Haskell/Print version - Wikibooks, collection of@p-content textbooks

Haskell/Print version

From Wikibooks, the open-content textbooks coltatti

Table Of Contents

Haskell Basics

Getting set up
Variables and functions
Lists and tuples

Next steps

Type basics

Simple input and output
Type declarations

Elementary Haskell

1 of 290

Recursion

Pattern matching
More about lists
Control structures

List processing

More on functions
Higher order function=

Intermediate Haskell

Modules

Indentation

More on datatypes
Class declarations
Classes and types
Keeping track of Stat

Monads

Understanding monacss
Advanced monads

Additive monads (MonadPlus)
Monadic parser combinators
Monad transformers

Value recursion (MonadFix)

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

Practical monads

Advanced Haskell

2 of 290

Arrowss

Understanding arrows
Continuation passing style (CP=)
Mutable object:

Zippersa

Applicative Functors
Concurrency

Fun with Types

Existentially quantified types
Polymorphisir

Advanced type classes

Phantom types

Generalised algebraic data-types (GADT)
Datatype algebr:

Wider Theory

Denotational semanticss
Equational reasoning

Program derivation

Category theores

The Curry-Howard isomorphism

Haskell Performance

Graph reductiols
Lazinesss

Strictness

Algorithm complexity
Parallelism

Choosing data structures

Libraries Reference

The Hierarchical Libraries
Lists:Arrays:Maybe:Maps
|O:Random Numbers

General Practices

Building a standalone application

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Debugging

Testing

Packaging your software (Cabal)

Using the Foreign Function Interface (FFI)

Specialised Tasks

Graphical user interfaces (Gl=z)
Database

Web programming

Working with XML

Using Regular Expressiol s

Haskell Basics

Getting set up

This chapter will explore how to install the progiyou'll need to start coding in Haskell.

Installing Haskell

First of all, you need a Haskell compiler. A conapiis a program that takes your code and spitaiout
executable which you can run on your machine.

There are several Haskell compilers available yrebe most popular and fully featured of thembaing the
Glasgow Haskell Compiler or GHC for short. The Gi&s originally written at the University of Glasgow
GHC is available for most platforms:

= For MS Windows, see the GHC download page (httaskill.org/ghc/download.html) for details
» For MacOS X, Linux or other platforms, you are midstly better off using one of the pre-packaged
versions (http://haskell.org/ghc/distribution_pagé&s.html) for your distribution or operating system

Note

A quick note to those people who prefer to comfden source: This might be a bad
idea with GHC, especially if it's the first timewanstall it. GHC is itself mostly written
in Haskell, so trying to bootstrap it by hand freource is very tricky. Besides, the
build takes a very long time and consumes a lalisk space. If you are sure that you
want to build GHC from the source, see Building 8wmiting GHC at the GHC
homepage (http://hackage.haskell.org/trac/ghc/®ikiding) .

Getting interactive

3 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

If you've just installed GHC, then you'll have aisetalled a sideline program called GHCi. Thetands for
'interactive’, and you can see this if you stampit Open a shell (or click Start, then Run, thgretcmd' and hit
Enter if you're on Windows) and type ghci, thensgr&nter.

You should get output that looks something like fiillowing:

'ITIA N O
JINIIZITT)] GHC Interactive, version 6.6, for Haskell 98.
VIV __//__|| http:/;www.haskell.org/g he/

N_ N/A__ | Type:?for help.

1

iLoading package base ... linking ... done.
PPrelude>

1

The first bit is GHCi's logo. It then informs yatsiloading the base package, so you'll have at¢oassst of th
built-in functions and modules that come with GHRhally, theprelude> bit is known as therompt This is
where you enter commands, and GHCi will respont wibhat they evaluate to.

Let's try some basic arithmetic:

:Prelude> 2+2

4

PPrelude>5 * 4 + 3
123

Prelude> 215

:32

The operators are similar to what they are in okweguagest+ is addition* is multiplication, anad is
exponentiation (raising to the power of).

GHCi is a very powerful development environment.wesprogress through the course, we'll learn hoveave
load source files into GHCIi, and evaluate differieits of them.

The next chapter will introduce some of the basicoepts of Haskell. Let's dive into that and hal@o& at our
first Haskell functions.

Variables and functions

(All the examples in this chapter can be typed atdaskell source file and evaluated by loading fila into
GHC or Hugs)

Variables

Previously, we saw how to do simple arithmetic afiens like addition and subtraction. Pop quiz: tinbdahe
area of a circle whose radius is 5 cm? No, donityygou haven't stumbled through the Geometry bokk by

mistake. The area of our circleris® wherer is our radius (5¢cm) and for the sake of simplicity, is 3.14. So
let's try this out in GHCi:

4 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

VNN (O
I NI] GHC Interactive, version 6.4.1, for Haskell 98.
YI_W__//__|| http://www.haskell.org/g hc/

N" N/IN__ /|| Type:?forhelp.

