Just ⊥ = ⊥? I mean "Just undefined" is as undefined as 
"undefined"! The answer is that this depends on whether the language is strict or non-strict. In a strict language, 
all constructors are strict by default, i.e. Just ⊥ = ⊥ and the diagram would reduce to

data Bool    = True | False
data Maybe a = Just a | Nothing

⊥, Nothing, Just ⊥, Just True, Just False



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

211 of 290 11/5/2007 9:02 PM

As a consequence, all domains of a strict language are flat.

But in a non-strict language like Haskell, constructors are non-strict by default and Just ⊥ is a new element
different from ⊥, because we can write a function that reacts differently to them:

As f  ignores the contents of the Just  constructor, f (Just ⊥)  is 4 but f ⊥ is ⊥ (intuitively, if f is passed ⊥, it
will not be possible to tell whether to take the Just branch or the Nothing branch, and so ⊥ will be returned).

This gives rise to non-flat domains as depicted in the former graph. What should these be of use for? In the 
context of Graph Reduction, we may also think of ⊥ as an unevaluated expression. Thus, a value x = Just ⊥

may tell us that a computation (say a lookup) succeeded and is not Nothing , but that the true value has not been 
evaluated yet. If we are only interested in whether x succeeded or not, this actually saves us from the 
unnecessary work to calculate whether x is Just True  or Just False  as would be the case in a flat domain. The 
full impact of non-flat domains will be explored in the chapter Laziness, but one prominent example are infinite 
lists treated in section Recursive Data Types and Infinite Lists.

Pattern Matching

In the section Strict Functions, we proved that some functions are strict by inspecting their results on different 
inputs and insisting on monotonicity. However, in the light of algebraic data types, there can only be one source 
of strictness in real life Haskell: pattern matching, i.e. case  expressions. The general rule is that pattern 
matching on a constructor of a data -type will force the function to be strict, i.e. matching ⊥ against a constructor
always gives ⊥. For illustration, consider

The first function const1  is non-strict whereas the const1'  is strict because it decides whether the argument is 
True  or False  although its result doesn't depend on that. Pattern matching in function arguments is equivalent to
case -expressions

which similarly impose strictness on x: if the argument to the case  expression denotes ⊥ the while case  will

f (Just _) = 4
f Nothing  = 7

const1 _ = 1

const1' True  = 1
const1' False = 1

const1' x = case x of
   True  -> 1
   False -> 1



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

212 of 290 11/5/2007 9:02 PM

denote ⊥, too. However, the argument for case expressions may be more involved as in

and it can be difficult to track what this means for the strictness of foo .

An example for multiple pattern matches in the equational style is the logical or :

Note that equations are matched from top to bottom. The first equation for or  matches the first argument against 
True , so or  is strict in its first argument. The same equation also tells us that or True x  is non-strict in x. If the 
first argument is False , then the second will be matched against True  and or False x  is strict in x. Note that 
while wildcards are a general sign of non-strictness, this depends on their position with respect to the pattern 
matches against constructors.

Exercises

Give an equivalent discussion for the logical and1.
Can the logical "excluded or" (xor ) be non-strict in one of its 
arguments if we know the other?

2.

There is another form of pattern matching, namely irrefutable patterns marked with a tilde ~. Their use is 
demonstrated by

An irrefutable pattern always succeeds (hence the name) resulting in f ⊥ = 1 . But when changing the definition 
of f  to

we have

If the argument matches the pattern, x will be bound to the corresponding value. Otherwise, any variable like x

will be bound to ⊥.

By default, let  and where  bindings are non-strict, too:

foo k table = case lookup ("Foo." ++ k) table of
  Nothing -> ...
  Just x  -> ...

or True _ = True
or _ True = True
or _ _    = False

f ~(Just x) = 1
f Nothing   = 2

f ~(Just x) = x + 1
f Nothing   = 2      -- this line may as well be le ft away

f ⊥       = ⊥ + 1 = ⊥

f (Just 1) = 1 + 1 = 2



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

213 of 290 11/5/2007 9:02 PM

is equivalent to

Exercises

The Haskell language definition
(http://www.haskell.org/onlinereport/) gives the detailed semantics 
of pattern matching
(http://www.haskell.org/onlinereport/exps.html#case-semantics) and 
you should now be able to understand it. So go on and have a look!

1.

Consider a function or  of two Bool ean arguments with the following 
properties:

This function is another example of joint strictness, but a much
sharper one: the result is only ⊥ if both arguments are (at least when
we restrict the arguments to True  and ⊥). Can such a function be
implemented in Haskell?

2.

Recursive Data Types and Infinite Lists

The case of recursive data structures is not very different from the base case. Consider a list of unit values

Though this seems like a simple type, there is a surprisingly complicated number of ways you can fit  in here 
and there, and therefore the corresponding graph is complicated. The bottom of this graph is shown below. An 
ellipsis indicates that the graph continues along this direction. A red ellipse behind an element indicates that this 
is the end of a chain; the element is in normal form.

foo key map = let Just x = lookup key map in ...

foo key map = case (lookup key map) of ~(Just x) ->  ...

or ⊥     ⊥    = ⊥

or True  ⊥    = True
or ⊥     True = True

or False y     = y
or x False     = x

data List = [] | () : List



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

214 of 290 11/5/2007 9:02 PM

and so on. But now, there are also chains of infinite length like

⊥  (): ⊥  ():(): ⊥  ...

This causes us some trouble as we noted in section Convergence that every monotone sequence must have a 
least upper bound. This is only possible if we allow for infinite lists . Infinite lists (sometimes also called 
streams) turn out to be very useful and their manifold use cases are treated in full detail in chapter Laziness. 
Here, we will show what their denotational semantics should be and how to reason about them. Note that while 
the following discussion is restricted to lists only, it easily generalizes to arbitrary recursive data structures like 
trees.

In the following, we will switch back to the standard list type

to close the syntactic gap to practical programming with infinite lists in Haskell.

Exercises

Draw the non-flat domain corresponding [Bool] .1.
How is the graphic to be changed for [Integer] ?2.

Calculating with infinite lists is best shown by example. For that, we need an infinite list

When applying the fixed point iteration to this recursive definition, we see that ones  ought to be the supremum 
of

⊥  1: ⊥  1:1: ⊥  1:1:1: ⊥ ... ,

that is an infinite list of 1. Let's try to understand what take 2 ones  should be. With the definition of take

data [a] = [] | a : [a]

ones :: [Integer]
ones = 1 : ones



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

215 of 290 11/5/2007 9:02 PM

we can apply take  to elements of the approximating sequence of ones :

We see that take 2 (1:1:1: ⊥)  and so on must be the same as take 2 (1:1: ⊥) = 1:1:[]  because 1:1:[]  is 
fully defined. Taking the supremum on both the sequence of input lists and the resulting sequence of output lists,
we can conclude

Thus, taking the first two elements of ones  behaves exactly as expected.

Generalizing from the example, we see that reasoning about infinite lists involves considering the approximating
sequence and passing to the supremum, the truly infinite list. Still, we did not give it a firm ground. The solution
is to identify the infinite list with the whole chain itself and to formally add it as a new element to our domain: 
the infinite list is the sequence of its approximations. Of course, any infinite list like ones  can compactly 
depicted as

what simply means that

Exercises

Of course, there are more interesting infinite lists than ones . Can you 
write recursive definition in Haskell for

the natural numbers nats = 1:2:3:4:...1.
a cycle like cylce123 = 1:2:3: 1:2:3 : ...2.

1.

Look at the Prelude functions repeat  and iterate  and try to solve 
the previous exercise with their help.

2.

Use the example from the text to find the value the expression drop 

3 nats  denotes.
3.

Assume that the work in a strict setting, i.e. that the domain of 
[Integer]  is flat. What does the domain look like? What about 
infinite lists? What value does ones  denote?

4.

What about the puzzle of how a computer can calculate with infinite lists? It takes an infinite amount of time, 
after all? Well, this is true. But the trick is that the computer may well finish in a finite amount of time if it only 

take 0 _      = []
take n (x:xs) = x : take (n-1) xs
take n []     = []

take 2 ⊥       ==>  ⊥

take 2 (1: ⊥)   ==>  1 : take 1 ⊥      ==>  1 : ⊥

take 2 (1:1: ⊥) ==>  1 : take 1 (1: ⊥)  ==>  1 : 1 : take 0 ⊥

                ==>  1 : 1 : []

take 2 ones = 1:1:[]

ones = 1 : 1 : 1 : 1 : ...

ones = ( ⊥  1: ⊥  1:1: ⊥  ...)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

216 of 290 11/5/2007 9:02 PM

considers a finite part of the infinite list. So, infinite lists should be thought of as potentially infinite lists. In 
general, intermediate results take the form of infinite lists whereas the final value is finite. It is one of the 
benefits of denotational semantics that one treat the intermediate infinite data structures as truly infinite when 
reasoning about program correctness.

Exercises

To demonstrate the use of infinite lists as intermediate results, show 
that

by first calculating the infinite sequence corresponding to map (+1) 

nats .

1.

Of course, we should give an example where the final result indeed 
takes an infinite time. So, what does

denote?

2.

Sometimes, one can replace filter  with takeWhile  in the previous 
exercise. Why only sometimes and what happens if one does?

3.

As a last note, the construction of a recursive domain can be done by a fixed point iteration similar to recursive 
definition for functions. Yet, the problem of infinite chains has to be tackled explicitly. See the literature in 
External Links for a formal construction.

Haskell specialities: Strictness Annotations and Newtypes

Haskell offers a way to change the default non-strict behavior of data type constructors by strictness 
annotations. In a data declaration like

an exclamation point !  before an argument of the constructor specifies that he should be strict in this argument. 
Hence we have Just' ⊥ = ⊥ in our example. Further information may be found in chapter Strictness.

In some cases, one wants to rename a data type, like in

However, Couldbe a  contains both the elements ⊥ and Couldbe ⊥. With the help of a newtype  definition

take 2 (map (+1) nats) = take 3 nats

filter (< 5) nats

data Maybe' a = Just' !a | Nothing'

data Couldbe a = Couldbe (Maybe a)

newtype Couldbe a = Couldbe (Maybe a)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

217 of 290 11/5/2007 9:02 PM

we can arrange that Couldbe a  is semantically equal to Maybe a , but different during type checking. In 
particular, the constructor Couldbe  is strict. Yet, this definition is subtly different from

To explain how, consider the functions

Here, f' ⊥ will cause the pattern match on the constructor Couldbe'  fail with the effect that f' ⊥ = ⊥. But for 
the newtype, the match on Couldbe  will never fail, we get f ⊥ = 42 . In a sense, the difference can be stated as:

for the strict case, Couldbe' ⊥ is a synonym for ⊥
for the newtype, ⊥ is a synonym for Couldbe ⊥

with the agreement that a pattern match on ⊥ fails and that a match on Constructor  ⊥ does not.

Newtypes may also be used to define recursive types. An example is the alternate definition of the list type [a]

Again, the point is that the constructor In  does not introduce an additional lifting with ⊥.

Other Selected Topics

Abstract Interpretation and Strictness Analysis

As lazy evaluation means a constant computational overhead, a Haskell compiler may want to discover where 
inherent non-strictness is not needed at all which allows it to drop the overhead at these particular places. To 
that extend, the compiler performs strictness analysis just like we proved in some functions to be strict section 
Strict Functions. Of course, details of strictness depending on the exact values of arguments like in our example 
cond  are out of scope (this is in general undecidable). But the compiler may try to find approximate strictness 
information and this works in many common cases like power2 .

Now, abstract interpretation is a formidable idea to reason about strictness: ...

For more about strictness analysis, see the research papers about strictness analysis on the Haskell wiki
(http://haskell.org/haskellwiki/Research_papers/Compilation#Strictness) .

Interpretation as Powersets

So far, we have introduced ⊥ and the semantic approximation order  abstractly by specifying their properties. 
However, both as well as any inhabitants of a data type like Just ⊥ can be interpreted as ordinary sets. This is 
called the powerset construction. NOTE: i'm not sure whether this is really true. Someone how knows, please 

data Couldbe' a = Couldbe' !(Maybe a)

f  (Couldbe  m) = 42
f' (Couldbe' m) = 42

 newtype List a = In (Maybe (a, List a))



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

218 of 290 11/5/2007 9:02 PM

correct this.

The idea is to think of ⊥ as the set of all possible values and that a computation retrieves more information this 
by choosing a subset. In a sense, the denotation of a value starts its life as the set of all values which will be 
reduced by computations until there remains a set with a single element only.

As an example, consider Bool  where the domain looks like

The values True  and False  are encoded as the singleton sets {True}  and {False}  and ⊥ is the set of all possible
values.

Another example is Maybe Bool :

We see that the semantic approximation order is equivalent to set inclusion, but with arguments switched:

This approach can be used to give a semantics to exceptions in Haskell[31].

Naïve Sets are unsuited for Recursive Data Types

In section Naïve Sets are unsuited for Recursive Definitions, we argued that taking simple sets as denotation for 
types doesn't work well with partial functions. In the light of recursive data types, things become even worse as 

John C. Reynolds showed in his paper Polymorphism is not set-theoretic[32].

Reynolds actually considers the recursive type

Interpreting Bool  as the set {True,False}  and the function type A -> B  as the set of functions from A to B, the 
type U cannot denote a set. This is because (A -> Bool)  is the set of subsets (powerset) of A which, due to a 
diagonal argument analogous to Cantor's argument that there are "more" real numbers than natural ones, always 
has a bigger cardinality than A. Thus, (U -> Bool) -> Bool  has an even bigger cardinality than U and there is 
no way for it to be isomorphic to U. Hence, the set U must not exist, a contradiction.

In our world of partial functions, this argument fails. Here, an element of U is given by a sequence of 
approximations taken from the sequence of domains

⊥, ( ⊥ -> Bool) -> Bool, ((( ⊥ -> Bool) -> Bool) -> Bool) -> Bool  and so on

{True}  {False}
   \      /
    \    /
   ⊥ = {True, False}

 {Just True}   {Just False}
         \     /
          \   /
{Nothing} {Just True, Just False}
     \      /
      \    /
 ⊥ = {Nothing, Just True, Just False}

newtype U = In ((U -> Bool) -> Bool)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

219 of 290 11/5/2007 9:02 PM

where ⊥ denotes the domain with the single inhabitant ⊥. While the author of this text admittedly has no clue on
what such a thing should mean, the constructor gives a perfectly well defined object for U. We see that the type 
(U -> Bool) -> Bool  merely consists of shifted approximating sequences which means that it is isomorphic to 
U.

As a last note, Reynolds actually constructs an equivalent of U in the second order polymorphic lambda calcus. 
There, it happens that all terms have a normal form, i.e. there are only total functions when we do not include a 
primitive recursion operator fix :: (a -> a) -> a . Thus, there is no true need for partial functions and ⊥, yet
a naïve set theoretic semantics fails. We can only speculate that this has to do with the fact that not every
mathematical function is computable. In particular, the set of computable functions A -> Bool  should not have a
bigger cardinality than A.

Footnotes

↑ At least as far as types are concerned, but we're trying to avoid that word :)1.
↑ More technically, fst  and snd  have types which limit them to pairs. It would be impossible to define 
projection functions on tuples in general, because they'd have to be able to accept tuples of different sizes, 
so the type of the function would vary.

2.

↑ In fact, these are one and the same concept in Haskell.3.
↑ This isn't quite what chr  and ord  do, but that description fits our purposes well, and it's close enough.4.
↑ To make things even more confusing, there's actually even more than one type for integers! Don't worry,
we'll come on to this in due course.

5.

↑ This has been somewhat simplified to fit our purposes. Don't worry, the essence of the function is there.6.
↑ Some of the newer type system extensions to GHC do break this, however, so you're better off just 
always putting down types anyway.

7.

↑ This is a slight lie. That type signature would mean that you can compare two values of any type 
whatsoever, but this clearly isn't true: how can you see if two functions are equal? Haskell includes a kind 
of 'restricted polymorphism' that allows type variables to range over some, but not all types. Haskell 
implements this using type classes, which we'll learn about later. In this case, the correct type of (==)  is Eq 

a => a -> a -> Bool .

8.

↑ In mathematics, n! normally means the factorial of n, but that syntax is impossible in Haskell, so we 
don't use it here.

9.

↑ Actually, defining the factorial of 0 to be 1 is not just arbitrary; it's because the factorial of 0 represents 
an empty product.

10.

↑ This is no coincidence; without mutable variables, recursion is the only way to implement control 
structures. This might sound like a limitation until you get used to it (it isn't, really).

11.

↑ Actually, it's using a function called foldl , which actually does the recursion.12.
↑ Moggi, Eugenio (1991). "Notions of Computation and Monads". Information and Computation 93 (1).13.
↑ w:Philip Wadler. Comprehending Monads (http://citeseer.ist.psu.edu/wadler92comprehending.html) . 
Proceedings of the 1990 ACM Conference on LISP and Functional Programming, Nice. 1990.

14.

↑ w:Philip Wadler. The Essence of Functional Programming
(http://citeseer.ist.psu.edu/wadler92essence.html) . Conference Record of the Nineteenth Annual ACM 
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 1992.

15.

↑ Simon Peyton Jones, Philip Wadler (1993). "Imperative functional programming"
(http://homepages.inf.ed.ac.uk/wadler/topics/monads.html#imperative) . 20'th Symposium on Principles of
Programming Languages.

16.

↑ It infers a monomorphic type because k is bound by a lambda expression, and things bound by lambdas 
always have monomorphic types. See Polymorphism.

17.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

220 of 290 11/5/2007 9:02 PM

↑ Ian Stewart. The true story of how Theseus found his way out of the labyrinth. Scientific American, 
February 1991, page 137.

18.

↑ Gérard Huet. The Zipper. Journal of Functional Programming, 7 (5), Sept 1997, pp. 549--554. PDF
(http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf) 

19.

↑ Note the notion of zipper as coined by Gérard Huet also allows to replace whole subtrees even if there is
no extra data associated with them. In the case of our labyrinth, this is irrelevant. We will come back to 
this in the section Differentiation of data types.

20.

↑ Of course, the second topmost node or any other node at most a constant number of links away from the 
top will do as well.

21.

↑ Note that changing the whole data structure as opposed to updating the data at a node can be achieved in
amortized constant time even if more nodes than just the top node is affected. An example is incrementing
a number in binary representation. While incrementing say 111..11  must touch all digits to yield 
1000..00 , the increment function nevertheless runs in constant amortized time (but not in constant worst 
case time).

22.

↑ Conor Mc Bride. The Derivative of a Regular Type is its Type of One-Hole Contexts. Available online. 
PDF (http://www.cs.nott.ac.uk/~ctm/diff.pdf) 

23.

↑ This phenomenon already shows up with generic tries.24.
↑ Actually, we can apply them to functions whose type is forall a. a -> R, for some arbitrary R, as these 
accept values of any type as a parameter. Examples of such functions: id, const k for any k. So technically,
we can't do anything _useful_ with its elements.

25.

↑ In fact, there are no written down and complete denotational semantics of Haskell. This would be a 
tedious task void of additional insight and we happily embrace the folklore and common sense semantics.

26.

↑ Monads are one of the most successful ways to give denotational semantics to imperative programs. See 
also Haskell/Advanced monads.

27.

↑ Strictness as premature evaluation of function arguments is elaborated in the chapter Graph Reduction.28.
↑ The term Laziness comes from the fact that the prevalent implementation technique for non-strict 
languages is called lazy evaluation

29.

↑ The term lifted is somewhat overloaded, see also Unboxed Types.30.
↑ S. Peyton Jones, A. Reid, T. Hoare, S. Marlow, and F. Henderson. A semantics for imprecise exceptions.
(http://research.microsoft.com/~simonpj/Papers/imprecise-exn.htm) In Programming Languages Design 
and Implementation. ACM press, May 1999.

31.

↑ John C. Reynolds. Polymorphism is not set-theoretic. INRIA Rapports de Recherche No. 296. May 
1984.

32.

External Links

Online books about Denotational Semantics

Schmidt, David A. (1986). Denotational Semantics. A Methodology for Language Development
(http://www.cis.ksu.edu/~schmidt/text/densem.html) . Allyn and Bacon.

Equational reasoning
Haskell/Equational reasoning



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

221 of 290 11/5/2007 9:02 PM

Program derivation
Haskell/Program derivation

Category theory

This article attempts to give an overview of category theory, insofar as it applies to Haskell. To this end, Haskell
code will be given alongside the mathematical definitions. Absolute rigour is not followed; in its place, we seek 
to give the reader an intuitive feel for what the concepts of category theory are and how they relate to Haskell.

Introduction to categories

A category is, in essence, a simple collection. It has three components:

A collection of objects.
A collection of morphisms, each of which ties two objects (a source object
and a target object) together. (These are sometimes called arrows, but we 
avoid that term here as it has other denotations in Haskell.) If f is a morphism 
with source object A and target object B, we write .
A notion of composition of these morphisms. If h is the composition of 
morphisms f and g, we write .

Lots of things form categories. For example, Set is the category of all sets with 
morphisms as standard functions and composition being standard function 
composition. (Category names are often typeset in bold face.) Grp  is the 
category of all groups with morphisms as functions that preserve group 
operations (the group homomorphisms), i.e. for any two groups G with 
operation *  and H with operation ·, a function  is a morphism in 
Grp  iff:

It may seem that morphisms are always functions, but this needn't be the case. For example, any partial order (P, 
) defines a category where the objects are the elements of P, and there is a morphism between any two objects 

A and B iff . Moreover, there are allowed to be multiple morphisms with the same source and target 
objects; using the Set example, sin and cos are both functions with source object  and target object [ − 1,1], 
but they're most certainly not the same morphism!

Category laws

There are three laws that categories need to follow. Firstly, and most simply, the composition of morphisms 
needs to be associative. Symbolically,

Secondly, the category needs to be closed under the composition operation. So if  and 
, then there must be some morphism  in the category such that . We can 

A simple category, with three 
objects A, B and C, three 

identity morphisms idA, idB
and idC, and two other 

morphisms 

and . The third 
element (the specification of 

how to compose the 
morphisms) is not shown.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

222 of 290 11/5/2007 9:02 PM

see how this works using the following category:

f and g are both morphisms so we must be able to compose them and get another morphism in the category. So 
which is the morphism ? The only option is idA. Similarly, we see that .

Lastly, given a category C there needs to be for every object A an identity morphism,  that is an 
identity of composition with other morphisms. Put precisely, for every morphism :

Hask, the Haskell category

The main category we'll be concerning ourselves with in this article is Hask, the category of Haskell types and 
Haskell functions as morphisms, using (.)  for composition: a function f :: A -> B  for types A and B is a 
morphism in Hask. We can check the first and last laws easily: we know (.)  is an associative function, and 
clearly, for any f  and g, f . g  is another function. In Hask, the identity morphism is id , and we have trivially:

id . f = f . id = f

[33] This isn't an exact translation of the law above, though; we're missing subscripts. The function id  in Haskell
is polymorphic - it can take many different types for its domain and range, or, in category-speak, can have many 
different source and target objects. But morphisms in category theory are by definition monomorphic - each 
morphism has one specific source object and one specific target object. A polymorphic Haskell function can be 
made monomorphic by specifying its type (instantiating with a monomorphic type), so it would be more precise 
if we said that the identity morphism from Hask on a type A is (id :: A -> A) . With this in mind, the above 
law would be rewritten as:

(id :: B -> B) . f = f . (id :: A -> A) = f

However, for simplicity, we will ignore this distinction when the meaning is clear.

Exercises

As was mentioned, any partial order (P, ) is a category with 
objects as the elements of P and a morphism between elements a and 
b iff a  b. Which of the above laws guarantees the transitivity of 
?
(Harder.) If we add another morphism to the above example, it fails 
to be a category. Why? Hint: think about associativity of the 
composition operation.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

223 of 290 11/5/2007 9:02 PM

Functors

So we have some categories which 
have objects and morphisms that relate 
our objects together. The next Big 
Topic in category theory is the functor , 
which relates categories together. A 
functor is essentially a transformation 
between categories, so given categories 
C and D, a functor :

Maps any object A in C to F(A), 
in D.
Maps morphisms 
in C to 

 in D.

One of the canonical examples of a 
functor is the forgetful functor 

 which maps groups to 
their underlying sets and group 
morphisms to the functions which 
behave the same but are defined on sets
instead of groups. Another example is 
the power set functor  which maps sets to their power sets and maps functions  to 
functions  which take inputs  and return f(U), the image of U under f, defined by 

. For any category C, we can define a functor known as the identity functor on C, 
or , that just maps objects to themselves and morphisms to themselves. This will turn out to be 
useful in the monad laws section later on.

Once again there are a few axioms that functors have to obey. Firstly, given an identity morphism idA on an 
object A, F(idA) must be the identity morphism on F(A), i.e.:

F(idA) = idF(A)

Secondly functors must distribute over morphism composition, i.e.

Exercises
For the diagram given on the right, check these functor laws.

A functor between two categories, C and D. Of note is that the objects A
and B both get mapped to the same object in D, and that therefore g

becomes a morphism with the same source and target object (but isn't 
necessarily an identity), and idA and idB become the same morphism. The 
arrows showing the mapping of objects are shown in a dotted, pale olive. 

The arrows showing the mapping of morphisms are shown in a dotted, pale 
blue.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

224 of 290 11/5/2007 9:02 PM

Functors on Hask

The Functor typeclass you will probably have seen in Haskell does in fact tie in with the categorical notion of a 
functor. Remember that a functor has two parts: it maps objects in one category to objects in another and 
morphisms in the first category to morphisms in the second. Functors in Haskell are from Hask to func, where 
func is the subcategory of Hask defined on just that functor's types. E.g. the list functor goes from Hask to Lst, 
where Lst is the category containing only list types, that is, [T]  for any type T. The morphisms in Lst are 
functions defined on list types, that is, functions [T] -> [U]  for types T, U. How does this tie into the Haskell 
typeclass Functor? Recall its definition:

Let's have a sample instance, too:

Here's the key part: the type constructor Maybe takes any type T to a new type, Maybe T . Also, fmap  restricted to 
Maybe types takes a function a -> b  to a function Maybe a -> Maybe b . But that's it! We've defined two parts, 
something that takes objects in Hask to objects in another category (that of Maybe types and functions defined 
on Maybe types), and something that takes morphisms in Hask to morphisms in this category. So Maybe is a 
functor.

A useful intuition regarding Haskell functors is that they represent types that can be mapped over. This could be 
a list or a Maybe, but also more complicated structures like trees. A function that does some mapping could be 
written using fmap , then any functor structure could be passed into this function. E.g. you could write a generic 
function that covers all of Data.List.map, Data.Map.map, Data.Array.IArray.amap, and so on.

What about the functor axioms? The polymorphic function id  takes the place of idA for any A, so the first law 
states:

With our above intuition in mind, this states that mapping over a structure doing nothing to each element is 
equivalent to doing nothing overall. Secondly, morphism composition is just (.) , so

This second law is very useful in practice. Picturing the functor as a list or similar container, the right-hand side 
is a two-pass algorithm: we map over the structure, performing g, then map over it again, performing f . The 
functor axioms guarantee we can transform this into a single-pass algorthim that performs f . g . This is a 
process known as fusion.

Exercises
Check the laws for the Maybe and list functors.

class Functor (f :: * -> *) where
  fmap :: (a -> b) -> (f a -> f b)

instance Functor Maybe where
  fmap f (Just x) = Just (f x)
  fmap _ Nothing  = Nothing

fmap id = id

fmap (f . g) = fmap f . fmap g



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

225 of 290 11/5/2007 9:02 PM

Translating categorical concepts into Haskell

Functors provide a good example of how category theory gets translated into Haskell. The key points to 
remember are that:

We work in the category Hask and its subcategories.
Objects are types.
Morphisms are functions.
Things that take a type and return another type are type constructors.
Things that take a function and return another function are higher-order functions.
Typeclasses, along with the polymorphism they provide, make a nice way of capturing the fact that in 
category theory things are often defined over a number of objects at once.

Monads

Monads are obviously an extremely important concept in Haskell, 
and in fact they originally came from category theory. A monad is 
a special type of functor, one that supports some additional 
structure. Additionally, every monad is a functor from a category 
to that same category. So, down to definitions. A monad is a 

functor , along with two morphisms [34] for every 
object X in C:

When the monad under discussion is obvious, we'll leave out the 
M superscript for these functions and just talk about unitX and 
joinX for some X.

Let's see how this translates to the Haskell typeclass Monad, then.

The class constraint of Functor m  ensures that we already have the functor structure: a mapping of objects and 
of morphisms. return  is the (polymorphic) analogue to unitX for any X. But we have a problem. Although 
return 's type looks quite similar to that of unit, (>>=)  bears no resemblance to join. The monad function 
join :: Monad m => m (m a) -> m a  does however look quite similar. Indeed, we can recover join  and 
(>>=)  from each other:

So specifying a monad's return  and join  is equivalent to specifying its return  and (>>=) . It just turns out that 
the normal way of defining a monad in category theory is to give unit and join, whereas Haskell programmers 

unit and join, the two morphisms that must 
exist for every object for a given monad.

class Functor m => Monad m where
  return :: a -> m a
  (>>=)  :: m a -> (a -> m b) -> m b

join :: Monad m => m (m a) -> m a
join x = x >>= id

(>>=) :: Monad m => m a -> (a -> m b) -> m b
x >>= f = join (fmap f x)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

226 of 290 11/5/2007 9:02 PM

like to give return  and (>>=)  [35]. Often, the categorical way makes more sense. Any time you have some kind 
of structure M and a natural way of taking any object X into M(X), as well as a way of taking M(M(X)) into M(X), 
you probably have a monad. We can see this in the following example section.

Example: the powerset functor is also a monad

The power set functor  described above forms a monad. For any set S you have a unitS(x) = 
{ x}, mapping elements to their singleton set. Note that each of these singleton sets are trivially a subset of S, so 
unitS returns elements of the powerset of S, as is required. Also, you can define a function joinS as follows: we 
receive an input . This is:

A member of the powerset of the powerset of S.
So a member of the set of all subsets of the set of all subsets of S.
So a set of subsets of S

We then return the union of these subsets, giving another subset of S. Symbolically,

.

Hence P is a monad [36].

In fact, P is almost equivalent to the list monad; with the exception that we're talking lists instead of sets, they're 
almost the same. Compare:

Power set functor on Set List monad from Haskell

Function type Definition Function type Definition

Given a set S and a morphism : Given a type T and a function f :: A
-> B

fmap f :: [A] ->
[B]

fmap f xs = [ 
f b | b <- xs 
]

unitS(x) = {x} return :: T -> [T]
return x = 
[x]

join :: [[T]] ->
[T]

join xs = 
concat xs

The monad laws and their importance

Just as functors had to obey certain axioms in order to be called functors, monads have a few of their own. We'll 
first list them, then translate to Haskell, then see why they're important.

Given a monad  and a morphism  for ,

1.
2.
3.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

227 of 290 11/5/2007 9:02 PM

4.

By now, the Haskell translations should be hopefully self-explanatory:

join . fmap join = join . join1.
join . fmap return = join . return = id2.
return . f = fmap f . return3.
join . fmap (fmap f) = fmap f . join4.

(Remember that fmap  is the part of a functor that acts on morphisms.) These laws seem a bit inpenetrable at first,
though. What on earth do these laws mean, and why should they be true for monads? Let's explore the laws.

The first law

In order to understand this law, we'll first 
use the example of lists. The first law 
mentions two functions, join . fmap join

(the left-hand side) and join . join  (the 
right-hand side). What will the types of these
functions be? Remembering that join 's type 
is [[a]] -> [a]  (we're talking just about 
lists for now), the types are both [[[a]]] -> 

[a]  (the fact that they're the same is handy; 
after all, we're trying to show they're 
completely the same function!). So we have 
a list of list of lists. The left-hand side, then, 
performs fmap join  on this 3-layered list, 
then uses join  on the result. fmap  is just the 
familiar map for lists, so we first map across 
each of the list of lists inside the top-level 
list, concatenating them down into a list 
each. So afterward, we have a list of lists, 
which we then run through join . In 
summary, we 'enter' the top level, collapse 
the second and third levels down, then 
collapse this new level with the top level.

What about the right-hand side? We first run
join  on our list of list of lists. Although this is three layers, and you normally apply a two-layered list to join , 
this will still work, because a [[[a]]]  is just [[b]] , where b = [a] , so in a sense, a three-layered list is just a 
two layered list, but rather than the last layer being 'flat', it is composed of another list. So if we apply our list of 
lists (of lists) to join , it will flatten those outer two layers into one. As the second layer wasn't flat but instead 
contained a third layer, we will still end up with a list of lists, which the other join  flattens. Summing up, the 
left-hand side will flatten the inner two layers into a new layer, then flatten this with the outermost layer. The 
right-hand side will flatten the outer two layers, then flatten this with the innermost layer. These two operations 
should be equivalent. It's sort of like a law of associativity for join .

We can see this at work more if we recall the definition of join  for Maybe:

A demonstration of the first law for lists. Remember that join  is 
concat  and fmap  is map in the list monad.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

228 of 290 11/5/2007 9:02 PM

So if we had a three-layered Maybe (i.e., it could be Nothing , Just Nothing , Just (Just Nothing)  or Just 

(Just (Just x)) ), the first law says that collapsing the inner two layers first, then that with the outer layer is 
exactly the same as collapsing the outer layers first, then that with the innermost layer.

Exercises
Verify that the list and Maybe monads do in fact obey this law with some 
examples to see precisely how the layer flattening works.

The second law

What about the second law, then? Again, we'll start with the example of lists. Both functions mentioned in the 
second law are functions [a] -> [a] . The left-hand side expresses a function that maps over the list, turning 
each element x into its singleton list [x] , so that at the end we're left with a list of singleton lists. This 
two-layered list is flattened down into a single-layer list again using the join . The right hand side, however, 
takes the entire list [x, y, z, ...] , turns it into the singleton list of lists [[x, y, z, ...]] , then flattens the 
two layers down into one again. This law is less obvious to state quickly, but it essentially says that applying 
return  to a monadic value, then join ing the result should have the same effect whether you perform the return

from inside the top layer or from outside it.

Exercises
Prove this second law for the Maybe monad.

The third and fourth laws

The last two laws express more self evident fact about how we expect monads to behave. The easiest way to see 
how they are true is to expand them to use the expanded form:

\x -> return (f x) = \x -> fmap f (return x)1.
\x -> join (fmap (fmap f) x) = \x -> fmap f (join x )2.

Exercises
Convince yourself that these laws should hold true for any monad by 
exploring what they mean, in a similar style to how we explained the first 
and second laws.

Application to do-blocks

Well, we have intuitive statements about the laws that a monad must support, but why is that important? The 
answer becomes obvious when we consider do-blocks. Recall that a do-block is just syntactic sugar for a 
combination of statements involving (>>=)  as witnessed by the usual translation:

join :: Maybe (Maybe a) -> Maybe a
join Nothing         = Nothing
join (Just Nothing)  = Nothing
join (Just (Just x)) = Just x



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

229 of 290 11/5/2007 9:02 PM

Also notice that we can prove what are normally quoted as the monad laws using return  and (>>=)  from our 
above laws (the proofs are a little heavy in some cases, feel free to skip them if you want to):

return x >>= f = f x . Proof:1.

m >>= return = m . Proof:2.

(m >>= f) >>= g = m >>= (\x -> f x >>= g) . Proof (recall that fmap f . fmap g = fmap (f . g) ):3.

These new monad laws, using return  and (>>=) , can be translated into do-block notation.

Points-free style Do-block style
return x >>= f = f x do { v <- return x; f v } = do { f x }

m >>= return = m do { v <- m; return v } = do { m }

(m >>= f) >>= g = m >>= (\x -> f x >>= g)

The monad laws are now common-sense statements about how do-blocks should function. If one of these laws 

do { x }                 -->  x
do { let { y = v }; x }  -->  let y = v in do { x }
do { v <- y; x }         -->  y >>= \v -> do { x }
do { y; x }              -->  y >>= \_ -> do { x }

   return x >>= f
 = join (fmap f (return x)) -- By the definition of  (>>=)
 = join (return (f x))      -- By law 3
 = (join . return) (f x)
 = id (f x)                 -- By law 2
 = f x

  m >>= return
= join (fmap return m)    -- By the definition of ( >>=)
= (join . fmap return) m
= id m                    -- By law 2
= m

  (m >>= f) >>= g
= (join (fmap f m)) >>= g                          -- By the definition of (>>=)
= join (fmap g (join (fmap f m)))                  -- By the definition of (>>=)
= (join . fmap g) (join (fmap f m))
= (join . fmap g . join) (fmap f m)
= (join . join . fmap (fmap g)) (fmap f m)         -- By law 4
= (join . join . fmap (fmap g) . fmap f) m
= (join . join . fmap (fmap g . f)) m              -- By the distributive law of functors
= (join . join . fmap (\x -> fmap g (f x))) m
= (join . fmap join . fmap (\x -> fmap g (f x))) m -- By law 1
= (join . fmap (join . (\x -> fmap g (f x)))) m    -- By the distributive law of functors
= (join . fmap (\x -> join (fmap g (f x)))) m
= (join . fmap (\x -> f x >>= g))                  -- By the definition of (>>=)
= join (fmap (\x -> f x >>= g) m)
= m >>= (\x -> f x >>= g)                          -- By the definition of (>>=)

   do { y <- do { x <- m; f x };
        g y }
 =
   do { x <- m;
        y <- f x;
        g y }



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

230 of 290 11/5/2007 9:02 PM

were invalidated, users would become confused, as you couldn't be able to manipulate things within the 
do-blocks as would be expected. The monad laws are, in essence, usability guidelines.

Exercises

In fact, the two versions of the laws we gave:

Are entirely equivalent. We showed that we can recover the functional 
laws from the categorical ones. Go the other way; show that starting from 
the functional laws, the categorical laws hold. It may be useful to 
remember the following definitions:

Thanks to Yitzchak Gale for suggesting this exercise.

Summary

We've come a long way in this chapter. We've looked at what categories are and how they apply to Haskell. 
We've introduced the basic concepts of category theory including functors, as well as some more advanced 
topics like monads, and seen how they're crucial to idiomatic Haskell. We haven't covered some of the basic 
category theory that wasn't needed for our aims, like natural transformations, but have instead provided an 
intuitive feel for the categorical grounding behind Haskell's structures.