1

iLoading package base-1.0 ... linking ... done.
PPrelude>

Prelude> 3.14 * 5/2
178.5

Great! Well, now since we have these wonderful, grbw computers to help us calculate things, theedly
isn't any need to round pi down to 2 decimal platess do the same thing again, but with a sliglahger
value for pi

Prelude> 3.14159265358979323846264338327950 * (G 2)
178.53981633974483

Prelude> 2 * 3.14150265358979323846264338327950 * 5
131.41592653589793

Prelude> 3.14159265358979323846264338327950 * (257 2)
11963.4954084936207

What we're hoping here is that sooner or later,armeustarting to get sick of typing (or copy-andipag) all this
text into your interpreter (some of you might eveve noticed the up-arrow and Emacs-style key bgslto
zip around the command line). Well, the whole pailhprogramming, we would argue, is to avoid dastgpid,
boring, repetitious work like typing the first 2@ds of pi in a million times. What we really needa means of
remembering the value of pi:

Note

If this command does not work, you are probablngs$iugs instead of GHCIi, which
expects a slightly different syntax.

Here you are literally telling Haskell to: "let pe equal to 3.14159...". This introduces the manable pi ,
which is now defined as being the number 3.14159238979323846264338327950. This will be very handy
because it means that we can call that value bpdky jyust typing pi again:

5 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:Prelude> pi
13.141592653589793

Don't worry about all those missing digits; theyust skipped when displaying the value. All thgith will be
used in any future calculations.

Having variables takes some of the tedium out imigh What is the area of a circle having a radius cm?
How about a radius of 25cm?

Prelude> pi * 572
:78.53981633974483
Prelude> pi * 2572
:1963.4954084936207

Note

What we call "variables" in this book are ofterere¢d to as "symbols" in other
introductions to functional programming. This ixhase other languages, namely the
more popular imperative languages have a veryréifteuse for variables: keeping track
of state. Variables in Haskell do no such thingytktore a value and an immutable one
at that.

Types

Following the previous example, you might be terdftetry storing a value for that radius. Let's sdwat
happens:

PPrelude> let r = 25
iPrelude> 2 * pi * r

1
Kinteractive>:1:9:
' Couldn't match “Double’ against "Integer'
Expected type: Double
Inferred type: Integer
In the second argument of *(*)', namely °r'
In the definition of "t it = (2 * pi) * r

Whoops! You've just run into a programming condepiwn asypes Types are a feature of many
programming languages which are designed to catcle ©f your programming errors early on so that fyod
out about them before it's too late. We'll disclypes in more detail later on in the Type basicptér, but for
now it's useful to think in terms of plugs and ceators. For example, many of the plugs on the lohgour
computer are designed to have different shapesiaed for a purpose. This is partly so that youtdon
inadvertently plug the wrong bits of your computagether and blow something up. Types serve aaimil
purpose, but in this particular example, well, typeen't so helpful.

The tricky bit here is that numbers like can either be interpreted as bebwgble orInteger (among other
types)... but for lack of other information, Hagk®s "guessed" that its type mustilaeger (which cannot be
multiplied with aDouble). To work around this, we simply insist that itasbe treated astauble

6 of 290 11/5/2007 9:02 P|

Haskell/

7 of 290

Print version - Wikibooks, collection of @p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1

IPrelude> let r = 25 :: Double
{Prelude> 2 * pi * r
1157.07963267948966

1

Note that Haskell only has this "guessing” behawviolwcontexts where it does not have enough inféionao
infer the type of something. As we will see belomgst of the time, the surrounding context givesalusf the
information that is needed to determine, say,ntimber is to be treated aslateger or not.

Note

There is actually a little bit more subtlety behthts problem. It involves a language
feature known as thmonomorphism restriction. You don't actually need to know
about this for now, so you can skip over this nby®u just want to keep a brisk pace.
Instead of specifying the tymmuble , you also could have given ipalymorphic type,
like Numa=>a , which means "any typewhich belongs in the clasani. The
corresponding code looks like this and works jess@amlessly as before:

1

IPrelude>letr=25:: Numa=>a
{Prelude> 2 * pi * r
1157.07963267948966

1

Haskell couldn theoryassign such polymorphic types systematically eadtof
defaulting to some potentially incorrect guess likteger. But in the real world, this
could lead to values being needlessly duplicateg@@omputed. To avoid this potential
trap, the designers of the Haskell language opied fmore prudent "monomorphism
restriction”. It means that values may only haymlmorphic type if it can be inferred
from the context, or if you explicitly give it on®therwise, the compiler is forced to
choose a default monomorphic (i.e. non-polymorptyipg. This feature is somewhat
controversial. It can even be disabled with the Gl4G
(-fno-monomorphism-restriction), but it comes wsthme risk for inefficiency. Besides,
in most cases, it is just as easy to specify the gxplicitly.

Variables within variables

Variables can contain much more than just simpleesasuch as 3.14. Indeed, they can contain ankdias
expression whatsoever. So, if we wanted to keepratosay the area of a circle with radius of 5,ceeld write
something like this:

What's interesting about this is that we've st@edmplicated chunk of Haskell (an arithmetic espien
containing a variable) into yet another variable.

We can use variables to store any arbitrary Haskele, so let's use this to get our acts together.