Notes

↑ At least as far as types are concerned, but we're trying to avoid that word :)1.
↑ More technically, fst  and snd  have types which limit them to pairs. It would be impossible to define 
projection functions on tuples in general, because they'd have to be able to accept tuples of different sizes, 
so the type of the function would vary.

2.

↑ In fact, these are one and the same concept in Haskell.3.
↑ This isn't quite what chr  and ord  do, but that description fits our purposes well, and it's close enough.4.
↑ To make things even more confusing, there's actually even more than one type for integers! Don't worry,
we'll come on to this in due course.

5.

↑ This has been somewhat simplified to fit our purposes. Don't worry, the essence of the function is there.6.
↑ Some of the newer type system extensions to GHC do break this, however, so you're better off just 
always putting down types anyway.

7.

↑ This is a slight lie. That type signature would mean that you can compare two values of any type 
whatsoever, but this clearly isn't true: how can you see if two functions are equal? Haskell includes a kind 

8.

-- Categorical:
join . fmap join = join . join
join . fmap return = join . return = id
return . f = fmap f . return
join . fmap (fmap f) = fmap f . join

-- Functional:
m >>= return = m
return m >>= f = f m
(m >>= f) >>= g = m >>= (\x -> f x >>= g)

join m = m >>= id
fmap f m = m >>= return . f



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

231 of 290 11/5/2007 9:02 PM

of 'restricted polymorphism' that allows type variables to range over some, but not all types. Haskell 
implements this using type classes, which we'll learn about later. In this case, the correct type of (==)  is Eq 

a => a -> a -> Bool .
↑ In mathematics, n! normally means the factorial of n, but that syntax is impossible in Haskell, so we 
don't use it here.

9.

↑ Actually, defining the factorial of 0 to be 1 is not just arbitrary; it's because the factorial of 0 represents 
an empty product.

10.

↑ This is no coincidence; without mutable variables, recursion is the only way to implement control 
structures. This might sound like a limitation until you get used to it (it isn't, really).

11.

↑ Actually, it's using a function called foldl , which actually does the recursion.12.
↑ Moggi, Eugenio (1991). "Notions of Computation and Monads". Information and Computation 93 (1).13.
↑ w:Philip Wadler. Comprehending Monads (http://citeseer.ist.psu.edu/wadler92comprehending.html) . 
Proceedings of the 1990 ACM Conference on LISP and Functional Programming, Nice. 1990.

14.

↑ w:Philip Wadler. The Essence of Functional Programming
(http://citeseer.ist.psu.edu/wadler92essence.html) . Conference Record of the Nineteenth Annual ACM 
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 1992.

15.

↑ Simon Peyton Jones, Philip Wadler (1993). "Imperative functional programming"
(http://homepages.inf.ed.ac.uk/wadler/topics/monads.html#imperative) . 20'th Symposium on Principles of
Programming Languages.

16.

↑ It infers a monomorphic type because k is bound by a lambda expression, and things bound by lambdas 
always have monomorphic types. See Polymorphism.

17.

↑ Ian Stewart. The true story of how Theseus found his way out of the labyrinth. Scientific American, 
February 1991, page 137.

18.

↑ Gérard Huet. The Zipper. Journal of Functional Programming, 7 (5), Sept 1997, pp. 549--554. PDF
(http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf) 

19.

↑ Note the notion of zipper as coined by Gérard Huet also allows to replace whole subtrees even if there is
no extra data associated with them. In the case of our labyrinth, this is irrelevant. We will come back to 
this in the section Differentiation of data types.

20.

↑ Of course, the second topmost node or any other node at most a constant number of links away from the 
top will do as well.

21.

↑ Note that changing the whole data structure as opposed to updating the data at a node can be achieved in
amortized constant time even if more nodes than just the top node is affected. An example is incrementing
a number in binary representation. While incrementing say 111..11  must touch all digits to yield 
1000..00 , the increment function nevertheless runs in constant amortized time (but not in constant worst 
case time).

22.

↑ Conor Mc Bride. The Derivative of a Regular Type is its Type of One-Hole Contexts. Available online. 
PDF (http://www.cs.nott.ac.uk/~ctm/diff.pdf) 

23.

↑ This phenomenon already shows up with generic tries.24.
↑ Actually, we can apply them to functions whose type is forall a. a -> R, for some arbitrary R, as these 
accept values of any type as a parameter. Examples of such functions: id, const k for any k. So technically,
we can't do anything _useful_ with its elements.

25.

↑ In fact, there are no written down and complete denotational semantics of Haskell. This would be a 
tedious task void of additional insight and we happily embrace the folklore and common sense semantics.

26.

↑ Monads are one of the most successful ways to give denotational semantics to imperative programs. See 
also Haskell/Advanced monads.

27.

↑ Strictness as premature evaluation of function arguments is elaborated in the chapter Graph Reduction.28.
↑ The term Laziness comes from the fact that the prevalent implementation technique for non-strict 
languages is called lazy evaluation

29.

↑ The term lifted is somewhat overloaded, see also Unboxed Types.30.
↑ S. Peyton Jones, A. Reid, T. Hoare, S. Marlow, and F. Henderson. A semantics for imprecise exceptions.
(http://research.microsoft.com/~simonpj/Papers/imprecise-exn.htm) In Programming Languages Design 

31.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

232 of 290 11/5/2007 9:02 PM

and Implementation. ACM press, May 1999.
↑ John C. Reynolds. Polymorphism is not set-theoretic. INRIA Rapports de Recherche No. 296. May 
1984.

32.

↑ Actually, there is a subtlety here: because (.)  is a lazy function, if f  is undefined , we have that id . f 

= \_ -> _|_ . Now, while this may seem equivalent to _|_  for all extents and purposes, you can actually 
tell them apart using the strictifying function seq , meaning that the last category law is broken. We can 
define a new strict composition function, f .! g = ((.) $! f) $! g , that makes Hask a category. We 
proceed by using the normal (.) , though, and attribute any discrepancies to the fact that seq  breaks an 
awful lot of the nice language properties anyway.

33.

↑ Experienced category theorists will notice that we're simplifying things a bit here; instead of presenting 
unit and join as natural transformations, we treat them explicitly as morphisms, and require naturality as 
extra axioms alongside the the standard monad laws (laws 3 and 4). The reasoning is simplicity; we are 
not trying to teach category theory as a whole, simply give a categorical background to some of the 
structures in Haskell. You may also notice that we are giving these morphisms names suggestive of their 
Haskell analogues, because the names η and µ don't provide much intuition.

34.

↑ This is perhaps due to the fact that Haskell programmers like to think of monads as a way of sequencing 
computations with a common feature, whereas in category theory the container aspect of the various 
structures is emphasised. join  pertains naturally to containers (squashing two layers of a container down 
into one), but (>>=)  is the natural sequencing operation (do something, feeding its results into something 
else).

35.

↑ If you can prove that certain laws hold, which we'll explore in the next section.36.

Haskell Performance

Graph reduction

Notes and TODOs

TODO: Pour lazy evaluation explanation from Laziness into this mold.
TODO: better section names.
TODO: ponder the graphical representation of graphs.

No grapical representation, do it with let .. in . Pro: Reduction are easiest to perform in that 
way anyway. Cons: no graphic.
ASCII art / line art similar to the one in Bird&Wadler? Pro: displays only the relevant parts truly 
as graph, easy to perform on paper. Cons: Ugly, no large graphs with that.
Full blown graphs with @-nodes? Pro: look graphy. Cons: nobody needs to know @-nodes in 
order to understand graph reduction. Can be explained in the implementation section.
Graphs without @-nodes. Pro: easy to understand. Cons: what about currying?

 ! Keep this chapter short. The sooner the reader knows how to evaluate Haskell programs by hand, the
better.
First sections closely follow Bird&Wadler

Introduction



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

233 of 290 11/5/2007 9:02 PM

Programming is not only about writing correct programs, answered by denotational semantics, but also about 
writing fast ones that require little memory. For that, we need to know how they're executed on a machine, 
commonly given by operational semantics. This chapter explains how Haskell programs are commonly executed
on a real computer and thus serves as foundation for analyzing time and space usage. Note that the Haskell 
standard deliberately does not give operational semantics, implementations are free to choose their own. But so 
far, every implementation of Haskell more or less closely follows the execution model of lazy evaluation.

In the following, we will detail lazy evaluation and subsequently use this execution model to explain and 
exemplify the reasoning about time and memory complexity of Haskell programs.

Evaluating Expressions by Lazy Evaluation

Reductions

Executing a functional program, i.e. evaluating an expression, means to repeatedly apply function definitions 
until all function applications have been expanded. Take for example the expression pythagoras 3 4  together 
with the definitions

One possible sequence of such reductions is

Every reduction replaces a subexpression, called reducible expression or redex for short, with an equivalent 
one, either by appealing to a function definition like for square  or by using a built-in function like (+) . An 
expression without redexes is said to be in normal form . Of course, execution stops once reaching a normal 
form which thus is the result of the computation.

Clearly, the fewer reductions that have to be performed, the faster the program runs. We cannot expect each 
reduction step to take the same amount of time because its implementation on real hardware looks very different,
but in terms of asymptotic complexity, this number of reductions is an accurate measure.

Reduction Strategies

There are many possible reduction sequences and the number of reductions may depend on the order in which 
reductions are performed. Take for example the expression fst (square 3, square 4) . One systematic 
possibilty is to evaluate all function arguments before applying the function definition

      square x = x * x
pythagoras x y = square x + square y

pythagoras 3 4
 ⇒ square 3 + square 4   (pythagoras)
 ⇒    (3*3) + square 4   (square)
 ⇒        9 + square 4   (*)
 ⇒        9 + (4*4)      (square)
 ⇒        9 + 16         (*)
 ⇒          25

fst (square 3, square 4)
 ⇒ fst (3*3, square 4)   (square)
 ⇒ fst ( 9 , square 4)   (*)
 ⇒ fst ( 9 , 4*4)        (square)
 ⇒ fst ( 9 , 16 )        (*)
 ⇒ 9                     (fst)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

234 of 290 11/5/2007 9:02 PM

This is called an innermost reduction strategy and an innermost redex is a redex that has no other redex as 
subexpression inside.

Another systematic possibility is to apply all function definitions first and only then evaluate arguments:

which is named outermost reduction and always reduces outermost redexes that are not inside another redex. 
Here, the outermost reduction uses less reduction steps than the innermost reduction. Why? Because the 
function fst  doesn't need the second component of the pair and the reduction of square 4  was superflous.

Termination

For some expressions like

no reduction sequence may terminate and program execution enters a neverending loop, those expressions do 
not have a normal form. But there are also expressions where some reduction sequences terminate and some do 
not, an example being

The first reduction sequence is outermost reduction and the second is innermost reduction which tries in vain to 
evaluate the loop  even though it is ignored by fst  anyway. The ability to evaluate function arguments only 
when needed is what makes outermost optimal when it comes to termination:

Theorem (Church Rosser II)
If there is one terminating reduction, then outermost reduction will terminate, too.

Graph Reduction

Despite the ability to discard arguments, outermost reduction doesn't always take fewer reduction steps than 
innermost reduction:

Here, the argument (1+2)  is duplicated and subsequently reduced twice. But because it is one and the same 
argument, the solution is to share the reduction (1+2) ⇒ 3  with all other incarnations of this argument. This can
be achieved by representing expressions as graphs. For example,

fst (square 3, square 4)
 ⇒  square 3             (fst)
 ⇒  3*3                  (square)
 ⇒  9                    (*)

loop = 1 + loop

fst (42, loop)
 ⇒  42                   (fst)

fst (42, loop)
 ⇒  fst (42,1+loop)      (loop)
 ⇒  fst (42,1+(1+loop))  (loop)
 ⇒  ...

square (1+2)
 ⇒  (1+2)*(1+2)          (square)
 ⇒  (1+2)*3              (+)
 ⇒      3*3              (+)
 ⇒       9               (*)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

235 of 290 11/5/2007 9:02 PM

represents the expression (1+2)*(1+2) . Now, the outermost graph reduction of square (1+2)  proceeds as 
follows

and the work has been shared. In other words, outermost graph reduction now reduces every argument at most 
once. For this reason, it always takes fewer reduction steps than the innermost reduction, a fact we will prove 
when reasoning about time.

Sharing of expressions is also introduced with let  and where  constructs. For instance, consider Heron's formula
for the area of a triangle with sides a,b and c:

Instantiating this to an equilateral triangle will reduce as

which is . Put differently, let -bindings simply give names to nodes in the graph. In fact, one can dispense

entirely with a graphical notation and soley rely on let  to mark sharing and express a graph structure.[37]

Any implementation of Haskell is in some form based on outermost graph reduction which thus provides a good 
model for reasoning about the asympotic complexity of time and memory allocation. The number of reduction 
steps to reach normal form corresponds to the execution time and the size of the terms in the graph corresponds 
to the memory used.

Exercises

Reduce square (square 3)  to normal form with innermost, 
outermost and outermost graph reduction.

1.

Consider the fast exponentiation algorithm2.

 __________
|   |     ↓

◊ * ◊     (1+2)

square (1+2)
 ⇒  __________           (square)
    |   |     ↓

    ◊ * ◊     (1+2)
 ⇒  __________           (+)
    |   |     ↓

    ◊ * ◊      3

 ⇒ 9                     (*)

area a b c = let s = (a+b+c)/2 in
     sqrt (s*(s-a)*(s-b)*(s-c))

area 1 1 1
 ⇒        _____________________             (area)
          |  |    |     |      ↓

    sqrt ( ◊*( ◊-a)*( ◊-b)*( ◊-c))  ((1+1+1)/2)
 ⇒        _____________________             (+),(+),( /)
          |  |    |     |      ↓

    sqrt ( ◊*( ◊-a)*( ◊-b)*( ◊-c))  1.5
 ⇒
    ...
 ⇒
    0.433012702



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

236 of 290 11/5/2007 9:02 PM

that takes x to the power of n. Reduce power 2 5  with innermost 
and outermost graph reduction. How many reductions are 
performed? What is the asymptotic time complexity for the general 
power 2 n ? What happens to the algorithm if we use "graphless" 
outermost reduction?

Pattern Matching

So far, our description of outermost graph reduction is still underspecified when it comes to pattern matching 
and data constructors. Explaining these points will enable the reader to trace most cases of the reduction strategy
that is commonly the base for implementing non-strict functional languages like Haskell. It is called 
call-by-need or lazy evaluation in allusion to the fact that it "lazily" postpones the reduction of function 
arguments to the last possible moment. Of course, the remaining details are covered in subsequent chapters.

To see how pattern matching needs specification, consider for example the boolean disjunction

and the expression

with a non-terminating loop = not loop . The following reduction sequence

only reduces outermost redexes and therefore is an outermost reduction. But

makes much more sense. Of course, we just want to apply the definition of or  and are only reducing arguments 
to decide which equation to choose. This intention is captured by the following rules for pattern matching in 
Haskell:

Left hand sides are matched from top to bottom
When matching a left hand side, arguments are matched from left to right
Evaluate arguments only as much as needed to decide whether they match or not.

power x 0 = 1
power x n = x' * x' * (if n `mod` 2 == 0 then 1 els e x)
  where x' = power x (n `div` 2)

or True  y = True
or False y = y

or (1==1) loop

or (1==1) loop
 ⇒ or (1==1) (not loop)        (loop)
 ⇒ or (1==1) (not (not loop))  (loop)
 ⇒ ...

or (1==1) loop
 ⇒ or True   loop              (or)
 ⇒ True



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

237 of 290 11/5/2007 9:02 PM

Thus, for our example or (1==1) loop , we have to reduce the first argument to either True  or False , then 
evaluate the second to match a variable y pattern and then expand the matching function definition. As the 
match against a variable always succeeds, the second argument will not be reduced at all. It is the second 
reduction section above that reproduces this behavior.

With these preparations, the reader should now be able to evaluate most Haskell expressions he encounters. 
Here are some random encounters to test this ability:

Exercises

Reduce the following expressions with lazy evaluation to normal form. 
Assume the standard function definitions from the Prelude.

length [42,42+1,42-1]

head (map (2*) [1,2,3])

head $ [1,2,3] ++ (let loop = tail loop in loop)

zip [1..3] (iterate (+1) 0)

head $ concatMap (\x -> [x,x+1]) [1,2,3]

take (42-6*7) $ map square [2718..3146]

Higher Order Functions

The remaining point to clarify is the reduction of higher order functions and currying. For instance, consider the 
definitions

where both id  and twice  are only defined with one argument. The solution is to see multiple arguments as 
subsequent applications to one argument, this is called currying

To reduce an arbitrary application expression 1 expression 2, call-by-need first reduce expression1 until this 
becomes a function whose definition can be unfolded with the argument expression 2. Hence, the reduction 
sequences are

id x = x
a = id (+1) 41

twice f = f . f
b = twice (+1) (13*3)

a = (id    (+1)) 41
b = (twice (+1)) (13*3)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

238 of 290 11/5/2007 9:02 PM

Admittedly, the description is a bit vague and the next section will detail a way to state it clearly.

While it may seem that pattern matching is the workhorse of time intensive computations and higher order 
functions are only for capturing the essence of an algorithm, functions are indeed useful as data structures. One 
example are difference lists ([a] -> [a] ) that permit concatenation in O(1) time, another is the representation 
of a stream by a fold. In fact, all data structures are represented as functions in the pure lambda calculus, the root 
of all functional programming languages.

Exercises! Or not? Diff-Lists Best done with foldl (++)  but this requires knowledge of the fold example. Oh, 
where do we introduce the foldl VS. foldr example at all? Hm, Bird&Wadler sneak in an extra section "Meet 
again with fold" for the (++) example at the end of "Controlling reduction order and space requirements" :-/
The complexity of (++) is explained when arguing about reverse .

Weak Head Normal Form

To formulate precisely how lazy evaluation chooses its reduction sequence, it is best to abandon equational 
function definitions and replace them with an expression-oriented approach. In other words, our goal is to 
translate function definitions like f (x:xs) = ...  into the form f = expression . This can be done with two 
primitives, namely case-expressions and lambda abstractions.

In their primitive form, case-expressions only allow the discrimination of the outermost constructor. For 
instance, the primitive case-expression for lists has the form

Lambda abstractions are functions of one parameter, so that the following two definitions are equivalent

Here is a translation of the definition of zip

to case-expressions and lambda-abstractions:

a
 ⇒ (id (+1)) 41          (a)
 ⇒ (+1) 41               (id)
 ⇒ 42                    (+)

b
 ⇒ (twice (+1)) (13*3)   (b)
 ⇒ ((+1).(+1) ) (13*3)   (twice)
 ⇒ (+1) ((+1) (13*3))    (.)
 ⇒ (+1) ((+1)  39)       (*)
 ⇒ (+1) 40               (+)
 ⇒ 41                    (+)

case expression  of
  []   -> ...
  x:xs -> ...

f x = expression
f   = \x -> expression

zip :: [a] -> [a] -> [(a,a)]
zip []      ys      = []
zip xs      []      = []
zip (x:xs') (y:ys') = (x,y):zip xs' ys'



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

239 of 290 11/5/2007 9:02 PM

Assuming that all definitions have been translated to those primitives, every redex now has the form of either

a function application (\ variable -> expression 1) expression 2

or a case-expression case expression  of { ... }

lazy evaluation.