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:Prelude> letr =25.0
\Prelude> let area2 = pi *r " 2
\Prelude> area2
:1963.4954084936207

:Prelude> letr=2.0
\Prelude> area2
11963.4954084936207
1

Wait a second, why didn't this work? That is, whytithat we get the same value
for area as we did back when r was 25? The redms®mstthe case is thaariables
in Haskell do not chang&Vhat actually happens when you defined r thersgco
time is that you are talking aboutldferentr. This is something that happens in
real life as well. How many people do you know thatve the name John? What's
interesting about people named John is that masteofime, you can talk about
"John" to your friends, and depending on the canteur friends will know which John your are refey to.
Programming has something similar to context, dal®pe We won't explain scope (at least not now), but
Haskell's lexical scope is the magic that letsefind two different r and always get the right draek. Scope,
however, does not solve the current problem. Wieatvant to do is define a genesiea function that always
gives you the area of a circle. What we could dass define it a second time:

Variables do not
vary

1

Prelude> letarea3 =pi*r" 2
\Prelude> area3
112.566370614359172

1

But we are programmers, and programnheasherepetition. Is there a better way?

Functions

What we are really trying to accomplish with ounggcarea is to define dunction. Defining functions in
Haskell is dead-simple. It is exactly like definiagariable, except with a little extra stuff o tleft hand side.
For instance, below is our definition of pi, folled by our definition of area:

Prelude> let pi = 3.1415926535897932384626433832795 0
[Prelude> let arear = pi*r" 2

:Prelude> area 5
178.53981633974483
\Prelude> area 25
:1963.4954084936207

Functions allow us to make a great leap forwarth@reusability of our code. But let's slow down do
moment, or rather, back up to dissect things. Bee in our definitionarear = ... ? This is what we call a

parameter. A parameter is what we use to provide input ®ftinction. When Haskell is interpreting the
function, the value of its parameter must come ftbenoutside. In the case ®@#a , the value of is5 when you
sayarea5 , but it is25 if you sayarea 25 .

8 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Exercises
Say | type something in like this (don't type ityet):

1

IPrelude>letr=0

\Prelude> let arear = pi*r~ 2
iPrelude> area 5

1. What do you think should happen? Are we in for apleasant
surprise?

2. What actually happens? Why? (Hint: remember what sead
before about "scope")

Scope and parameters

Warning: this section contains spoilers to the preous exercise

We hope you have completed the very short exe(tiseuld say thought experiment) above. Fortunatiilg
following fragment of code does not contain anylaapant surprises:

:Prelude> letr=0

{Prelude> let arear = pi*r" 2
\Prelude> area 5
:78.53981633974483

An unpleasant surprise here would have been gdtimgalue 0. This is just a consequence of whatate
above, namely the value of a parameter is strveklgt you pass in when you call the function. Ahdtis
directly a consequence of our old friend scoperimblly, ther inletr=0 Is not the same as the one insic
our defined functiorarea - ther insidearea overrides the other; you can think of it as Haskell picking the
most specific version of there is. If you have many friends all named Jglon, go with the one which just
makes more sense and is specific to the contewitasly, what value of r we get depends on the scop

Multiple parameters

Another thing you might want to know about functda that they can accept more than one parangagrfor
instance, you want to calculate the area of a ngt¢a This is quite simple to express:

1

IPrelude> let areaRect Ilw = *w
\Prelude> areaRect 5 10

50

:Prelude> let areaTrianglebh=(b*h)/2
\Prelude> areaTriangle 3 9

113.5

1

9 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Passing parameters in is pretty straightforward: just give them in the same order that they afiael@. So,
whereasreaTriangle 3 9 gives us the area of a triangle with base 3 amghh®, areaTriangle 9 3 gives us

the area with the base 9 and height 3.

Exercises

Write a function to calculate the volume of a b&xox has width, height
and depth. You have to multiply them all to get vio&ume.

Functions within functions

To further cut down the amount of repetition ipisssible to call functions from within other furats. A
simple example showing how this can be used isdate a function to compute the area of a SquaescaM
think of a square as a special case of a rectdtigdaarea is still the width multiplied by the léng however,
we also know that the width and length are the same&vhy should we need to type it in twice?

Prelude> let areaRect | w = | *w
{Prelude> let areaSquare s = areaRect s s
\Prelude> areaSquare 5

125

Exercises

Write a function to calculate the volume of a cgiien. The volume of a
cylinder is the area of the base, which is a cifgtel already programmed
this function in this chapter, so reuse it) mulagdliby the height.

Summary

1. Variables store values. In fact, they store anytrany Haskell expression.
2. Variables do not change.

3. Functions help you write reusable code.

4. Functions can accept more than one parameter.

Notes

1. ~ For readers with prior programming experienceridtdes don't change? | only get constants? Shock!
Horror! No... trust us, as we hope to show yothmrest of this book, you can geerylong way without
changing a single variable! In fact, this non-chaggf variables makes life easier because it makes
programs so much more predictable.

Lists and tuples

Lists and tuples are two ways of crushing sevealas down into a single value.