Weak Head Normal Form
An expression is in weak head normal form, iff it is either

a constructor (eventually applied to arguments) like True , Just (square 42)  or (:) 1 (42+1)

a built-in function applied to too few arguments (perhaps none) like (+) 2  or sqrt .
or a lambda abstraction \x -> expression .

functions types cannot be pattern matched anyway, but the devious seq can evaluate them to WHNF 
nonetheless. "weak" = no reduction under lambdas. "head" = first the function application, then the arguments.

Strict and Non-strict Functions

A non-strict function doesn't need its argument. A strict function needs its argument in WHNF, as long as we do 
not distinguish between different forms of non-termination (f x = loop  doesn't need its argument, for 
example).

Controlling Space

NOTE: The chapter Haskell/Strictness is intended to elaborate on the stuff here.

NOTE: The notion of strict function is to be introduced before this section.

Now's the time for the space-eating fold example:

Introduce seq  and $!  that can force an expression to WHNF. => foldl' .

Tricky space leak example:

The first version runs on O(1) space. The second in O(n).

zip = \xs -> \ys ->
   case xs of
      []    -> []
      x:xs' ->
         case ys of
            []    -> []
            y:ys' -> (x,y):zip xs' ys'

foldl (+) 0 [1..10]

(\xs -> head xs + last xs) [1..n]
(\xs -> last xs + head xs) [1..n]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

240 of 290 11/5/2007 9:02 PM

Sharing and CSE

NOTE: overlaps with section about time. Hm, make an extra memoization section?

How to share

"Lambda-lifting", "Full laziness". The compiler should not do full laziness.

A classic and important example for the trade between space and time:

That's why the compiler should not do common subexpression elimination as optimization. (Does GHC?).

Tail recursion

NOTE: Does this belong to the space section? I think so, it's about stack space.

Tail recursion in Haskell looks different.

Reasoning about Time

Note: introducing strictness before the upper time bound saves some hassle with explanation?

Lazy eval < Eager eval

When reasoning about execution time, naively performing graph reduction by hand to get a clue on what's 
going is most often infeasible. In fact, the order of evaluation taken by lazy evaluation is difficult to predict by 
humans, it is much easier to trace the path of eager evaluation where arguments are reduced to normal form 
before being supplied to a function. But knowing that lazy evaluation always performs less reduction steps than 
eager evaluation (present the proof!), we can easily get an upper bound for the number of reductions by 
pretending that our function is evaluated eagerly.

Example:

=> eager evaluation always takes n steps, lazy won't take more than that. But it will actually take fewer.

Throwing away arguments

foo x y = -- s is not shared
foo x = \y -> s + y
  where s = expensive x -- s is shared

sublists []      = [[]]
sublists (x:xs)  = sublists xs ++ map (x:) sublists  xs
sublists' (x:xs) = let ys = sublists' xs in ys ++ m ap (x:) ys

or = foldr (||) False
isPrime n = not $ or $ map (\k -> n `mod` k == 0) [ 2..n-1]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

241 of 290 11/5/2007 9:02 PM

Time bound exact for functions that examine their argument to normal form anyway. The property that a 
function needs its argument can concisely be captured by denotational semantics:

Argument in WHNF only, though. Operationally: non-termination -> non-termination. (this is an approximation
only, though because f anything = ⊥ doesn't "need" its argument). Non-strict functions don't need their
argument and eager time bound is not sharp. But the information whether a function is strict or not can already
be used to great benefit in the analysis.

It's enough to know or True ⊥ = True .

Other examples:

foldr (:) []  vs. foldl (flip (:)) []  with ⊥.
Can head . mergesort  be analyzed only with ⊥? In any case, this example is too involed and belongs to
Haskell/Laziness.

Persistence & Amortisation

NOTE: this section is better left to a data structures chapter because the subsections above cover most of the 
cases a programmer not focussing on data structures / amortization will encounter.

Persistence = no updates in place, older versions are still there. Amortisation = distribute unequal running 
times across a sequence of operations. Both don't go well together in a strict setting. Lazy evaluation can 
reconcile them. Debit invariants. Example: incrementing numbers in binary representation.

Implementation of Graph reduction

Smalltalk about G-machines and such. Main definition:

closure = thunk = code/data pair on the heap. What do they do? Consider (λx.λy.x + y)2. This is a function that 
returns a function, namely λy.2 + y in this case. But when you want to compile code, it's prohibitive to actually 
perform the substitution in memory and replace all occurences of x by 2. So, you return a closure that consists 
of the function code λy.x + y and an environment {x = 2} that assigns values to the free variables appearing in 
there.

GHC (?, most Haskell implementations?) avoid free variables completely and use supercombinators. In other 
words, they're supplied as extra-parameters and the observation that lambda-expressions with too few 
parameters don't need to be reduced since their WHNF is not very different.

Note that these terms are technical terms for implementation stuff, lazy evaluation happily lives without them. 
Don't use them in any of the sections above.

References

f ⊥ = ⊥

isPrime n = not $ or $ (n `mod` 2 == 0) : (n `mod` 3 == 0) : ...



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

242 of 290 11/5/2007 9:02 PM

↑ At least as far as types are concerned, but we're trying to avoid that word :)1.
↑ More technically, fst  and snd  have types which limit them to pairs. It would be impossible to define 
projection functions on tuples in general, because they'd have to be able to accept tuples of different sizes, 
so the type of the function would vary.

2.

↑ In fact, these are one and the same concept in Haskell.3.
↑ This isn't quite what chr  and ord  do, but that description fits our purposes well, and it's close enough.4.
↑ To make things even more confusing, there's actually even more than one type for integers! Don't worry,
we'll come on to this in due course.

5.

↑ This has been somewhat simplified to fit our purposes. Don't worry, the essence of the function is there.6.
↑ Some of the newer type system extensions to GHC do break this, however, so you're better off just 
always putting down types anyway.

7.

↑ This is a slight lie. That type signature would mean that you can compare two values of any type 
whatsoever, but this clearly isn't true: how can you see if two functions are equal? Haskell includes a kind 
of 'restricted polymorphism' that allows type variables to range over some, but not all types. Haskell 
implements this using type classes, which we'll learn about later. In this case, the correct type of (==)  is Eq 

a => a -> a -> Bool .

8.

↑ In mathematics, n! normally means the factorial of n, but that syntax is impossible in Haskell, so we 
don't use it here.

9.

↑ Actually, defining the factorial of 0 to be 1 is not just arbitrary; it's because the factorial of 0 represents 
an empty product.

10.

↑ This is no coincidence; without mutable variables, recursion is the only way to implement control 
structures. This might sound like a limitation until you get used to it (it isn't, really).

11.

↑ Actually, it's using a function called foldl , which actually does the recursion.12.
↑ Moggi, Eugenio (1991). "Notions of Computation and Monads". Information and Computation 93 (1).13.
↑ w:Philip Wadler. Comprehending Monads (http://citeseer.ist.psu.edu/wadler92comprehending.html) . 
Proceedings of the 1990 ACM Conference on LISP and Functional Programming, Nice. 1990.

14.

↑ w:Philip Wadler. The Essence of Functional Programming
(http://citeseer.ist.psu.edu/wadler92essence.html) . Conference Record of the Nineteenth Annual ACM 
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 1992.

15.

↑ Simon Peyton Jones, Philip Wadler (1993). "Imperative functional programming"
(http://homepages.inf.ed.ac.uk/wadler/topics/monads.html#imperative) . 20'th Symposium on Principles of
Programming Languages.

16.

↑ It infers a monomorphic type because k is bound by a lambda expression, and things bound by lambdas 
always have monomorphic types. See Polymorphism.

17.

↑ Ian Stewart. The true story of how Theseus found his way out of the labyrinth. Scientific American, 
February 1991, page 137.

18.

↑ Gérard Huet. The Zipper. Journal of Functional Programming, 7 (5), Sept 1997, pp. 549--554. PDF
(http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf) 

19.

↑ Note the notion of zipper as coined by Gérard Huet also allows to replace whole subtrees even if there is
no extra data associated with them. In the case of our labyrinth, this is irrelevant. We will come back to 
this in the section Differentiation of data types.

20.

↑ Of course, the second topmost node or any other node at most a constant number of links away from the 
top will do as well.

21.

↑ Note that changing the whole data structure as opposed to updating the data at a node can be achieved in
amortized constant time even if more nodes than just the top node is affected. An example is incrementing
a number in binary representation. While incrementing say 111..11  must touch all digits to yield 
1000..00 , the increment function nevertheless runs in constant amortized time (but not in constant worst 
case time).

22.

↑ Conor Mc Bride. The Derivative of a Regular Type is its Type of One-Hole Contexts. Available online. 
PDF (http://www.cs.nott.ac.uk/~ctm/diff.pdf) 

23.

↑ This phenomenon already shows up with generic tries.24.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

243 of 290 11/5/2007 9:02 PM

↑ Actually, we can apply them to functions whose type is forall a. a -> R, for some arbitrary R, as these 
accept values of any type as a parameter. Examples of such functions: id, const k for any k. So technically,
we can't do anything _useful_ with its elements.

25.

↑ In fact, there are no written down and complete denotational semantics of Haskell. This would be a 
tedious task void of additional insight and we happily embrace the folklore and common sense semantics.

26.

↑ Monads are one of the most successful ways to give denotational semantics to imperative programs. See 
also Haskell/Advanced monads.

27.

↑ Strictness as premature evaluation of function arguments is elaborated in the chapter Graph Reduction.28.
↑ The term Laziness comes from the fact that the prevalent implementation technique for non-strict 
languages is called lazy evaluation

29.

↑ The term lifted is somewhat overloaded, see also Unboxed Types.30.
↑ S. Peyton Jones, A. Reid, T. Hoare, S. Marlow, and F. Henderson. A semantics for imprecise exceptions.
(http://research.microsoft.com/~simonpj/Papers/imprecise-exn.htm) In Programming Languages Design 
and Implementation. ACM press, May 1999.

31.

↑ John C. Reynolds. Polymorphism is not set-theoretic. INRIA Rapports de Recherche No. 296. May 
1984.

32.

↑ Actually, there is a subtlety here: because (.)  is a lazy function, if f  is undefined , we have that id . f 

= \_ -> _|_ . Now, while this may seem equivalent to _|_  for all extents and purposes, you can actually 
tell them apart using the strictifying function seq , meaning that the last category law is broken. We can 
define a new strict composition function, f .! g = ((.) $! f) $! g , that makes Hask a category. We 
proceed by using the normal (.) , though, and attribute any discrepancies to the fact that seq  breaks an 
awful lot of the nice language properties anyway.

33.

↑ Experienced category theorists will notice that we're simplifying things a bit here; instead of presenting 
unit and join as natural transformations, we treat them explicitly as morphisms, and require naturality as 
extra axioms alongside the the standard monad laws (laws 3 and 4). The reasoning is simplicity; we are 
not trying to teach category theory as a whole, simply give a categorical background to some of the 
structures in Haskell. You may also notice that we are giving these morphisms names suggestive of their 
Haskell analogues, because the names η and µ don't provide much intuition.

34.

↑ This is perhaps due to the fact that Haskell programmers like to think of monads as a way of sequencing 
computations with a common feature, whereas in category theory the container aspect of the various 
structures is emphasised. join  pertains naturally to containers (squashing two layers of a container down 
into one), but (>>=)  is the natural sequencing operation (do something, feeding its results into something 
else).

35.

↑ If you can prove that certain laws hold, which we'll explore in the next section.36.
↑ John Maraist, Martin Odersky, and Philip Wadler (May 1998). "The call-by-need lambda calculus"
(http://homepages.inf.ed.ac.uk/wadler/topics/call-by-need.html#need-journal) . Journal of Functional 
Programming 8 (3): 257-317.

37.

Bird, Richard (1998). Introduction to Functional Programming using Haskell. Prentice Hall. ISBN 
0-13-484346-0.
Peyton-Jones, Simon (1987). The Implementation of Functional Programming Languages
(http://research.microsoft.com/~simonpj/papers/slpj-book-1987/) . Prentice Hall.

Laziness

Hard work pays off later. Laziness pays off now! – Steven Wright

      



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

244 of 290 11/5/2007 9:02 PM

Introduction

By now you are aware that Haskell uses lazy evaluation in the sense that nothing is evaluated until necessary. 
The problem is what exactly does "until necessary" mean? In this chapter, we will see how lazy evaluation 
works (how little black magic there is), what exactly it means for functional programming and how to make the 
best use of it. But first, let's consider for having lazy evaluation. At first glance, it is tempting to think that lazy 
evaluation is meant to make programs more efficient. After all, what can be more efficient than not doing 
anything? This is only true in a superficial sense. Besides, in practice, laziness often introduces an overhead that 
leads programmers to hunt for places where they can make their code stricter. The real benefit of laziness is not 
merely that it makes things efficient, but that it makes the right things efficient enough. Lazy evaluation allows 
us to write simple, elegant code which would simply not be practical in a strict environment.

Nonstrictness versus Laziness

There is a slight difference between laziness and nonstrictness. Nonstrict semantics refers to a given property 
of Haskell programs that you can rely on: nothing will be evaluated until it is needed. Lazy evaluation is how 
you implement nonstrictness, using a device called thunks which we explain in the next section. However, these
two concepts are so closely linked that it is beneficial to explain them both together: a knowledge of thunks is 
useful for understanding nonstrictness, and the semantics of nonstrictness explains why you would be using lazy 
evaluation in the first place. As such, we introduce the concepts simultaneously and make no particular effort to 
keep them from intertwining, with the exception of getting the terminology right.

Thunks and Weak head normal form

There are two principles you need to understand to get how programs execute in Haskell. Firstly, we have the 
property of nonstrictness: we evaluate as little as possible for as long as possible. Secondly, Haskell values are 
highly layered; 'evaluating' a Haskell value could mean evaluating down to any one of these layers. To see what 
this means, let's walk through a few examples using a pair.

(We'll assume that in the 'in' part, we use x and y somewhere. Otherwise, we're not forced to evaluate the 
let-binding at all; the right-hand side could have been undefined  and it would still work if the 'in' part doesn't 
mention x or y. This assumption will remain for all the examples in this section.) What do we know about x? 
Looking at it we can see it's pretty obvious x is 5 and y "hello", but remember the first principle: we don't want 
to evaluate the calls to length  and reverse  until we're forced to. So okay, we can say that x and y are both 
thunks: that is, they are unevaluated values with a recipe that explains how to evaluate them. For example, for x
this recipe says 'Evaluate length [1..5] '. However, we are actually doing some pattern matching on the left 
hand side. What would happen if we removed that?

Although it's still pretty obvious to us that z is a pair, the compiler sees that we're not trying to deconstruct the 

let (x, y) = (length [1..5], reverse "olleh") in .. .

let z = (length [1..5], reverse "olleh") in ...



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

245 of 290 11/5/2007 9:02 PM

value on the right-hand side of the '=' sign at all, so it doesn't really care what's there. It lets z be a thunk on its 
own. Later on, when we try to use z, we'll probably need one or both of the components, so we'll have to 
evaluate z, but for now, it can be a thunk.

Above, we said Haskell values were layered. We can see that at work if we pattern match on z:

After the first line has been executed, z is simply a thunk. We know nothing about the sort of value it is because 
we haven't been asked to find out yet. In the second line, however, we pattern match on z using a pair pattern. 
The compiler thinks 'I better make sure that pattern does indeed match z, and in order to do that, I need to make 
sure z is a pair.' Be careful, though. We're not as of yet doing anything with the component parts (the calls to 
length  and reverse ), so they can remain unevaluated. In other words, z, which was just a thunk, gets evaluated 
to something like (*thunk*, *thunk*) , and n and s become thunks which, when evaluated, will be the 
component parts of the original z.

Let's try a slightly more complicated pattern match:

The pattern match on the second component of z

causes some evaluation. The compiler wishes to 
check that the 'h':ss  pattern matches the second 
component of the pair. So, it:

Evaluates the top level of s to ensure it's a cons 
cell: s = *thunk* : *thunk* . (If s had been an 
empty list we would encounter an pattern match 
failure error at this point.)
Evaluates the first thunk it just revealed to make 
sure it's 'h': s = 'h' : *thunk*

The rest of the list stays unevaluated, and ss

becomes a thunk which, when evaluated, will be 
the rest of this list.

So it seems that we can 'partially evaluate' (most) 
Haskell values. Also, there is some sense of the 
minimum amount of evaluation we can do. For 
example, if we have a pair thunk, then the minimum
amount of evaluation takes us to the pair 
constructor with two unevaluated components: 
(*thunk*, *thunk*) . If we have a list, the 

minimum amount of evaluation takes us either to a cons cell *thunk* : *thunk*  or an empty list [] . Note that 
in the second case, no more evaluation can be performed on the value; it is said to be in normal form . If we are 
at any of the intermediate steps so that we've performed at least some evaluation on a value, it is in weak head 

let z     = (length [1..5], reverse "olleh")
   (n, s) = z 
in ...

let z     = (length [1..5], reverse "olleh")
   (n, s) = z 
   'h':ss = s
in ...

Evaluating the value (4, [1, 2])  step by step. The first 
stage is completely unevaluated; all subsequent forms are in 

WHNF, and the last one is also in normal form.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

246 of 290 11/5/2007 9:02 PM

normal form  (WHNF). (There is also a 'head normal form', but it's not used in Haskell.) Fully evaluating 
something in WHNF reduces it to something in normal form; if at some point we needed to, say, print z out to 
the user, we'd need to fully evaluate it to, including those calls to length  and reverse , to (5, "hello") , where 
it is in normal form. Performing any degree of evaluation on a value is sometimes called forcing that value.

Note that for some values there is only one. For example, you can't partially evaluate an integer. It's either a 
thunk or it's in normal form. Furthermore, if we have a constructor with strict components (annotated with an 
exclamation mark, as with data MaybeS a = NothingS | JustS !a ), these components become evaluated as 
soon as we evaluate the level above. I.e. we can never have JustS *thunk* , as soon as we get to this level the 
strictness annotation on the component of JustS  forces us to evaluate the component part.

So in this section we've explored the basics of laziness. We've seen that nothing gets evaluated until its needed 
(in fact the only place that Haskell values get evaluated is in pattern matches, and inside certain primitive IO
functions), and that this principle even applies to evaluting values ─ we do the minimum amount of work on a
value that we need to compute our result.

Lazy and strict functions

Functions can be lazy or strict 'in an argument'. Most functions need to do something with their arguments, and 
this will involve evaluating these arguments to different levels. For example, length  needs to evaluate only the
cons cells in the argument you give it, not the contents of those cons cells ─ length *thunk*  might evaluate to 
something like length (*thunk* : *thunk* : *thunk* : []) , which in turn evaluates to 3. Others need to 
evaluate their arguments fully, like show. If you had show *thunk* , there's no way you can do anything other 
than evaulate that thunk to normal form.

So some functions evaluate their arguments more fully than others. Given two functions of one parameter, f  and 
g, we say f  is stricter than g if f x  evaluates x to a deeper level than g x . Often we only care about WHNF, so a 
function that evaluates its argument to at least WHNF is called strict and one that performs no evaluation is lazy. 
What about functions of more than one parameter? Well, we can talk about functions being strict in one 
parameter, but lazy in another. For example, given a function like the following:

Clearly we need to perform no evaluation on y, but we need to evaluate x fully to normal form, so f  is strict in 
its first parameter but lazy in its second.