10 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Lists

The functional programmer's next best friend

In the last section we introduced the concept abbdes and functions in Haskell. Functions are ohine two
major building blocks of any Haskell program. Thbey is the versatile list. So, without further abht's switch
over to the interpreter and build some lists:

Example - Building Lists in the Interpreter

1

Prelude> let numbers = [1,2,3,4]

\Prelude> let truths = [True, False, False]

iPrelude> let strings = ["here", "are", "some", "str ings"]

The square brackets denote the beginning and thefdhe list. List elements are separated by tmma ","
operator. Further, list elements must be all ofshmme type. Thereforgyp, "life, universe and

everything else"] is not a legal list because it contains two elesehdifferent types, namely, integer and
string respectively. Howeven,2, 80] or, ["beer", "sandwiches"] are valid lists because they are both
type-homogeneous.

Here is what happens if you try to define a listhwnixed-type elements:

:Prelude> let mixed = [True, "bonjour"]
1

<interactive>:1:19:

1 Couldn't match "Bool' against “[Char]

, Expected type: Bool

+ Inferred type: [Char]

i In the list element: "bonjour"

1 In the definition of *mixed": mixed = [True, "b onjour"]
1

If you're confused about this business of lists igpés, don't worry about it. We haven't talkedyvauch about
types yet and we are confident that this will clepras the book progresses.

Building lists

Square brackets and commas aren't the only wayild tp a list. Another thing you can do with therio
build them up piece by piece, bgnsingthings on to them, via the operator.

L
Example: Consing something on to a list

1 1
Prelude> let numbers = [1,2,3,4] !
Prelude> numbers '
1,2,3,4] '
Prelude> 0:numbers :
10,1,2,3,4] '
1 1

When you cons something on to a lisinfething:someList), what you get back is another list. So,
unsurprisingly, you could keep on consing your wpy

11 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

. . . 1
Example: Consing lots of things to a list

:Prelude> 1:0:numbers
11.0,1,2,34]

\Prelude> 2:1:0:numbers
12,1,0,1,2,3,4]

Prelude> 5:4:3:2:1:0:numbers
:[5,4,3,2,1,0,1,2,3,4]

In fact, this is just about how all lists are bully consing them up from the empty ligt). The commas and
brackets notation is actually a pleasant formyaftactic sugar In other words, a list likg,2,3,4,5] is
exactly equivalent t@:2:3:4:5:[]

You will, however, want to watch out for a potehpéfall in list construction. Whereas2:[] is perfectly
good Haskell1:2 isnot In fact, if you try it out in the interpreter, y@et a nasty error message.

Example: Whoops!

:Prelude> 1:2
1

<interactive>:1:2:
No instance for (Num [a])
arising from the literal "2 at <interactive> :1:2
Probable fix: add an instance declaration for (Num [a])
In the second argument of *(:)', namely "2’
In the definition of “it:it=1:2

Well, to be fair, the error message is nastier tmural because numbers are slightly funny beastiagkell.
Let's try this again with something simpler, bult strong, True:False

. . 1
Example: Simpler but still wrong

1
Prelude> True:False
1

:<interactive>:l:5:
Couldn't match “[Bool]' against "Bool'
Expected type: [Bool]
Inferred type: Bool
In the second argument of *(:)', namely “False'
In the definition of "it": it = True : False

The basic intuition for this is that the cons opera:) works with this pattersomething:someList X
however, what we gave it is mag@nething:somethingElse . Cons only knows how to stick things onto lists.
We're starting to run into a bit of reasoning aldigpes Let's summarize so far:

= The elements of the list must have the same type.
= You can only cong) something onto a list.

Well, sheesh, aren't types annoying? They are thdmé as we will see in Type basics, they can bésa life

12 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

saver. In either case, when you are programmirttpskell and something blows up, you'll probably twanget
used to thinking "probably a type error".

Exercises

1. Would the following piece of Haskell work:[True,False] ? Why
or why not?

2. Write a functionconss that takes a list and consesn to it. Test it
out on the following lists by doing:

cons8 []

cons8 [1,2,3]

cons8 [True,False]

let foo = cons8 [1,2,3]

. cons8 foo

3. Write a function that takes two arguments, a Ist a thing, and
conses the thing onto the list. You should stattvath let myCons
list thing =

abhwbPE

Lists within lists

Lists can contaimnything just as long as they are all of the same typdl,\en, chew on this: lists are things
too, therefore, lists can contain... yes indeelgeolists! Try the following in the interpreter:

Example: Lists can contain lists

Prelude> let listOfLists = [[1,2],[3,4],(5,6]]
Prelude> listOfLists
i([1,2]13.41[5.6]]

Lists of lists can be pretty tricky sometimes, hesgaa list of things does not have the same typetlaisg all by
itself. Let's sort through these implications watfew exercises:

Exercises

1. Which of these are valid Haskell and which are iRa®@rite in cons
notation.
1. [1,2,3,]]
2. [1,[2,3],4]
3. [[1,2,31,0]
2. Which of these are valid Haskell, and which are?ri®gewrite in
comma and bracket notation.
1. [:[[1,2,3],[4,5,6]]
2. [0
3. [:0:0
4. [A1:[0:0

13 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

3. Can Haskell have lists of lists of lists? Why orywiot?
4. Why is the following list invalid in Haskell? Donktorry too much if
you don't get this one yet.
1. [[1,2],3,[4,5]]

Lists of lists are extremely useful, because thHiyayou to express some very complicated, strigztudata
(two-dimensional matrices, for example). They dse ane of the places where the Haskell type systeiyn
shines. Human programmers, or at least this wikiteaghor, get confusedll the time when working with lists
of lists, and having restrictions of types oftefpsen wading through the potential mess.