Exercises

Why must we fully evaluate x to normal form in f x y = show x ?1.
Which is the stricter function?2.

TODO: explain that it's also about how much of the input we need to consume before we can start producing 
output. E.g. foldr (:) [] and foldl (flip (:)) [] both evaluate their arguments to the same level of strictness, but 

f x y = show x

f x = length [head x]
g x = length (tail x)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

247 of 290 11/5/2007 9:02 PM

foldr can start producing values straight away, whereas foldl needs to evaluate cons cells all the way to the end 
before it starts anything.

Black-box strictness analysis

Imagine we're given some function f  which takes a single 
parameter. We're not allowed to look at its source code, but 
we want to know whether f  is strict or not. How might we 
do this? Probably the easiest way is to use the standard 
Prelude value undefined . Forcing undefined  to any level of 
evaluation will halt our program and print an error, so all of 
these print errors:

So if a function is strict, passing it undefined will result in an
error. Were the function lazy, passing it undefined will print 
no error and we can carry on as normal. For example, none 
of the following produce errors:

So we can say that f  is a strict function if, and only if, f undefined  results in an error being printed and the 
halting of our program.

In the context of nonstrict semantics

What we've presented so far makes sense until you start to think about functions like id . Is id  strict? Our gut 
reaction is probably to say "No! It doesn't evaluate its argument, therefore its lazy". However, let's apply our 
black-box strictness analysis from the last section to id . Clearly, id undefined  is going to print an error and 
halt our program, so shouldn't we say that id  is strict? The reason for this mixup is that Haskell's nonstrict 
semantics makes the whole issue a bit murkier.

Nothing gets evaluated if it doesn't need to be, according to nonstrictness. In the following code, will length 

undefined  be evaluated?

If you type this into GHCi, it seems so, because you'll get an error printed. However, our question was 
something of a trick one; it doesn't make sense to say whether a value get evaluated, unless we're doing 
something to this value. Think about it: if we type in head [1, 2, 3]  into GHCi, the only reason we have to do 
any evaluation whatsoever is because GHCi has to print us out the result. Typing [4, 10, length undefined, 

If f  returns an error when passed undefined, it must 
be strict. Otherwise, it's lazy.

let (x, y) = undefined in x
length undefined
head undefined
JustS undefined -- Using MaybeS as defined in the l ast section

let (x, y) = (4, undefined) in x
length [undefined, undefined, undefined]
head (4 : undefined)
Just undefined

[4, 10, length undefined, 12]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

248 of 290 11/5/2007 9:02 PM

12]  again requires GHCi to print that list back to us, so it must evaluate it to normal form. You can think of 
anything you type into GHCi as being passed to show. In your average Haskell program, nothing at all will be 
evaluated until we come to perform the IO in main . So it makes no sense to say whether something is evaluated 
or not unless we know what it's being passed to, one level up.

So when we say "Does f x  force x?" what we really mean is "Given that we're forcing f x , does x get forced as 
a result?". Now we can turn our attention back to id . If we force id x  to normal form, then x will be forced to 
normal form, so we conclude that id  is strict. id  itself doesn't evaluate its argument, it just hands it on to the 
caller who will. One way to see this is in the following code:

id  doesn't "stop" the forcing, so it is strict. Contrast this to a clearly lazy function, const (3, 4) :

The denotational view on things

If you're familiar with denotational semantics (perhaps you've read the wikibook chapter on it?), then the 
strictness of a function can be summed up very succinctly:

Assuming that you say that everything with type forall a. a , including undefined , error "any string" , 
throw  and so on, has denotation ⊥.

Lazy pattern matching

You might have seen pattern matches like the following in Haskell sources.

Example: A lazy pattern match

The question is: what does the tilde sign (~) mean in the above pattern match? ~ makes a lazy pattern or 
irrefutable pattern. Normally, if you pattern match using a constructor as part of the pattern, you have to 
evaluate any argument passed into that function to make sure it matches the pattern. For example, if you had a 
function like the above, the third argument would be evaluated when you call the function to make sure the 
value matches the pattern. (Note that the first and second arguments won't be evaluated, because the patterns f
and g match anything. Also it's worth noting that the components of the tuple won't be evaluated: just the 'top 
level'. Try let f (Just x) = 1 in f (Just undefined)  to see the this.)

-- We evaluate the right-hand of the let-binding to  WHNF by pattern-matching
-- against it.
let (x, y) = undefined in x -- Error, because we fo rce undefined.
let (x, y) = id undefined in x -- Error, because we  force undefined.

let (x, y) = undefined in x -- Error, because we fo rce undefined.
let (x, y) = const (3, 4) undefined -- No error, be cause const (3, 4) is lazy.

-- From Control.Arrow
(***) f g ~(x, y) = (f x, g y)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

249 of 290 11/5/2007 9:02 PM

However, prepending a pattern with a tilde sign delays the evaluation of the value until the component parts are 
actually used. But you run the risk that the value might not match the pattern -- you're telling the compiler 'Trust 
me, I know it'll work out'. (If it turns out it doesn't match the pattern, you get a runtime error.) To illustrate the 
difference:

Example: How ~ makes a difference

In the first example, the value is evaluated because it has to match the tuple pattern. You evaluate undefined and
get undefined, which stops the preceedings. In the latter example, you don't bother evaluating the parameter until
it's needed, which turns out to be never, so it doesn't matter you passed it undefined . To bring the discussion 
around in a circle back to (***) :

Example: How ~ makes a difference with (***) )

If the pattern weren't irrefutable, the example would have failed.

When does it make sense to use lazy patterns?

Essentially, when you only have the single constructor for the type, e.g. tuples. Multiple equations won't work 
nicely with irrefutable patterns. To see this, let's examine what would happen were we to make head  have an 
irrefutable pattern:

Example: Lazier head

The fact we're using one of these patterns tells us not to evaluate even the top level of the argument until 
absolutely necessary, so we don't know whether it's an empty list or a cons cell. As we're using an irrefutable
pattern for the first equation, this will match, and the function will always return undefined.

Exercises

Prelude> let f (x,y) = 1 in f undefined
Undefined
Prelude> let f ~(x,y) = 1 in f undefined
1

Prelude> (const 1 *** const 2) undefined
(1,2)

head' :: [a] -> a
head' ~[]     = undefined
head' ~(x:xs) = x



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

250 of 290 11/5/2007 9:02 PM

Why won't changing the order of the equations to head'  help here?
More to come...

Techniques with Lazy Evaluation

This section needs a better title and is intended to be the workhorse of this chapter.

Separation of concerns without time penality

Examples:

The more examples, the better!

What about the case of (large data -> small data) where lazy evaluation is space-hungry but doesn't take less 
reductions than eager evaluation? Mention it here? Elaborate it in Haskell/Strictness?

xs++ys

xs ++ ys is O(min(length xs,k)) where k is the length of the part of the result which you observe. This follows 
directly from the definition of (++)  and laziness.

Let's try it in a specific case, completely expanding the definition:

Here, the length of the left list was 3, and it took 4 steps to completely reduce the definition of (++) . As you can 
see, the length and content of ys  actually doesn't matter at all, as it just ends up being a tail of the resulting list. 
You can see fairly easily that it will take length xs + 1  steps to completely expand the definition of (++)  in xs 

++ ys  in general. However, this won't actually happen until you go about actually using those elements of the 
list. If only the first k elements of the list are demanded, where k <= length xs , then they will be available after 

or = foldr (||) False
isSubstringOf x y = any (isPrefixOf x) (tails y)
take n . quicksort
take n . mergesort
prune . generate

[]     ++ ys = ys              -- case 1
(x:xs) ++ ys = x : (xs ++ ys)  -- case 2

[1,2,3] ++ ys
= 1 : ([2,3] ++ ys)          -- by case 2
= 1 : (2 : ([3] ++ ys))      -- by case 2
= 1 : (2 : (3 : ([] ++ ys))) -- by case 2
= 1 : (2 : (3 : ys))         -- by case 1



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

251 of 290 11/5/2007 9:02 PM

only k steps, so indeed,

(or getting any constant number of elements from the head) will evaluate in constant time.

isSubstringOf

TODO:rewrite introduction to this section / now redundant with main intro

Often code reuse is far better.

Here's a simple example:

Example: Laziness helps code reuse

Where any , isPrefixOf  and tails  are the functions taken from the Data.List  library. This function determines
if its first parameter, x occurs as a substring of its second, y. Read in a strict way, it forms the list of all the tails 
of y, then checks them all to see if any of them have x as a prefix. In a strict language, writing this function this 
way (relying on the already-written programs any , isPrefixOf , and tails ) would be silly, because it would be 
far slower than it needed to be. You'd end up doing direct recursion again, or in an imperative language, a couple
of nested loops. You might be able to get some use out of isPrefixOf , but you certainly wouldn't use tails . 
You might be able to write a usable shortcutting any , but it would be more work, since you wouldn't want to use 
foldr  to do it.

Now, in a lazy language, all the shortcutting is done for you. You don't end up rewriting foldr to shortcut when 
you find a solution, or rewriting the recursion done in tails so that it will stop early again. You can reuse 
standard library code better. Laziness isn't just a constant-factor speed thing, it makes a qualitative impact on the 
code which it's reasonable to write. In fact, it's commonplace to define infinite structures, and then only use as 
much as is needed, rather than having to mix up the logic of constructing the data structure with code that 
determines whether any part is needed. Code modularity is increased, as laziness gives you more ways to chop 
up your code into small pieces, each of which does a simple task of generating, filtering, or otherwise 
manipulating data.

Why Functional Programming Matters (http://www.md.chalmers.se/~rjmh/Papers/whyfp.html) -- largely focuses 

head (xs ++ ys)

-- From the Prelude
or = foldr (||) False
any p = or . map p 
 
-- From Data.List
isPrefixOf []     _      = True
isPrefixOf _      []     = False
isPrefixOf (x:xs) (y:ys) = x == y && isPrefixOf xs ys 

tails []         = [[]]
tails xss@(_:xs) = xss : tails xs

-- Our function
isSubstringOf x y = any (isPrefixOf x) (tails y)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

252 of 290 11/5/2007 9:02 PM

on examples where laziness is crucial, and provides a strong argument for lazy evaluation being the default.

Infinite Data Structures

Examples:

Infinite data structures usually tie a knot, too, but the Sci-Fi-Explanation of that is better left to the next section. 
One could move the next section before this one but I think that infinite data structures are simpler than tying 
general knots

Tying the Knot

More practical examples?

Sci-Fi-Explanation: "You can borrow things from the future as long as you don't try to change them". 
Advanced: the "Blueprint"-technique. Examples: the one from the haskellwiki, the one from the mailing list.

At first a pure functional language seems to have a problem with circular data structures. Suppose I have a data 
type like this:

If I want to create two objects "x" and "y" where "x" contains a reference to "y" and "y" contains a reference to 
"x" then in a conventional language this is straightforward: create the objects and then set the relevant fields to 
point to each other:

In Haskell this kind of modification is not allowed. So instead we depend on lazy evaluation:

This depends on the fact that the "Foo" constructor is a function, and like most functions it gets evaluated lazily. 
Only when one of the fields is required does it get evaluated.

fibs = 1:1:zipWith (+) fibs (tail fibs)
"rock-scissors-paper" example from Bird&Wadler
prune . generate

repMin

 data Foo a = Foo {value :: a; next :: Foo}

 -- Not Haskell code
 x := new Foo;
 y := new Foo;
 x.value := 1;
 x.next := y;
 y.value := 2
 y.next := x;

circularFoo :: Foo Int 
circularFoo = x
   where
      x = Foo 1 y
      y = Foo 2 x



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

253 of 290 11/5/2007 9:02 PM

It may help to understand what happens behind the scenes here. When a lazy value is created, for example by a 
call to "Foo", the compiler generates an internal data structure called a "thunk" containing the function call and 
arguments. When the value of the function is demanded the function is called, as you would expect. But then the
thunk data structure is replaced with the return value. Thus anything else that refers to that value gets it straight 
away without the need to call the function.

(Note that the Haskell language standard makes no mention of thunks: they are an implementation mechanism. 
From the mathematical point of view this is a straightforward example of mutual recursion)

So when I call "circularFoo" the result "x" is actually a thunk. One of the arguments is a reference to a second 
thunk representing "y". This in turn has a reference back to the thunk representing "x". If I then use the value 
"next x" this forces the "x" thunk to be evaluated and returns me a reference to the "y" thunk. If I use the value 
"next $ next x" then I force the evaluation of both thunks. So now both thunks have been replaced with the 
actual "Foo" structures, refering to each other. Which is what we wanted.

This is most often applied with constructor functions, but it isn't limited just to constructors. You can just as 
readily write:

The same logic applies.

Memoization, Sharing and Dynamic Programming

Dynamic programming with immutable arrays. DP with other finite maps, Hinze's paper "Trouble shared is 
Trouble halved". Let-floating \x-> let z = foo x in \y -> ...  .

Conclusions about laziness

Move conclusions to the introduction?

Can make qualitative improvements to performance!
Can hurt performance in some other cases.
Makes code simpler.
Makes hard problems conceivable.
Allows for separation of concerns with regard to generating and processing data.

References

Laziness on the Haskell wiki (http://www.haskell.org/haskellwiki/Performance/Laziness) 
Lazy evaluation tutorial on the Haskell wiki
(http://www.haskell.org/haskellwiki/Haskell/Lazy_Evaluation) 

Strictness

  x = f y
  y = g x



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

254 of 290 11/5/2007 9:02 PM

Difference between strict and lazy evaluation

Strict evaluation, or eager evaluation, is an evaluation strategy where expressions are evaluated as soon as they 
are bound to a variable. For example, with strict evaluation, when x = 3 * 7  is read, 3 * 7 is immediately 
computed and 21 is bound to x. Conversely, with lazy evaluation values are only computed when they are 
needed. In the example x = 3 * 7 , 3 * 7 isn't evaluated until it's needed, like if you needed to output the value 
of x.

Why laziness can be problematic

Lazy evaluation often involves objects called thunks. A thunk is a placeholder object, specifying not the data 
itself, but rather how to compute that data. An entity can be replaced with a thunk to compute that entity. When 
an entity is copied, whether or not it is a thunk doesn't matter - it's copied as is (on most implementations, a 
pointer to the data is created). When an entity is evaluated, it is first checked if it is thunk; if it's a thunk, then it 
is executed, otherwise the actual data is returned. It is by the magic of thunks that laziness can be implemented.

Generally, in the implementation the thunk is really just a pointer to a piece of (usually static) code, plus another 
pointer to the data the code should work on. If the entity computed by the thunk is larger than the pointer to the 
code and the associated data, then a thunk wins out in memory usage. But if the entity computed by the thunk is 
smaller, the thunk ends up using more memory.

As an example, consider an infinite length list generated using the expression iterate (+ 1) 0 . The size of the 
list is infinite, but the code is just an add instruction, and the two pieces of data, 1 and 0, are just two Integers. In 
this case, the thunk representing that list takes much less memory than the actual list, which would take infinite 
memory.

However, as another example consider the number generated using the expression 4 * 13 + 2 . The value of that 
number is 54, but in thunk form it is a multiply, an add, and three numbers. In such a case, the thunk loses in 
terms of memory.

Often, the second case above will consume so much memory that it will consume the entire heap and force the 
garbage collector. This can slow down the execution of the program significantly. And that, in fact, is the reason 
why laziness can be problematic.

Strictness annotations

seq

DeepSeq

References

Strictness on the Haskell wiki (http://www.haskell.org/haskellwiki/Performance/Strictness) 



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

255 of 290 11/5/2007 9:02 PM

Algorithm complexity

Complexity Theory is the study of how long a program will take to run, depending on the size of its input. There 
are many good introductory books to complexity theory and the basics are explained in any good algorithms 
book. I'll keep the discussion here to a minimum.

The idea is to say how well a program scales with more data. If you have a program that runs quickly on very 
small amounts of data but chokes on huge amounts of data, it's not very useful (unless you know you'll only be 
working with small amounts of data, of course). Consider the following Haskell function to return the sum of the
elements in a list:

How long does it take this function to complete? That's a very difficult question; it would depend on all sorts of 
things: your processor speed, your amount of memory, the exact way in which the addition is carried out, the 
length of the list, how many other programs are running on your computer, and so on. This is far too much to 
deal with, so we need to invent a simpler model. The model we use is sort of an arbitrary "machine step." So the 
question is "how many machine steps will it take for this program to complete?" In this case, it only depends on 
the length of the input list.

If the input list is of length 0, the function will take either 0 or 1 or 2 or some very small number of machine 
steps, depending exactly on how you count them (perhaps 1 step to do the pattern matching and 1 more to return 
the value 0). What if the list is of length 1. Well, it would take however much time the list of length 0 would 
take, plus a few more steps for doing the first (and only element).

If the input list is of length n, it will take however many steps an empty list would take (call this value y) and 
then, for each element it would take a certain number of steps to do the addition and the recursive call (call this 
number x). Then, the total time this function will take is nx + y since it needs to do those additions n many times.
These x and y values are called constant values, since they are independent of n, and actually dependent only on
exactly how we define a machine step, so we really don't want to consider them all that important. Therefore, we
say that the complexity of this sum function is  (read "order n"). Basically saying something is 
means that for some constant factors x and y, the function takes nx + y machine steps to complete.

Consider the following sorting algorithm for lists (commonly called "insertion sort"):

The way this algorithm works is as follow: if we want to sort an empty list or a list of just one element, we return
them as they are, as they are already sorted. Otherwise, we have a list of the form x:xs . In this case, we sort xs

and then want to insert x in the appropriate location. That's what the insert  function does. It traverses the 
now-sorted tail and inserts x wherever it naturally fits.

sum [] = 0
sum (x:xs) = x + sum xs

sort []  = []
sort [x] = [x]
sort (x:xs) = insert (sort xs)
    where insert [] = [x]
          insert (y:ys) | x <= y    = x : y : ys
                        | otherwise = y : insert ys



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

256 of 290 11/5/2007 9:02 PM

Let's analyze how long this function takes to complete. Suppose it takes f(n) stepts to sort a list of length n. 
Then, in order to sort a list of n-many elements, we first have to sort the tail of the list first, which takes f(n − 1)
time. Then, we have to insert x into this new list. If x has to go at the end, this will take 

steps. Putting all of this together, we see that we have to do  amount of work  many times, which 

means that the entire complexity of this sorting algorithm is . Here, the squared is not a constant value, 

so we cannot throw it out.

What does this mean? Simply that for really long lists, the sum function won't take very long, but that the sort

function will take quite some time. Of course there are algorithms that run much more slowly than simply 
 and there are ones that run more quickly than . (Also note that a  algorithm may actually 

be much faster than a  algorithm in practice, if it takes much less time to perform a single step of the 

 algorithm.)

Consider the random access functions for lists and arrays. In the worst case, accessing an arbitrary element in a 
list of length n will take  time (think about accessing the last element). However with arrays, you can 
access any element immediately, which is said to be in constant time, or , which is basically as fast an any 
algorithm can go.

There's much more in complexity theory than this, but this should be enough to allow you to understand all the 
discussions in this tutorial. Just keep in mind that  is faster than  is faster than , etc.

Optimising

Profiling

Concurrency

Concurrency

If you need concurrency in Haskell, you should be able to simply consult the docs for Control.Concurrent.* and 
Control.Monad.STM.