Tuples

A different notion of many

Tuples are another way of storing multiple values inregk value, but they are subtly different in a nembf
ways. They are useful when ykoow in advance, how many values you want to store they lift the
restriction that all the values have to be of thees type. For example, we might want a type farrsgiopairs of
co-ordinates. We know how many elements there @ireggo be (two: ax andy co-ordinate), so tuples are
applicable. Or, if we were writing a phonebook aggdion, we might want to crunch three values ime: the
name, phone number and address of someone. Agaiknew how many elements there are going to ba,Als
those three values aren't likely to have the sgme but that doesn't matter here, because weirg tigles.

Let's look at some sample tuples.

Example: Some tuples

:(True, 1) :
("Hello world", False) '
(4, 5, "Six", True, 'b’) .
1 1

The first example is a tuple containing two elemsefhe first one is True and the second is 1. Bxt example
again has two elements, the first is "Hello wordiitl the second, False. The third example is adxiem
complex. It's a tuple consisting ¥e elements, the first is the number 4, the secoadtimber 5, the third
"Six", the fourth True, and the last one the chemab'. So the syntax for tuples is: separatalifierent
elements with a comma, and surround the whole timpgrentheses.

A quick note on nomenclature: in general you wnHteiple for a tuple of siza. 2-tuples (that is, tuples with 2
elements) are normally called 'pairs' and 3-tupiptes. Tuples of greater sizes aren't actuallyhalt common,
although, if you were to logically extend the nagigystem, you'd have 'quadruples’, 'quintuples'sanah,
hence the general term 'tuple’.

So tuples are a bit like lists, in that they caresimultiple values. However, there is a very kigigrence: pairs
don't have the same type as triples, and triple& dave the same type as quadruples, and in detveoauples
of different sizes have different types. You mighktgetting a little disconcerted because we keeptioreng
this word 'type’, but for now, it's just importdotgrasp how lists and tuples differ in their agmio to sizes.
You can have, say, a list of numbers, and add amember on the front, and it remains a list of nersbIf you

14 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

have a pair and wish to add a new element, it besatriple, and this isfandamentally different obje@t].

Exercises

1. Write down the 3-tuple whose first element is £0s&l element is
"hello" and third element is True.

2. Which of the following are valid tuples ?

1. 4,9
2. (4, "hello"
3. (True, "Blah", "foo")

3. Lists can be built by consing new elements on éorthyou cons a
number onto a list of numbers, and get back afisumbers. It
turns out that there is no such way to build updsip

1. Why do you think that is?
2. Say for the sake of argument, that there was stdichction.
What would you get if you "consed" something omniale?

What are tuples for?

Tuples are handy when you want to return more tmenvalue from a function. In most languages trymg
return two or more things at once means wrappiegitbp in a special data structure, maybe one tigtgets
used in that function. In Haskell, just return thasna tuple.

You can also use tuples as a primitive kind of datacture. But that needs an understanding ofstyphich we
haven't covered yet.

Getting data out of tuples

In this section, we concentrate solely on pairgs T imostly for simplicity's sake, but pairs ageféar and away
the most commonly used size of tuple.

Okay, so we've seen how we can put values in tesupimply by using the, y, z) syntax. How can we get
them out again? For example, a typical use of tul¢o store thex(y) co-ordinate pair of a point: imagine you
have a chess board, and want to specify a spsqgtiare. You could do this by labeling all the rdwsn 1 to 8,
and similarly with the columns, then letting, s@®,5) represent the square in row 2 and colun®ay.we want
to define a function for finding all the piecesamiven row. One way of doing this would be to fthe
co-ordinates of all the pieces, then look at thve part and see if it's equal to whatever row wiegimg asked to
examine. This function would need, once it haddbv®rdinate paitx,y) of a piece, to extract the(the row
part). To do this there are two functions, andsnd, whichprojectthe first and second elements out of a pair,
respectively (in math-speak a function that getaesdata out of a structure is called a "Projecdionét's see
some examples:

Example: Usingfst andsnd

15 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

PPrelude> fst (2, 5)
)

\Prelude> fst (True, "boo")
True

Prelude> snd (5, "Hello")
:"Hello"

It should be fairly obvious what these functions Note that you cannly use these functions on pairs. Why? It
all harks back to the fact that tuples of differsizies are different beasts entiredy. andsnd are specialized to

pairs, and so you can't use them on anything[@Ise

Exercises

1. Use a combination gt andsnd to extract the 4 from the tuple
(("Hello", 4), True) .

2. Normal chess notation is somewhat different to otirsumbers the
rows from 1-8 but then labels the columns A-H. Cowk label a
specific point with a number and a character, {ika) ? What
important difference with lists does this illuseat

Tuples within tuples (and other combinations)

We can apply the same reasoning to tuples aboumgtiasts within lists. Tuples are things too,\sm can store
tuples with tuples (within tuples up to any arbirievel of complexity). Likewise, you could alsave lists of
tuples, tuples of lists, all sorts of combinati@hsng the same lines.

. . 1
Example: Nesting tuples and lists

:((2,3), True) :
((2.3), [2.3) :
12.2), (3.4), (5.6)] :

Some discussion about this - what you get outisf thaybe, what's the big idea behind groupingghin
together

There is one bit of trickiness to watch out fornlever. The type of a tuple is defined not only tsysize, but br
the types of objects it contains. For example ttipées like("Hello",32) and(47,"world") are fundamentally

different. One is of typéstring,int) tuples, whereas the otherig,String) . This has implications for
building up lists of tuples. We could very well leahsts like[("a",1),("b",9),("c",9)] , but having a list
like [("a",1),(2,"b"),(9,"c")] is right out. Can you spot the difference?

Exercises

16 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1. Which of these are valid Haskell, and why?
m fst[1,2]
= 1:(2,3)
" (2,4):(2,3)
= (2,4)0
= [(2,4),(5,5),(a"'b)]
" ([2:4][2,2])
2. FIXME: to be added

Summary

We have introduced two new notions in this chapigts and tuples. To sum up:

1. Lists are defined by square brackets and commes3] .
= They can contaianythingas long as all the elements of the list are ofstdrae type
m They can also be built by the cons operatpr, but you can only cons things onto lists
2. Tuples are defined by parentheses and commaab?,32)
= They can contaianything even things of different types
» They have a fixed length, or at least their lengtencoded in their type. That is, two tuples with
different lengths will have different types.
3. Lists and tuples can be combined in any numberayswiists within lists, tuples with lists, etc

We hope that at this point, you're somewhat coralidet enough manipulating them as part of the furestdiah
Haskell building blocks (variables, functions arsid), because we're now going to move to somenpiatky
heady topics, types and recursion. Types, we hihweeal to thrice in this chapter without really saywhat
they are, so these shall be the next major topitwie cover. But before we get to that, we're goingnake a
short detour to help you make better use of the Gti€preter.

Notes

1. 1 At least as far as types are concerned, but Wwglrey to avoid that word :)

2. 1 More technicallyfst andsnd have types which limit them to pairs. It wouldibgossible to define
projection functions on tuples in general, becahbsg'd have to be able to accept tuples of diffesezes,
so the type of the function would vary.

Next steps

Haskell files

Up to now, we've made heavy use of the GHC intéepr&he interpreter is indeed a useful tool fgimty things
out quickly and for debugging your code. But wgetting to the point where typing everything dilgatto the

17 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

interpreter isn't very practical. So now, we'llveeting our first Haskell source files.

Open up afilevarfun.ns in your favourite text editor (the hs stands fasKell) and paste the following
definition in. Haskell uses indentations and spacetecide where functions (and other things) begid end,
so make sure there are no leading spaces andti@ttations are correct, otherwise GHC will repantse
errors.

(In case you're wonderingj, is actually predefined in Haskell, no need toun it here). Now change into the
directory where you saved your file, open up gaod use :load (or :| for short):

:Prelude> :load Varfun.hs

iCompiling Main (Varfun.hs, interpreted)
1Ok, modules loaded: Main.

:*Main>

If ghci gives an error, "Could not find module "ar.hs™, then use :cd to change the current dirgdb the
directory containing Varfun.hs:

1 1
Prelude> :cd c:\myDirectory 1
\Prelude> :load Varfun.hs '
1Compiling Main (Varfun.hs, interpreted) 1
1
1
1
1

'Ok, modules loaded: Main.
*Main>

:*Main> area 5
178.53981633974483

If you make changes to the file, just use :relaaéb¢ short) to reload the file.

Note

GHC can also be used as a compiler. That is, yaldasse GHC to convert your
Haskell files into a program that can then be ruthout running the interpreter. See the
documentation for details.

You'll note that there are a couple of differenlsesveen how we do things when we type them direatty
ghci, and how we do them when we load them froesfilThe differences may seem awfully arbitraryriow,
but they're actually quite sensible consequencéseo$cope, which, rest assured, we will explaierla

No let

For starters, you no longer say something like

18 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1

letx=3

lety=2
letarear=pi*r~2
1

y=2
arear=pi*rn2
1

The keywordet is actually something you use a lot in Haskell, tat exactly in this context. We'll see further
on in this chapter when we discuss the usesotbindings.

You can't define the same thing twice

Previously, the interpreter cheerfully allowed aswite something like this

:Prelude> letr=5
'Prelude>r

1

|5
Prelude>letr=2
iPrelude> r

1
1-- this does not work
r=5

r=2

As we mentioned above, variables do not changettaads even more the case when you're workirg in
source file. This has one very nice implicatiormians that:

Order does not matter

The order in which you declare things does notenaEor example, the following fragments of codesdactly
the same thing:

This is a unique feature of Haskell and other fiomzl programming languages. The fact that varmhkever
change means that we can opt to write things incadgr that we want (but this is also why you cdattlare
something more than once... it would be ambiguadhbisrwise).

Exercises

Save the functions you had written in the previoeglule's exercises into
a Haskell file. Load the file in GHCi and test fla@ctions on a few
parameters

19 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

More about functions

Working with actual source code files instead @iryg things into the interpreter makes things comset to
define much more substantial functions than thosgerseen up to now. Let's flex some Haskell musete
and examine the kinds of things we can do withfonctions.