Example

Example: Downloading files in parallel



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

257 of 290 11/5/2007 9:02 PM

Choosing data structures
Haskell/Choosing data structures

Libraries Reference

Hierarchical libraries
Haskell has a rich and growing set of function libraries. They fall into several groups:

The Standard Prelude (often referred to as just "the Prelude") is defined in the Haskell 98 standard and 
imported automatically to every module you write. This defines standard types such as strings, lists and 
numbers and the basic functions on them, such as arithmetic, map and foldr

The Standard Libraries are also defined in the Haskell 98 standard, but you have to import them when you
need them. The reference manuals for these libraries are at http://www.haskell.org/onlinereport/

Since 1998 the Standard Libraries have been gradually extended, and the resulting de-facto standard is 
known as the Base libraries. The same set is available for both HUGS and GHC.

Other libraries may be included with your compiler, or can be installed using the Cabal mechanism.

When Haskell 98 was standardised modules were given a flat namespace. This has proved inadequate and a 
hierarchical namespace has been added by allowing dots in module names. For backward compatibility the 
standard libraries can still be accessed by their non-hierarchical names, so the modules List  and Data.List

both refer to the standard list library.

For details of how to import libraries into your program, see Modules and libraries. For an explanation of the 
Cabal system for packaging Haskell software see Distributing your software with the Cabal.

Haddock Documentation

Library reference documentation is generally produced using the Haddock tool. The libraries shipped with GHC 
are documented using this mechanism. You can view the documentation at 
http://www.haskell.org/ghc/docs/latest/html/libraries/index.html, and if you have installed GHC then there 
should also be a local copy.

Haddock produces hyperlinked documentation, so every time you see a function, type or class name you can 

downloadFile :: URL -> IO ()
downloadFile = undefined

downloadFiles :: [URL] -> IO ()
downloadFiles = mapM_ (forkIO . downloadFile)



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

258 of 290 11/5/2007 9:02 PM

click on it to get to the definition. The sheer wealth of libraries available can be intimidating, so this tutorial will 
point out the highlights.

One thing worth noting with Haddock is that types and classes are cross-referenced by instance. So for example 
in the Data.Maybe (http://www.haskell.org/ghc/docs/latest/ html/libraries/base/Data-Maybe.html) 

library the Maybe data type is listed as an instance of Ord :

This means that if you declare a type Foo is an instance of Ord  then the type Maybe Foo  will automatically be an 
instance of Ord  as well. If you click on the word Ord  in the document then you will be taken to the definiton of 
the Ord  class and its (very long) list of instances. The instance for Maybe will be down there as well.

Hierarchical libraries/Lists
The List  datatype is the fundamental data structure in Haskell — this is the basic building-block of data storage
and manipulation. In computer science terms it is a singly-linked list. In the hierarchical library system the List
module is stored in Data.List ; but this module only contains utility functions. The definition of list itself is 
integral to the Haskell language.

Theory

A singly-linked list is a set of values in a defined order. The list can only be traversed in one direction (ie, you 
cannot move back and forth through the list like tape in a cassette machine).

The list of the first 5 positive integers is written as

We can move through this list, examining and changing values, from left to right, but not in the other direction. 
This means that the list

is not just a trivial change in perspective from the previous list, but the result of significant computation (O(n) in
the length of the list).

Definition

The polymorphic list datatype can be defined with the following recursive definition:

The "base case" for this definition is [] , the empty list. In order to put something into this list, we use the (:)

constructor

Ord a => Ord (Maybe a)

[ 1, 2, 3, 4, 5 ]

[ 5, 4, 3, 2, 1 ]

data [a] = []
         | a : [a]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

259 of 290 11/5/2007 9:02 PM

The (:)  (pronounced cons) is right-associative, so that creating multi-element lists can be done like

or even just

Basic list usage

Prepending

It's easy to hard-code lists without cons, but run-time list creation will use cons. For example, to push an 
argument onto a simulated stack, we would use:

Pattern-matching

If we want to examine the top of the stack, we would typically use a peek function. We can try pattern-matching 
for this.

The a before the cons in the pattern matches the head of the list. The as  matches the tail of the list. Since we 
don't actually want the tail (and it's not referenced anywhere else in the code), we can tell the compiler this 
explicitly, by using a wild-card match, in the form of an underscore:

List utilities

FIXME: is this not covered in the chapter on list manipulation?

Maps

Folds, unfolds and scans

Length, head, tail etc.

emptyList = []
oneElem = 1:[]

manyElems = 1:2:3:4:5:[]

manyElems' = [1,2,3,4,5]

push :: Arg -> [Arg] -> [Arg]
push arg stack = arg:stack

peek :: [Arg] -> Maybe Arg
peek [] = Nothing
peek (a:as) = Just a

peek (a:_) = Just a



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

260 of 290 11/5/2007 9:02 PM

Hierarchical libraries/Randoms

Random examples

Here are a handful of uses of random numbers by example

Example: Ten random integer numbers

There exists a global random number generator which is initialized automatically in a system dependent fashion.
This generator is maintained in the IO monad and can be accessed with getStdGen. Once obtained getting 
random numbers out of a generator does not require the IO monad, i.e. a generator can be used in pure functions.

Alternatively one can get a generator by initializing it with an integer, using mkStdGen:

Example: Ten random floats using mkStdGen

Running this script results in output like this:

Example: Unsorting a list (imperfectly)

import System.Random

main = do
   gen <- getStdGen
   let ns = randoms gen :: [Int]
   print $ take 10 ns

import System.Random

randomList :: (Random a) => Int -> [a]
randomList seed = randoms (mkStdGen seed)

main :: IO ()
main = do print $ take 10 (randomList 42 :: [Float] )

[0.110407025,0.8453985,0.3077821,0.78138804,0.52425 82,0.5196911,0.20084688,0.4794773,0.3240164,6.15663 83e-2]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

261 of 290 11/5/2007 9:02 PM

There's more to random number generation than randoms . You can, for example, use random  (sans 's') to 
generate a random number from a low to a high range. See below for more ideas.

The Standard Random Number Generator

The Haskell standard random number functions and types are defined in the Random module (or 
System.Random if you use hierarchical modules). The definition is at 
http://www.haskell.org/onlinereport/random.html, but its a bit tricky to follow because it uses classes to make 
itself more general.

From the standard:

OK. This basically introduces StdGen, the standard random number generator "object". Its an instance of the 
RandomGen class just in case anyone wants to implement a different random number generator.

If you have r :: StdGen then you can say:

This gives you a random Int x and a new StdGen r2. The 'next' function is defined in the RandomGen class, and 
you can apply it to something of type StdGen because StdGen is an instance of the RandomGen class, as below.

From the Standard:

This also says that you can convert a StdGen to and from a string, which is there as a handy way to save the state
of the generator. (The dots are not Haskell syntax. They simply say that the Standard does not define an 

import Data.List ( sort )
import Data.Ord ( comparing )
import System.Random ( Random, RandomGen, randoms, getStdGen )

main :: IO ()
main =
 do gen   <- getStdGen
    interact $ unlines . unsort gen . lines

unsort :: g -> [x] -> [x]
unsort g es = map snd $ sortBy (comparing fst) $ zi p rs es
  where rs = randoms g :: [Integer]

---------------- The RandomGen class -------------- ----------

class RandomGen g where
  genRange :: g -> (Int, Int)
  next     :: g -> (Int, g)
  split    :: g -> (g, g)

---------------- A standard instance of RandomGen - ----------
data StdGen = ... -- Abstract

  (x, r2) = next r

instance RandomGen StdGen where ...
instance Read      StdGen where ...
instance Show      StdGen where ...



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

262 of 290 11/5/2007 9:02 PM

implementation of these instances.)

From the Standard:

This is the factory function for StdGen objects. Put in a seed, get out a generator.

The reason that the 'next' function also returns a new random number generator is that Haskell is a functional 
language, so no side effects are allowed. In most languages the random number generator routine has the hidden 
side effect of updating the state of the generator ready for the next call. Haskell can't do that. So if you want to 
generate three random numbers you need to say something like

The other thing is that the random values (x1, x2, x3) are random integers. To get something in the range, say, 
(0,999) you would have to take the modulus yourself, which is silly. There ought to be a library routine built on 
this, and indeed there is.

From the Standard:

Remember that StdGen is the only instance of type RandomGen (unless you roll your own random number 
generator). So you can substitute StdGen for 'g' in the types above and get this:

But remember that this is all inside *another* class declaration "Random". So what this says is that any instance 
of Random can use these functions. The instances of Random in the Standard are:

So for any of these types you can get a random range. You can get a random integer with:

mkStdGen :: Int -> StdGen

  let
     (x1, r2) = next r
     (x2, r3) = next r2
     (x3, r4) = next r3

---------------- The Random class ----------------- ----------
class Random a where
   randomR :: RandomGen g => (a, a) -> g -> (a, g)
   random  :: RandomGen g => g -> (a, g)

   randomRs :: RandomGen g => (a, a) -> g -> [a]
   randoms  :: RandomGen g => g -> [a]

   randomRIO :: (a,a) -> IO a
   randomIO  :: IO a

  randomR :: (a, a) -> StdGen -> (a, StdGen)
  random  :: StdGen -> (a, StdGen)

  randomRs :: (a, a) -> StdGen -> [a]
  randoms  :: StdGen -> [a]

instance Random Integer where ...
instance Random Float   where ...
instance Random Double  where ...
instance Random Bool    where ...
instance Random Char    where ...



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

263 of 290 11/5/2007 9:02 PM

And you can get a random upper case character with

You can even get a random bit with

So far so good, but threading the random number state through your entire program like this is painful, error 
prone, and generally destroys the nice clean functional properties of your program.

One partial solution is the "split" function in the RandomGen class. It takes one generator and gives you two 
generators back. This lets you say something like this:

In this case we are passing r1 down into function foo, which does something random with it and returns a result 
"x", and we can then take "r2" as the random number generator for whatever comes next. Without "split" we 
would have to write

But even this is often too clumsy, so you can do it the quick and dirty way by putting the whole thing in the IO 
monad. This gives you a standard global random number generator just like any other language. But because its 
just like any other language it has to do it in the IO monad.

From the Standard:

So you could write:

This gets the global generator, uses it, and then updates it (otherwise every random number will be the same). 
But having to get and update the global generator every time you use it is a pain, so its more common to use 

  (x1, r2) = randomR (0,999) r

  (c2, r3) = randomR ('A', 'Z') r2

  (b3, r4) = randomR (False, True) r3

  (r1, r2) = split r
  x = foo r1

  (x, r2) = foo r1

---------------- The global random generator ------ ---------- 
newStdGen    :: IO StdGen 
setStdGen    :: StdGen -> IO ()
getStdGen    :: IO StdGen
getStdRandom :: (StdGen -> (a, StdGen)) -> IO a

  foo :: IO Int
  foo = do
     r1 <- getStdGen
     let (x, r2) = randomR (0,999) r1
     setStdGen r2
     return x



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

264 of 290 11/5/2007 9:02 PM

getStdRandom. The argument to this is a function. Compare the type of that function to that of 'random' and 
'randomR'. They both fit in rather well. To get a random integer in the IO monad you can say:

The 'randomR (1,999)' has type "StdGen -> (Int, StdGen)", so it fits straight into the argument required by 
getStdRandom.

Using QuickCheck to Generate Random Data

Only being able to do random numbers in a nice straightforward way inside the IO monad is a bit of a pain. You 
find that some function deep inside your code needs a random number, and suddenly you have to rewrite half 
your program as IO actions instead of nice pure functions, or else have an StdGen parameter tramp its way down
there through all the higher level functions. Something a bit purer is needed.

If you have read anything about Monads then you might have recognized the pattern I gave above:

The job of a monad is to abstract out this pattern, leaving the programmer to write something like:

Of course you can do this in the IO monad, but it would be better if random numbers had their own little monad 
that specialised in random computations. And it just so happens that such a monad exists. It lives in the 
Test.QuickCheck library, and it's called "Gen". And it does lots of very useful things with random numbers.

The reason that "Gen" lives in Test.QuickCheck is historical: that is where it was invented. The purpose of 
QuickCheck is to generate random unit tests to verify properties of your code. (Incidentally its very good at this, 
and most Haskell developers use it for testing). See the QuickCheck
(http://www.cs.chalmers.se/~rjmh/QuickCheck) homepage for more details. This tutorial will concentrate on 
using the "Gen" monad for generating random data.

Most Haskell compilers (including GHC) bundle QuickCheck in with their standard libraries, so you probably 
won't need to install it separately. Just say

in your source file.

The "Gen" monad can be thought of as a monad of random computations. As well as generating random 
numbers it provides a library of functions that build up complicated values out of simple ones.

So lets start with a routine to return three random integers between 0 and 999:

  x <- getStdRandom $ randomR (1,999)

  let
     (x1, r2) = next r
     (x2, r3) = next r2
     (x3, r4) = next r3

  do -- Not real Haskell
     x1 <- random
     x2 <- random
     x3 <- random

import Test.QuickCheck



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

265 of 290 11/5/2007 9:02 PM

"choose" is one of the functions from QuickCheck. Its the equivalent to randomR. The type of "choose" is

In other words, for any type "a" which is an instance of "Random" (see above), "choose" will map a range into a 
generator.

Once you have a "Gen" action you have to execute it. The "generate" function executes an action and returns the 
random result. The type is:

The three arguments are:

The "size" of the result. This isn't used in the example above, but if you were generating a data structure 
with a variable number of elements (like a list) then this parameter lets you pass some notion of the 
expected size into the generator. We'll see an example later.

1.

A random number generator.2.
The generator action.3.

So for example:

will generate three arbitrary numbers. But note that because the same seed value is used the numbers will always
be the same (which is why I said "arbitrary", not "random"). If you want different numbers then you have to use 
a different StdGen argument.

A common pattern in most programming languages is to use a random number generator to choose between two 
courses of action:

QuickCheck provides a more declaritive way of doing the same thing. If "foo" and "bar" are both generators 
returning the same type then you can say:

This has an equal chance of returning either "foo" or "bar". If you wanted different odds, say that there was a 
30% chance of "foo" and a 70% chance of "bar" then you could say

randomTriple :: Gen (Integer, Integer, Integer)
randomTriple = do
   x1 <- choose (0,999)
   x2 <- choose (0,999)
   x3 <- choose (0,999)
   return (x1, x2, x3)

choose :: Random a => (a, a) -> Gen a

generate :: Int -> StdGen -> Gen a -> a

let
   triple = generate 1 (mkStdGen 1) randomTriple

-- Not Haskell code
r := random (0,1)
if r == 1 then foo else bar

oneof [foo, bar]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

266 of 290 11/5/2007 9:02 PM

"oneof" takes a simple list of Gen actions and selects one of them at random. "frequency" does something 
similar, but the probability of each item is given by the associated weighting.

General Practices

Applications
So you want to build a simple application -- a piece of standalone software -- with Haskell.

The Main module

The basic requirement behind this is to have a module Main  with a main function main

Using GHC, you may compile and run this file as follows:

Voilà! You now have a standalone application built in Haskell.

Other modules?

Invariably your program will grow to be complicated enough that you want to split it across different files. Here 
is an example of an application which uses two modules.

frequency [ (30, foo), (70, bar) ]

oneof :: [Gen a] -> Gen a
frequency :: [(Int, Gen a)] -> Gen a

 -- thingamie.hs
 module Main where

 main = do
   putStrLn "Bonjour, world!"

 $ ghc --make -o bonjourWorld thingamie.hs
 $ ./bonjourWorld
 Bonjour, world!

-- hello.hs
module Hello where

hello = "Bonjour, world!"



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

267 of 290 11/5/2007 9:02 PM

We can compile this fancy new program in the same way. Note that the --make flag to ghc is rather handy 
because it tells ghc to automatically detect dependencies in the files you are compiling. That is, since 
thingamie.hs imports a module 'Hello', ghc will search the haskell files in the current directory for files that 
implement Hello and also compile that. If Hello depends on yet other modules, ghc will automatically detect 
those dependencies as well.

If you want to search in other places for source files, including a nested structure of files and directories, you can 
add the starting point for the dependency search with the -i flag. This flag takes multiple, colon-separated 
directory names as its argument.

As a contrived example, the following program has three files all stored in a src/ directory. The directory 
structure looks like:

The Main module imports its dependencies by searching a path analogous to the module name — so that import
GUI.Interface would search for GUI/Interface  (with the appropriate file extension).

To compile this program from within the HaskellProgram directory, invoke ghc with:

Debugging/
Haskell/Debugging/

Testing

Quickcheck

Consider the following function:

-- thingamie.hs
module Main where

import Hello

main = do
  putStrLn hello

 $ ghc --make -o bonjourWorld thingamie.hs
 $ ./bonjourWorld
 Bonjour, world!

HaskellProgram/
   src/
      Main.hs
      GUI/
           Interface.hs
      Functions/
           Mathematics.hs

 $ ghc --make -i src -o sillyprog Main.hs



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

268 of 290 11/5/2007 9:02 PM

How would we effectively test this function in Haskell? The solution we turn to is refactoring and QuickCheck.

Keeping things pure

The reason your getList is hard to test, is that the side effecting monadic code is mixed in with the pure 
computation, making it difficult to test without moving entirely into a "black box" IO-based testing model. Such 
a mixture is not good for reasoning about code.

Let's untangle that, and then test the referentially transparent parts simply with QuickCheck. We can take 
advantage of lazy IO firstly, to avoid all the unpleasant low-level IO handling.

So the first step is to factor out the IO part of the function into a thin "skin" layer:

Testing with QuickCheck

Now we can test the 'guts' of the algorithm, the take5 function, in isolation. Let's use QuickCheck. First we need 
an Arbitrary instance for the Char type -- this takes care of generating random Chars for us to test with. I'll 
restrict it to a range of nice chars just for simplicity:

Let's fire up GHCi (or Hugs) and try some generic properties (it's nice that we can use the QuickCheck testing 
framework directly from the Haskell REPL). An easy one first, a [Char] is equal to itself:

What just happened? QuickCheck generated 100 random [Char] values, and applied our property, checking the 
result was True for all cases. QuickCheck generated the test sets for us!

A more interesting property now: reversing twice is the identity:

getList = find 5 where
     find 0 = return []
     find n = do
       ch <- getChar
       if ch `elem` ['a'..'e'] then do
             tl <- find (n-1)
             return (ch : tl) else
           find n

-- A thin monadic skin layer
getList :: IO [Char]
getList = fmap take5 getContents

-- The actual worker
take5 :: [Char] -> [Char]
take5 = take 5 . filter (`elem` ['a'..'e'])

import Data.Char
import Test.QuickCheck

instance Arbitrary Char where
    arbitrary     = choose ('\32', '\128')
    coarbitrary c = variant (ord c `rem` 4)

*A> quickCheck ((\s -> s == s) :: [Char] -> Bool)
OK, passed 100 tests.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

269 of 290 11/5/2007 9:02 PM

Great!

Testing take5

The first step to testing with QuickCheck is to work out some properties that are true of the function, for all 
inputs. That is, we need to find invariants.

A simple invariant might be: 

So let's write that as a QuickCheck property:

Which we can then run in QuickCheck as:

Ah! QuickCheck caught us out. If the input string contains less than 5 filterable characters, the resulting string 
will be less than 5 characters long. So let's weaken the property a bit: 

That is, take5 returns a string of at most 5 characters long. Let's test this:

Good!