Conditional expressions
if / then / else

Haskell supports standard conditional expressibasinstance, we could define a function that meturl if its
argument is less than 0; 0 if its argumisr?; and 1 if its argument is greater than 0 (tkisdlled the signum
function). Actually, such a function already exjdist let's define one of our own, what we'll eaybignum.

:mySignum X =
, ifx<0
 then-1

' elseifx>0
. then 1
: else 0

You can experiment with this as:

Example:

E*Main> mySighum 5
E}Main> mySignum 0
:9Main> mySignum (5-10)
:‘;i/lain> mySignum (-1)

-

Note that the parenthesis around "-1" in the laatrgle are required; if missing, the system wilhkhyou are
trying to subtract the value "1" from the value "Smgynum," which is ill-typed.

The if/fthen/else construct in Haskell is very sanilo that of most other programming languages;dvew you
must have both ehen andanel se clause. It evaluates the condition (in this cased and, if this evaluates to

True , it evaluates thehen condition; if the condition evaluated kalse , it evaluates thel se condition).

You can test this program by editing the file aoading it back into your interpreter. Instead qtityg :|
Varfun.hs again, you can simply typeeload or just:r to reload the current file. This is usually muelstér.

case
Haskell, like many other languages, also suppeids constructions. These are used when there arepheulti

values that you want to check against (case expresare actually quite a bit more powerful thais th see the
Pattern matching chapter for all of the details).

20 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Suppose we wanted to define a function that haalwewof 1 if its argument were 0; a value of sfargument
were 1; a value of 2 if its argument were 2; avédlae of - 1 in all other instances. Writing thisi€tion using

i f statements would be long and very unreadable;eswrite it using aase statement as follows (we call this
functionf):

, case x of
| 0->1
! 1->5
V2> 2
1 _—>—1
1

In this program, we're definingto take an argumertand then inspecting the valuexofif it matches 0, the
value off is 1. If it matches 1, the value fofs 5. If it matches 2, then the valuefaf 2 and if it hasn't matche
anything by that point, the value fofs - 1 (the underscore can be thought of as albaid" -- it will match

anything).

The indentation here is important. Haskell usegséesn called "layout” to structure its code (thegszamming
language Python uses a similar system). The lagysiem allows you to write code without the explici
semicolons and braces that other languages likedQava require.

Indentation

The general rule for layout is that an open-bradaserted after the keywordser e, | et , do andof , and the
column position at which the next command appesarsmembered. From then on, a semicolon is inserted
before every new line that is indented the sameuaindf a following line is indented less, a clds&ce is
inserted. This may sound complicated, but if ydiofe the general rule of indenting after each afsé
keywords, you'll never have to remember it (sedrtdentation chapter for a more complete discussfon
layout).

Some people prefer not to use layout and writdbthees and semicolons explicitly. This is perfeattgeptable.
In this style, the above function might look like:

:fx=casexof
! {0>1;1->5;2->2; ->-1}

Of course, if you write the braces and semicoloqii€itly, you're free to structure the code as yash. The
following is also equally valid:

f X =
casexof {0->1;
1->5;2->2
y_—>-1}

However, structuring your code like this only sexrte make it unreadable (in this case).

Defining one function for different parameters

Functions can also be defined piece-wise, meakhiaigypu can write one version of your function dertain
parameters and then another version for other peieam For instance, the above functiacould also be
written as:

21 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

I
N ae

Here, the order is important. If we had put the lia first, it would have matched every argumemiglf would
return-1, regardless of its argument (most compilers wdtmvyou about this, though, saying something about
overlapping patterns). If we had not included thg line,f would produce an error if anything other than 0, 1
or 2 were applied to it (most compilers will warouyabout this, too, saying something about incotaple
patterns). This style of piece-wise definition ey popular and will be used quite frequently tlgloout this
tutorial. These two definitions efare actually equivalent -- this piece-wise versgtranslated into the case
expression.

Function composition

More complicated functions can be built from simmglenctions usingunction compositionFunction
composition is simply taking the result of the apgiion of one function and using that as an argurfe
another. We've already seen this back in the Gestn up chapter, when we wrate+3 . In this, we were
evaluating 5 * 4 and then applying + 3 to the redie can do the same thing with gguare andf functions:

#Main> square (f 1)
125

*Main> square (f 2)
14

*Main> f (square 1)
15

*Main> f (square 2)

The result of each of these function applicatianfirly straightforward. The parentheses aroumdiriner
function are necessary; otherwise, in the firs lithhe interpreter would think that you were trytogyet the
value ofsquare f , which has no meaning. Function application liis is fairly standard in most programming
languages. There is another, more mathematicatavaypress function composition: thg énclosed period
function. This () function is modeled after tha)(operator in mathematics.

Note

In mathematics we writ_;lr o g to mean "f following g." In Haskell , we write g
also to mean "f following g."

The meaning of o g is simply tha(f o g)(x) = f(g(x)) Thatis, applying the

function f o g to the valuexis the same as applyimgto x, taking the result, and then
applyingf to that.