Another property

Another thing to check would be that the correct characters are returned. That is, for all returned characters, 
those characters are members of the set ['a','b','c','d','e'].

We can specify that as: 

And in QuickCheck:

Excellent. So we can have some confidence that the function neither returns strings that are too long, nor 
includes invalid characters.

Coverage

*A> quickCheck ((\s -> (reverse.reverse) s == s) ::  [Char] -> Bool)
OK, passed 100 tests.

\s -> length (take5 s) == 5

*A> quickCheck (\s -> length (take5 s) == 5)
Falsifiable, after 0 tests:
""

*A> quickCheck (\s -> length (take5 s) <= 5)
OK, passed 100 tests.

*A> quickCheck (\s -> all (`elem` ['a'..'e']) (take 5 s))
OK, passed 100 tests.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

270 of 290 11/5/2007 9:02 PM

One issue with the default QuickCheck configuration, when testing [Char], is that the standard 100 tests isn't 
enough for our situation. In fact, QuickCheck never generates a String greater than 5 characters long, when using
the supplied Arbitrary instance for Char! We can confirm this:

QuickCheck wastes its time generating different Chars, when what we really need is longer strings. One solution
to this is to modify QuickCheck's default configuration to test deeper:

This instructs the system to find at least 10000 test cases before concluding that all is well. Let's check that it is 
generating longer strings:

We can check the test data QuickCheck is generating using the 'verboseCheck' hook. Here, testing on integers 
lists:

More information on QuickCheck

http://haskell.org/haskellwiki/Introduction_to_QuickCheck
http://haskell.org/haskellwiki/QuickCheck_as_a_test_set_generator

HUnit

Sometimes it is easier to give an example for a test and to define one from a general rule. HUnit provides a unit 
testing framework which helps you to do just this. You could also abuse QuickCheck by providing a general rule
which just so happens to fit your example; but it's probably less work in that case to just use HUnit.

TODO: give an example of HUnit test, and a small tour of it

More details for working with HUnit can be found in its user's guide
(http://hunit.sourceforge.net/HUnit-1.0/Guide.html) .

*A> quickCheck (\s -> length (take5 s) < 5)
OK, passed 100 tests.

deepCheck p = check (defaultConfig { configMaxTest = 10000}) p

*A> deepCheck (\s -> length (take5 s) < 5)
Falsifiable, after 125 tests:
";:iD^*NNi~Y\\RegMob\DEL@krsx/=dcf7kub|EQi\DELD*"

*A> verboseCheck (\s -> length s < 5)
0: []
1: [0]
2: []
3: []
4: []
5: [1,2,1,1]
6: [2]
7: [-2,4,-4,0,0]
Falsifiable, after 7 tests:
[-2,4,-4,0,0]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

271 of 290 11/5/2007 9:02 PM

At least part of this page was imported from the Haskell wiki article Introduction 
to QuickCheck
(http://www.haskell.org/haskellwiki/Introduction_to_QuickCheck) , in 
accordance to its Simple Permissive License. If you wish to modify this page 
and if your changes will also be useful on that wiki, you might consider 
modifying that source page instead of this one, as changes from that page may 
propagate here, but not the other way around. Alternately, you can explicitly 
dual license your contributions under the Simple Permissive License.

Packaging
A guide to the best practice for creating a new Haskell project or program.

Recommended tools

Almost all new Haskell projects use the following tools. Each is intrinsically useful, but using a set of common 
tools also benefits everyone by increasing productivity, and you're more likely to get patches.

Revision control

Use darcs (http://darcs.net) unless you have a specific reason not to. It's much more powerful than most 
competing systems, it's written in Haskell, and it's the standard for Haskell developers. See the wikibook 
Understanding darcs to get started.

Build system

Use Cabal (http://haskell.org/cabal) . You should read at least the start of section 2 of the Cabal User's Guide
(http://www.haskell.org/ghc/docs/latest/html/Cabal/index.html) .

Documentation

For libraries, use Haddock (http://haskell.org/haddock) . We recommend using recent versions of haddock (0.8 
or above).

Testing

Pure code can be tested using QuickCheck (http://www.md.chalmers.se/~rjmh/QuickCheck/) or SmallCheck
(http://www.mail-archive.com/haskell@haskell.org/msg19215.html) , impure code with HUnit
(http://hunit.sourceforge.net/) .



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

272 of 290 11/5/2007 9:02 PM

To get started, try Haskell/Testing. For a slightly more advanced introduction, Simple Unit Testing in Haskell
(http://blog.codersbase.com/2006/09/01/simple-unit-testing-in-haskell/) is a blog article about creating a testing 
framework for QuickCheck using some Template Haskell.

Structure of a simple project

The basic structure of a new Haskell project can be adopted from HNop (http://semantic.org/hnop/) , the 
minimal Haskell project. It consists of the following files, for the mythical project "haq".

Haq.hs -- the main haskell source file
haq.cabal -- the cabal build description
Setup.hs -- build script itself
_darcs -- revision control
README -- info
LICENSE -- license

You can of course elaborate on this, with subdirectories and multiple modules.

Here is a transcript on how you'd create a minimal darcs-using and cabalised Haskell project, for the cool new 
Haskell program "haq", build it, install it and release.

The new tool 'mkcabal' automates all this for you, but it's important that you understand all the parts first.

We will now walk through the creation of the infrastructure for a simple Haskell executable. Advice for libraries
follows after.

Create a directory

Create somewhere for the source:

Write some Haskell source

Write your program:

Stick it in darcs

Place the source under revision control:

$ mkdir haq
$ cd haq

$ cat > Haq.hs
--
-- Copyright (c) 2006 Don Stewart - http://www.cse. unsw.edu.au/~dons
-- GPL version 2 or later (see http://www.gnu.org/c opyleft/gpl.html)
--
import System.Environment

-- 'main' runs the main program
main :: IO ()
main = getArgs >>= print . haqify . head

haqify s = "Haq! " ++ s



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

273 of 290 11/5/2007 9:02 PM

And we can see that darcs is now running the show:

Add a build system

Create a .cabal file describing how to build your project:

(If your package uses other packages, e.g. haskell98 , you'll need to add them to the Build-Depends:  field.) Add 
a Setup.lhs  that will actually do the building:

Cabal allows either Setup.hs  or Setup.lhs , but we recommend writing the setup file this way so that it can be 
executed directly by Unix shells.

Record your changes:

$ darcs init
$ darcs add Haq.hs 
$ darcs record
addfile ./Haq.hs
Shall I record this change? (1/?)  [ynWsfqadjkc], o r ? for help: y
hunk ./Haq.hs 1
+--
+-- Copyright (c) 2006 Don Stewart - http://www.cse .unsw.edu.au/~dons
+-- GPL version 2 or later (see http://www.gnu.org/ copyleft/gpl.html)
+--
+import System.Environment
+
+-- | 'main' runs the main program
+main :: IO ()
+main = getArgs >>= print . haqify . head
+
+haqify s = "Haq! " ++ s
Shall I record this change? (2/?)  [ynWsfqadjkc], o r ? for help: y
What is the patch name? Import haq source
Do you want to add a long comment? [yn]n
Finished recording patch 'Import haq source'

$ ls
Haq.hs _darcs

$ cat > haq.cabal
Name:                haq
Version:             0.0
Description:         Super cool mega lambdas
License:             GPL
License-file:        LICENSE
Author:              Don Stewart
Maintainer:          dons@cse.unsw.edu.au
Build-Depends:       base

Executable:          haq
Main-is:             Haq.hs
ghc-options:         -O

$ cat > Setup.lhs
#! /usr/bin/env runhaskell

> import Distribution.Simple
> main = defaultMain



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

274 of 290 11/5/2007 9:02 PM

Build your project

Now build it!

Run it

And now you can run your cool project:

You can also run it in-place, avoiding the install phase:

Build some haddock documentation

Generate some API documentation into dist/doc/*

which generates files in dist/doc/ including:

No output? Make sure you have actually installed haddock. It is a separate program, not something that comes 
with the Haskell compiler, like Cabal.

Add some automated testing: QuickCheck

We'll use QuickCheck to specify a simple property of our Haq.hs code. Create a tests module, Tests.hs, with 

$ darcs add haq.cabal Setup.lhs
$ darcs record --all
What is the patch name? Add a build system
Do you want to add a long comment? [yn]n
Finished recording patch 'Add a build system'

$ runhaskell Setup.lhs configure --prefix=$HOME --u ser
$ runhaskell Setup.lhs build
$ runhaskell Setup.lhs install

$ haq me
"Haq! me"

$ dist/build/haq/haq you
"Haq! you"

$ runhaskell Setup.lhs haddock

$ w3m -dump dist/doc/html/haq/Main.html
 haq Contents Index
 Main

 Synopsis
 main :: IO ()

 Documentation

 main :: IO ()
 main runs the main program

 Produced by Haddock version 0.7



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

275 of 290 11/5/2007 9:02 PM

some QuickCheck boilerplate:

Now let's write a simple property:

We can now run this test, and have QuickCheck generate the test data:

Let's add a test for the 'haqify' function:

and let's test that:

Great!

Running the test suite from darcs

We can arrange for darcs to run the test suite on every commit:

will run the full set of QuickChecks. (If your test requires it you may need to ensure other things are built too eg: 
darcs setpref test "alex Tokens.x;happy Grammar.y;r unhaskell Tests.hs" ).

Let's commit a new patch:

$ cat > Tests.hs
import Char
import List
import Test.QuickCheck
import Text.Printf

main  = mapM_ (\(s,a) -> printf "%-25s: " s >> a) t ests

instance Arbitrary Char where
    arbitrary     = choose ('\0', '\128')
    coarbitrary c = variant (ord c `rem` 4)

$ cat >> Tests.hs 
-- reversing twice a finite list, is the same as id entity
prop_reversereverse s = (reverse . reverse) s == id  s
    where _ = s :: [Int]

-- and add this to the tests list
tests  = [("reverse.reverse/id", test prop_reverser everse)]

$ runhaskell Tests.hs
reverse.reverse/id       : OK, passed 100 tests.

-- Dropping the "Haq! " string is the same as ident ity
prop_haq s = drop (length "Haq! ") (haqify s) == id  s
    where haqify s = "Haq! " ++ s

tests  = [("reverse.reverse/id", test prop_reverser everse)
        ,("drop.haq/id",        test prop_haq)]

$ runhaskell Tests.hs
reverse.reverse/id       : OK, passed 100 tests.
drop.haq/id              : OK, passed 100 tests.

$ darcs setpref test "runhaskell Tests.hs"
Changing value of test from '' to 'runhaskell Tests .hs'



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

276 of 290 11/5/2007 9:02 PM

Excellent, now patches must pass the test suite before they can be committed.

Tag the stable version, create a tarball, and sell it!

Tag the stable version:

Tarballs via Cabal

Since the code is cabalised, we can create a tarball with Cabal directly:

This has the advantage that Cabal will do a bit more checking, and ensure that the tarball has the structure 
expected by HackageDB. It packages up the files needed to build the project; to include other files (such as 
Test.hs  in the above example), we need to add:

to the .cabal file to have everything included.

Tarballs via darcs

Alternatively, you can use darcs:

And you're all set up!

Summary

The following files were created:

$ darcs add Tests.hs
$ darcs record --all
What is the patch name? Add testsuite
Do you want to add a long comment? [yn]n
Running test...
reverse.reverse/id       : OK, passed 100 tests.
drop.haq/id              : OK, passed 100 tests.
Test ran successfully.
Looks like a good patch.
Finished recording patch 'Add testsuite'

$ darcs tag
What is the version name? 0.0
Finished tagging patch 'TAG 0.0'

$ runhaskell Setup.lhs sdist
Building source dist for haq-0.0...
Source tarball created: dist/haq-0.0.tar.gz

extra-source-files: Tests.hs

$ darcs dist -d haq-0.0
Created dist as haq-0.0.tar.gz



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

277 of 290 11/5/2007 9:02 PM

Libraries

The process for creating a Haskell library is almost identical. The differences are as follows, for the hypothetical 
"ltree" library:

Hierarchical source

The source should live under a directory path that fits into the existing module layout guide
(http://www.haskell.org/~simonmar/lib-hierarchy.html) . So we would create the following directory structure, 
for the module Data.LTree:

So our Data.LTree module lives in Data/LTree.hs

The Cabal file

Cabal files for libraries list the publically visible modules, and have no executable section:

We can thus build our library:

and our library has been created as a object archive. On *nix systems, you should probably add the --user flag to 
the configure step (this means you want to update your local package database during installation). Now install 
it:

   $ ls
   Haq.hs           Tests.hs         dist             haq.cabal
   Setup.lhs        _darcs           haq-0.0.tar.gz

   $ mkdir Data
   $ cat > Data/LTree.hs 
   module Data.LTree where

   $ cat ltree.cabal 
   Name:                ltree
   Version:             0.1
   Description:         Lambda tree implementation
   License:             BSD3
   License-file:        LICENSE
   Author:              Don Stewart
   Maintainer:          dons@cse.unsw.edu.au
   Build-Depends:       base
   Exposed-modules:     Data.LTree
   ghc-options:         -Wall -O

   $ runhaskell Setup.lhs configure --prefix=$HOME --user
   $ runhaskell Setup.lhs build    
   Preprocessing library ltree-0.1...
   Building ltree-0.1...
   [1 of 1] Compiling Data.LTree       ( Data/LTree .hs, dist/build/Data/LTree.o )
   /usr/bin/ar: creating dist/build/libHSltree-0.1. a

   $ runhaskell Setup.lhs install
   Installing: /home/dons/lib/ltree-0.1/ghc-6.6 & / home/dons/bin ltree-0.1...
   Registering ltree-0.1...
   Reading package info from ".installed-pkg-config " ... done.
   Saving old package config file... done.
   Writing new package config file... done.



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

278 of 290 11/5/2007 9:02 PM

And we're done! You can use your new library from, for example, ghci:

The new library is in scope, and ready to go.

More complex build systems

For larger projects it is useful to have source trees stored in subdirectories. This can be done simply by creating 
a directory, for example, "src", into which you will put your src tree.

To have Cabal find this code, you add the following line to your Cabal file:

Cabal can set up to also run configure scripts, along with a range of other features. For more information consult
the Cabal documentation (http://www.haskell.org/ghc/docs/latest/html/Cabal/index.html) .

Automation

A tool to automatically populate a new cabal project is available (beta!):

N.B. This tool does not work in Windows. The Windows version of GHC does not include the readline 
package that this tool needs.

Usage is:

which will fill out some stub Cabal files for the project 'haq'.

To create an entirely new project tree:

   $ ghci -package ltree
   Prelude> :m + Data.LTree
   Prelude Data.LTree> 

   hs-source-dirs: src

   darcs get http://www.cse.unsw.edu.au/~dons/code/ mkcabal

$ mkcabal
Project name: haq
What license ["GPL","LGPL","BSD3","BSD4","PublicDom ain","AllRightsReserved"] ["BSD3"]: 
What kind of project [Executable,Library] [Executab le]: 
Is this your name? - "Don Stewart " [Y/n]: 
Is this your email address? - "<dons@cse.unsw.edu.a u>" [Y/n]: 
Created Setup.lhs and haq.cabal
$ ls
Haq.hs    LICENSE   Setup.lhs _darcs    dist      h aq.cabal

$ mkcabal --init-project
Project name: haq
What license ["GPL","LGPL","BSD3","BSD4","PublicDom ain","AllRightsReserved"] ["BSD3"]: 
What kind of project [Executable,Library] [Executab le]: 
Is this your name? - "Don Stewart " [Y/n]: 
Is this your email address? - "<dons@cse.unsw.edu.a u>" [Y/n]: 
Created new project directory: haq
$ cd haq
$ ls
Haq.hs    LICENSE   README    Setup.lhs haq.cabal



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

279 of 290 11/5/2007 9:02 PM

Licenses

Code for the common base library package must be BSD licensed or Freer. Otherwise, it is entirely up to you as 
the author.

Choose a licence (inspired by this (http://www.dina.dk/~abraham/rants/license.html) ). Check the licences of 
things you use, both other Haskell packages and C libraries, since these may impose conditions you must follow.

Use the same licence as related projects, where possible. The Haskell community is split into 2 camps, roughly, 
those who release everything under BSD, GPLers, and LGPLers. Some Haskellers recommend specifically 
avoiding the LGPL, due to cross module optimisation issues. Like many licensing questions, this advice is 
controversial. Several Haskell projects (wxHaskell, HaXml, etc) use the LGPL with an extra permissive clause 
to avoid the cross-module optimisation problem.

Releases

It's important to release your code as stable, tagged tarballs. Don't just rely on darcs for distribution
(http://awayrepl.blogspot.com/2006/11/we-dont-do-releases.html) .

darcs dist generates tarballs directly from a darcs repository

For example:

You can now just post your fps-0.8.tar.gz

You can also have darcs do the equivalent of 'daily snapshots' for you by using a post-hook.

put the following in _darcs/prefs/defaults:

Advice:

Tag each release using darcs tag. For example:

Then people can darcs pull --partial -t 0.8 , to get just the tagged version (and not the entire history).

Hosting

A Darcs repository can be published simply by making it available from a web page. If you don't have an 

$ cd fps
$ ls       
Data      LICENSE   README    Setup.hs  TODO      _ darcs    cbits dist      fps.cabal tests
$ darcs dist -d fps-0.8
Created dist as fps-0.8.tar.gz

 apply posthook darcs dist
 apply run-posthook

$ darcs tag 0.8
Finished tagging patch 'TAG 0.8'



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

280 of 290 11/5/2007 9:02 PM

account online, or prefer not to do this yourself, source can be hosted on darcs.haskell.org (you will need to 
email Simon Marlow (http://research.microsoft.com/~simonmar/) to do this). haskell.org itself has some user 
accounts available.

There are also many free hosting places for open source, such as

Google Project Hosting (http://code.google.com/hosting/) 
SourceForge (http://sourceforge.net/) .

Example

A complete example (http://www.cse.unsw.edu.au/~dons/blog/2006/12/11#release-a-library-today) of writing, 
packaging and releasing a new Haskell library under this process has been documented.

At least part of this page was imported from the Haskell wiki article How to 
write a Haskell program
(http://www.haskell.org/haskellwiki/How_to_write_a_Haskell_program) , in 
accordance to its Simple Permissive License. If you wish to modify this page 
and if your changes will also be useful on that wiki, you might consider 
modifying that source page instead of this one, as changes from that page may 
propagate here, but not the other way around. Alternately, you can explicitly 
dual license your contributions under the Simple Permissive License. Note also 
that the original tutorial contains extra information about announcing your 
software and joining the Haskell community, which may be of interest to you.

Specialised Tasks

GUI
Haskell has at least three toolkits for programming a graphical interface:

wxHaskell - provides a Haskell interface to the wxWidgets toolkit
Gtk2Hs (http://haskell.org/gtk2hs/) - provides a Haskell interface to the GTK+ library
hoc (http://hoc.sourceforge.net/) - provides a Haskell to Objective-C binding which allows users to access 
to the Cocoa library on MacOS X



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

281 of 290 11/5/2007 9:02 PM

In this tutorial, we will focus on the wxHaskell toolkit, as it allows you to produce a native graphical interface 
on all platforms that wxWidgets is available on, including Windows, Linux and MacOS X.

Getting and running wxHaskell

To install wxHaskell, you'll need to use the GHC (http://haskell.org/ghc/) . Then, find your wxHaskell package 
on the wxHaskell download page (http://wxhaskell.sourceforge.net/download.html) .

The latest version of GHC is 6.6.1, but wxHaskell hasn't been updated for versions higher than 6.4. You 
can either downgrade GHC to 6.4, or build wxHaskell yourself. Instructions on how to do this can be 
found on the building page (http://wxhaskell.sourceforge.net/building.html) .

Follow the installation instruction provided on the wxHaskell download page. Don't forget to register wxHaskell
with GHC, or else it won't run. To compile source.hs (which happens to use wxHaskell code), open a command 
line and type:

Code for GHCi is similar:

You can then load the files from within the GHCi interface. To test if everything works, go to 
$wxHaskellDir/samples/wx ($wxHaskellDir is the directory you installed it in) and load (or compile) 
HelloWorld.hs. It should show a window with title "Hello World!", a menu bar with File and About, and a status
bar at the bottom, that says "Welcome to wxHaskell".

If it doesn't work, you might try to copy the contents of the $wxHaskellDir/lib directory to the ghc install 
directory.

Hello World

Here's the basic Haskell "Hello World" program:

It will compile just fine, but it isn't really fancy. We want a nice GUI! So how to do this? First, you must import 
Graphics.UI.WX . This is the wxHaskell library. Graphics.UI.WXCore  has some more stuff, but we won't be 
needing that now.

To start a GUI, use (guess what) start gui . In this case, gui  is the name of a function which we'll use to build 
the interface. It must have an IO type. Let's see what we have:

ghc -package wx source.hs -o bin

ghci -package wx

module Main where

main :: IO ()
main = putStr "Hello World!"



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

282 of 290 11/5/2007 9:02 PM

To make a frame, we use frame . Check the type of frame . It's [Prop (Frame ())] -> IO (Frame ()) . It takes 
a list of "frame properties" and returns the corresponding frame. We'll look deeper into properties later, but a 
property is typically a combination of an attribute and a value. What we're interested in now is the title. This is 
in the text  attribute and has type (Textual w) => Attr w String . The most important thing here, is that it's a 
String  attribute. Here's how we code it:

The operator (:=)  takes an attribute and a value, and combines both into a property. Note that frame  returns an 
IO (Frame ()) . You can change the type of gui  to IO (Frame ()) , but it might be better just to add return () . 
Now we have our own GUI consisting of a frame with title "Hello World!". Its source:

The result should look like the screenshot. (It might look slightly different on 
Linux or MacOS X, on which wxhaskell also runs)

Controls

From here on, its good practice to keep a browser window or tab open with the 
wxHaskell documentation (http://wxhaskell.sourceforge.net/doc/) . It's also 
available in $wxHaskellDir/doc/index.html.

A text label

Simply a frame doesn't do much. In this chapter, we're going to add some more elements. Let's start with 
something simple: a label. wxHaskell has a label , but that's a layout thing. We won't be doing layout until next 
chapter. What we're looking for is a staticText . It's in Graphics.UI.WX.Controls . As you can see, the 
staticText  function takes a Window as argument, and a list of properties. Do we have a window? Yup! Look at 

module Main where

import Graphics.UI.WX

main :: IO ()
main = start gui

gui :: IO ()
gui = do
  --GUI stuff

gui :: IO ()
gui = do
  frame [text := "Hello World!"]

Hello World! (winXP)

module Main where

import Graphics.UI.WX

main :: IO ()
main = start gui

gui :: IO ()
gui = do
  frame [text := "Hello World!"]
  return ()



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

283 of 290 11/5/2007 9:02 PM

Graphics.UI.WX.Frame . There we see that a Frame  is merely a type-synonym of a special sort of window. We'll 
change the code in gui  so it looks like this:

Again, text  is an attribute of a staticText  object, so this works. Try it!

A button

Now for a little more interaction. A button. We're not going to add functionality
to it until the chapter about events, but at least something visible will happen when you click on it.

A button  is a control, just like staticText . Look it up in Graphics.UI.WX.Controls .

Again, we need a window and a list of properties. We'll use the frame again. text  is also an attribute of a button:

Load it into GHCi (or compile it with GHC) and... hey!? What's that? The 
button's been covered up by the label! We're going to fix that next, in the layout 
chapter.

Layout

The reason that the label and the button overlap, is that we haven't set a layout for our frame yet. Layouts are 
created using the functions found in the documentation of Graphics.UI.WXCore.Layout . Note that you don't 
have to import Graphics.UI.WXCore  to use layouts.

The documentation says we can turn a member of the widget class into a layout by using the widget  function. 
Also, windows are a member of the widget class. But, wait a minute... we only have one window, and that's the 
frame! Nope... we have more, look at Graphics.UI.WX.Controls  and click on any occasion of the word 
Control. You'll be taken to Graphics.UI.WXCore.WxcClassTypes  and it is here we see that a Control is also a 
type synonym of a special type of window. We'll need to change the code a bit, but here it is.

Now we can use widget st  and widget b  to create a layout of the staticText and the button. layout  is an 
attribute of the frame, so we'll set it here:

Hello StaticText! (winXP)

gui :: IO ()
gui = do
  f <- frame [text := "Hello World!"]
  staticText f [text := "Hello StaticText!"]
  return ()

Overlapping button and 
StaticText (winXP)

gui :: IO ()
gui = do
  f <- frame [text := "Hello World!"]
  staticText f [text := "Hello StaticText!"]
  button f [text := "Hello Button!"]
  return ()

gui :: IO ()
gui = do
  f <- frame [text := "Hello World!"]
  st <- staticText f [text := "Hello StaticText!"]
  b <- button f [text := "Hello Button!"]
  return ()



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

284 of 290 11/5/2007 9:02 PM

The set  function will be covered in the chapter about attributes. Try the code, 
what's wrong? This only displays the staticText, not the button. We need a way 
to combine the two. We will use layout combinators for this. row  and column

look nice. They take an integer and a list of layouts. We can easily make a list 
of layouts of the button and the staticText. The integer is the spacing between the elements of the list. Let's try 
something:

Play around with the integer and see what happens, also change row  into 
column . Try to change the order of the elements in the list to get a feeling of 
how it works. For fun, try to add widget b  several more times in the list. What 
happens?

Here are a few exercises to spark your imagination. Remember to use the 
documentation!

Exercises

Add a checkbox control. It doesn't have to do anything yet, just 
make sure it appears next to the staticText and the button when 
using row-layout, or below them when using column layout. text  is 
also an attribute of the checkbox.

1.

Notice that row  and column  take a list of layouts, and also generates 
a layout itself. Use this fact to make your checkbox appear on the 
left of the staticText and the button, with the staticText and the 
button in a column.

2.

Can you figure out how the radiobox control works? Take the layout 
of the previous exercise and add a radiobox with two (or more) 
options below the checkbox, staticText and button. Use the 
documentation!

3.

Use the boxed  combinator to create a nice looking border around the 
four controls, and another one around the staticText and the button. 
(Note: the boxed  combinator might not be working on MacOS X - 
you might get widgets that can't be interacted with. This is likely just 

4.

StaticText with layout 
(winXP)

gui :: IO ()
gui = do
  f <- frame [text := "Hello World!"]
  st <- staticText f [text := "Hello StaticText!"]
  b <- button f [text := "Hello Button!"]
  set f [layout := widget st]
  return ()

A row layout (winXP)

Column layout with a spacing 
of 25 (winXP)

gui :: IO ()
gui = do
  f <- frame [text := "Hello World!"]
  st <- staticText f [text := "Hello StaticText!"]
  b <- button f [text := "Hello Button!"]
  set f [layout := 
          row 0 [widget st, widget b]
        ]
  return ()



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

285 of 290 11/5/2007 9:02 PM

a bug in wxhaskell.)

After having completed the exercises, the end result should look like this:

You could have used different spacing for row  and column , or the options of the 
radiobox are displayed horizontally.

Attributes

After all this, you might be wondering things like: "Where did that set  function
suddenly come from?", or "How would I know if text  is an attribute of 
something?". Both answers lie in the attribute system of wxHaskell.

Setting and modifying attributes

In a wxHaskell program, you can set the properties of the widgets in two ways:

during creation: f <- frame [ text := "Hello World!" ]1.
using the set  function: set f [ layout := widget st ]2.

The set  function takes two arguments: one of any type w, and the other is a list of properties of w. In wxHaskell, 
these will be the widgets and the properties of these widgets. Some properties can only be set during creation, 
like the alignment  of a textEntry , but you can set most others in any IO-function in your program, as long as 
you have a reference to it (the f  in set f [--stuff ).

Apart from setting properties, you can also get them. This is done with the get  function. Here's a silly example:

Look at the type signature of get . It's w -> Attr w a -> IO a . text  is a String  attribute, so we have an IO 

String  which we can bind to ftext . The last line edits the text of the frame. Yep, destructive updates are 
possible in wxHaskell. We can overwrite the properties using (:=)  anytime with set . This inspires us to write a 
modify function:

First it gets the value, then it sets it again after applying the function. Surely we're not the first one to think of 
that...

And nope, we aren't. Look at this operator: (:~) . You can use it in set , because it takes an attribute and a 

Answer to exercises

gui :: IO ()
gui = do
  f <- frame [ text := "Hello World!" ]
  st <- staticText f []
  ftext <- get f text
  set st [ text := ftext]
  set f [ text := ftext ++ " And hello again!" ]

modify :: w -> Attr w a -> (a -> a) -> IO ()
modify w attr f = do
  val <- get w attr
  set w [ attr := f val ]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

286 of 290 11/5/2007 9:02 PM

function. The result is an property, in which the original value is modified by the function. This means we can 
write:

This is a great place to use anonymous functions with the lambda-notation.

There are two more operators we can use to set or modify properties: (::=)  and (::~) . They do the same as 
(:=)  and (:~) , except a function of type w -> orig  is expected, where w is the widget type, and orig  is the 
original "value" type (a in case of (:=) , and a -> a  in case of (:~) ). We won't be using them now, though, as 
we've only encountered attributes of non-IO types, and the widget needed in the function is generally only useful
in IO-blocks.

How to find attributes

Now the second question. Where did I read that text  is an attribute of all those things? The easy answer is: in 
the documentation. Now where in the documentation to look for it?

Let's see what attributes a button has, so go to Graphics.UI.WX.Controls , and click the link that says "Button". 
You'll see that a Button  is a type synonym of a special kind of Control , and a list of functions that can be used 
to create a button. After each function is a list of "Instances". For the normal button  function, this is 
Commanding -- Textual, Literate, Dimensions, Colored, Visible, Child, Able, Tipped, Identity, Styled, Reactive, 
Paint. This is the list of classes of which a button is an instance. Read through the Class_Declarations chapter. It 
means that there are some class-specific functions available for the button. Textual , for example, adds the text

and appendText  functions. If a widget is an instance of the Textual  class, it means that it has a text  attribute!

Note that while StaticText  hasn't got a list of instances, it's still a Control , which is a synonym for some kind 
of Window, and when looking at the Textual  class, it says that Window is an instance of it. This is an error on the 
side of the documentation.

Let's take a look at the attributes of a frame. They can be found in Graphics.UI.WX.Frame . Another error in the 
documentation here: It says Frame  instantiates HasImage . This was true in an older version of wxHaskell. It 
should say Pictured . Apart from that, we have Form, Textual , Dimensions , Colored , Able  and a few more. 
We're already seen Textual  and Form. Anything that is an instance of Form has a layout  attribute.

Dimensions  adds (among others) the clientSize  attribute. It's an attribute of the Size  type, which can be made 
with sz . Please note that the layout  attribute can also change the size. If you want to use clientSize  you 
should set it after the layout .

Colored  adds the color  and bgcolor  attributes.

Able  adds the Boolean enabled  attribute. This can be used to enable or disable certain form elements, which is 
often displayed as a greyed-out option.

There are lots of other attributes, read through the documentation for each class.

gui :: IO ()
gui = do
  f <- frame [ text := "Hello World!" ]
  st <- staticText f []
  ftext <- get f text
  set st [ text := ftext]
  set f [ text :~ ++ " And hello again!" ]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

287 of 290 11/5/2007 9:02 PM

Events

There are a few classes that deserve special attention. They are the Reactive  class and the Commanding class. As 
you can see in the documentation of these classes, they don't add attributes (of the form Attr w a ), but events. 
The Commanding class adds the command event. We'll use a button to demonstrate event handling.

Here's a simple GUI with a button and a staticText:

We want to change the staticText when you press the button. We'll need the on

function:

The type of on: Event w a -> Attr w a . command is of type Event w (IO ()) , so we need an IO-function. This
function is called the Event handler. Here's what we get:

Insert text about event filters here

Database
Haskell/Database

Web programming
An example web application, using the HAppS framework, is hpaste (http://hpaste.org) , the Haskell paste bin. 
Built around the core Haskell web framework, HAppS, with HaXmL for page generation, and binary/zlib for 
state serialisation.

The HTTP and Browser modules (http://homepages.paradise.net.nz/warrickg/haskell/http/) exist, and might be 
useful.

Before (winXP)

gui :: IO ()
gui = do
  f <- frame [ text := "Event Handling" ]
  st <- staticText f [ text := "You haven\'t clicke d the button yet." ]
  b <- button f [ text := "Click me!" ]
  set f [ layout := column 25 [ widget st, widget b  ] ]

  b <- button f [ text := "Click me!"
                , on command := --stuff
                ]

After (winXP)

gui :: IO ()
gui = do
  f <- frame [ text := "Event Handling" ]
  st <- staticText f [ text := "You haven\'t clicke d the button yet." ]
  b <- button f [ text := "Click me!"
                , on command := set st [ text := "Y ou have clicked the button!" ]
                ]
  set f [ layout := column 25 [ widget st, widget b  ] ]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

288 of 290 11/5/2007 9:02 PM

XML
There are several Haskell libraries for XML work, and additional ones for HTML. For more web-specific work, 
you may want to refer to the Haskell/Web programming chapter.

Libraries for parsing XML

The Haskell XML Toolbox (hxt) (http://www.fh-wedel.de/~si/HXmlToolbox/) is a collection of tools for 
parsing XML, aiming at a more general approach than the other tools.
HaXml (http://www.cs.york.ac.uk/fp/HaXml/) is a collection of utilities for parsing, filtering, 
transforming, and generating XML documents using Haskell.
HXML (http://www.flightlab.com/~joe/hxml/) is a non-validating, lazy, space efficient parser that can 
work as a drop-in replacement for HaXml.

Libraries for generating XML

HSXML represents XML documents as statically typesafe s-expressions.

Other options

tagsoup (http://www.cs.york.ac.uk/fp/darcs/tagsoup/tagsoup.htm) is a library for parsing unstructured 
HTML, i.e. it does not assume validity or even well-formedness of the data.

Getting aquainted with HXT

In the following, we are going to use the Haskell XML Toolbox for our examples. You should have a working 
installation of GHC, including GHCi, and you should have downloaded and installed HXT according to the 
instructions (http://www.fh-wedel.de/~si/HXmlToolbox/#install) .

With those in place, we are ready to start playing with HXT. Let's bring the XML parser into scope, and parse a 
simple XML-formatted string:

We see that HXT represents an XML document as a list of trees, where the nodes can be constructed as an XTag
containing a list of subtrees, or an XText containing a string. With GHCi, we can explore this in more detail:

 Prelude> :m + Text.XML.HXT.Parser
 Prelude Text.XML.HXT.Parser> xread "<foo>abc<bar/>def</foo>"
 [NTree (XTag (QN {namePrefix = "", localPart = "fo o", namespaceUri = ""}) [])
 [NTree (XText "abc") [],NTree (XTag (QN {namePrefi x = "", localPart = "bar",
 namespaceUri = ""}) []) [],NTree (XText "def") []] ]



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

289 of 290 11/5/2007 9:02 PM

As we can see, an NTree is a general tree structure where a node stores its children in a list, and some more 
browsing around will tell us that XML documents are trees over an XNode type, defined as:

Returning to our example, we notice that while HXT successfully parsed our input, one might desire a more 
lucid presentation for human consumption. Lucky for us, the DOM module supplies this. Notice that xread 
returns a list of trees, while the formatting function works on a single tree.

This representation makes the structure obvious, and it is easy to see the relationship to our input string. Let's 
proceed to extend our XML document with some attributes (taking care to escape the quotes, of course):

Notice that attributes are stored as regular NTree nodes with the XAttr content type, and (of course) no children. 
Feel free to pretty-print this expression, as we did above.

For a trivial example of data extraction, consider this small example using XPath
(http://en.wikipedia.org/wiki/XPath) :

 Prelude Text.XML.HXT.Parser Text.XML.HXT.DOM> :i NTree
 data NTree a = NTree a (NTrees a)  
                                 -- Defined in Data .Tree.NTree.TypeDefs
 Prelude Text.XML.HXT.Parser Text.XML.HXT.DOM> :i NTrees
 type NTrees a = [NTree a]       -- Defined in Data .Tree.NTree.TypeDefs

 data XNode
   = XText String
   | XCharRef Int
   | XEntityRef String
   | XCmt String
   | XCdata String
   | XPi QName XmlTrees
   | XTag QName XmlTrees
   | XDTD DTDElem Attributes
   | XAttr QName
   | XError Int String

 Prelude Text.XML.HXT.Parser> :m + Text.XML.HXT.DOM
 Prelude Text.XML.HXT.Parser Text.XML.HXT.DOM> putStrLn $ formatXmlTree $ head $ xread "<foo>abc<bar/>def</foo>"
 ---XTag "foo"
    |
    +---XText "abc"
    |
    +---XTag "bar"
    |
    +---XText "def"

 Prelude Text.XML.HXT.Parser> xread "<foo a1=\"my\" b2=\"oh\">abc<bar/>def</foo>"
 [NTree (XTag (QN {namePrefix = "", localPart = "fo o", namespaceUri = ""}) [NTree (XAttr (QN
 {namePrefix = "", localPart = "a1", namespaceUri =  ""})) [NTree (XText "my") []],NTree (XAttr
 (QN {namePrefix = "", localPart = "b2", namespaceU ri = ""})) [NTree (XText "oh") []]]) [NTree
 (XText "abc") [],NTree (XTag (QN {namePrefix = "",  localPart = "bar", namespaceUri = ""}) [])
 [],NTree (XText "def") []]]

 Prelude> :set prompt "> "
 > :m + Text.XML.HXT.Parser Text.XML.HXT.XPath.XPat hEval
 > let xml = "<foo><a>A</a><c>C</c></foo>"
 > let xmltree = head $ xread xml
 > let result = getXPath "//a" xmltree
 > result
 > [NTree (XTag (QN {namePrefix = "", localPart = " a", namespaceUri = ""}) []) [NTree (XText "A") []]]
 > :t result
 > result :: NTrees XNode



Haskell/Print version - Wikibooks, collection of open-content textbooks http://en.wikibooks.org/w/index.php?title=Haskell/Print_version&printa...

290 of 290 11/5/2007 9:02 PM

Retrieved from "http://en.wikibooks.org/wiki/Haskell/Print_version"

This page was last modified 23:52, 17 January 2007.
All text is available under the terms of the GNU Free Documentation License (see Copyrights for 
details).
Wikibooks® is a registered trademark of the Wikimedia Foundation, Inc.