22 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

The () function (called the function composition functjptakes two functions and makes them into one. Fo
instance, if we writgsquare . f) , this means that it creates a new function tHagan argument, applieso
that argument and then appleegsare to the result. Conversely,. square) means that a new function is
created that takes an argument, appligsre to that argument and then applie® the result. We can see this
by testing it as before:

Example:

:*Main> (square . f) 1
125

*Main> (square . f) 2
4

*Main> (f. square) 1
15

*Main> (f . square) 2

Here, we must enclose the function compositionareptheses; otherwise, the Haskell compiler witikiwe're
trying to composequare with the valug 1 in the first line, which makes no sense sinceisn't even a

function.

It would probably be wise to take a little time-aotlook at some of the functions that are defimethe
Prelude. Undoubtedly, at some point, you will aeaiglly rewrite some already-existing function€ldone it
more times than | can count), but if we can keépttha minimum, that would save a lot of time.

Let Bindings

Often we wish to provide local declarations for useur functions. For instance, if you remembezko@ your
grade school mathematics courses, the followingeop is used to find the roots (zeros) of a potgrad of the
form ax® + bx + ¢ = O: T = (_{3 + hE — -lm‘)/za We could write the following function to computee
two values ok:

Eroots abc=
. ((-b + sqgrt(b*b - 4*a*c)) / (2*a),
1 (-b - sgrt(b*b - 4*a*c)) / (2*a))

Notice that our definition here has a bit of redamcly. It is not quite as nice as the mathematieahiion
because we have needlessly repeated the codgt{bom - 4xa*c) . To remedy this problem, Haskell allows
for local bindings. That is, we can create valuessde of a function that only that function can.de& instance
we could create a local binding fayit(b*b-4*a*c) and call it, saygisc and then use that in both places
wheresqrt(b*b - 4*a*c) occurred. We can do this usinge /i n declaration:

:roots abc=

1 letdisc = sqrt (b*b - 4*a*c)
1 in ((-b + disc) / (2*a),

' (-b - disc) / (2*a))

In fact, you can provide multiple declarations dfesa let. Just make sure they're indented the aament, or
you will have layout problems:

23 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1 1
rootsabc= 1
1 let disc = sqrt (b*b - 4*a*c) '
1 twice_a = 2*a 1
1 in ((-b + disc) / twice_a, '
1 (-b - disc) / twice_a) 1
1 1

Type basics

Typesin programming are a way of grouping similar valu@ Haskell, the type system is a powerful way of
ensuring there are fewer mistakes in your code.

Introduction

Programming deals with different sorts of entitiésr example, consider adding two numbers together:
2+3

What are 2 and 3? They are numbers, clearly. Bwtddmut the plus sign in the middle? That's celgaiot a
number. So what is it?

Similarly, consider a program that asks you forryoame, then says "Hello". Neither your name nentiord
Hello is a number. What are they then? We miglerref all words and sentences and so forth as Trefdct,
it's more normal in programming to use a slightlyrenesoteric word, that iString

If you've ever set up a database before, youdlyikave come across types. For
example, say we had a table in a database todgtads about a person's contacts;

In Haskell, the a kind of personal telephone book. The contentiiapk like this:
rule is that all type

names have to

begin with a First Name Last Name Telephone number Address

capital letter. We

shall adhere to Sherlock | Holmes | 743756 221B Baker Street London

this convention Bob Jones 655523 99 Long Road Street Villestown

henceforth.

The fields contain valueSherlock is a value as i89 Long Road Street
Vilestown as well a®55523 . As we've said, types are a way of grouping daffieisorts of data. What do we
have in the above table? Two of the columns, Riaste and Last name contain text, so we say thatatlhes
are of type String. The type of the third colummaidead giveaway by its name, Telephone numbeuégah
that column have the type of Number!

At first glance one may be tempted to class addisssstring. However, the semantics behind ancemo
address are quite complex. There's a whole lotiofdn conventions that dictate. For example, iffitis¢ line
contains a number, then that's the number of thisdaf not, then it's probably the name of thedeo@except if
the line begins with PO Box then it's just a pobtat address and doesn't indicate where the péxsmat all..
Clearly, there's more going on here than just T@d.could say that addresses are Text; there'diheng

24 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

wrong with that. However, claiming they're of sodifferent type, say, Address, is more powerfulvé know
some piece of data has the type of Text, that'v>helpful. However, if we know it has the typleAddress,
we instantly know much more about the piece of .data

We might also want to apply this line of reasonio@ur telephone number column. Indeed, it woulé lg@od
idea to come up with a TelephoneNumber type. Thesm iwere to come across some arbitrary sequence of
digits, knowing that sequence of digits was of tfjeéephoneNumber, we would have access to a lo¢ mor
information than if it were just a Number.

Another reason to not consider the TelephoneNumbar Number is that numbers are arithmetic entities
allowing them to be used for computing other nurab@rhat would be then the meaning and expected
effect of adding 1 to a TelephoneNumber? It wowddallow calling anyone by phone. That's a good
enough reason why you would like a stronger typ@ flast a mere Number. Also, each digit making a
telephone number is important, it's not acceptablese some of them, by rounding it, or even by

omitting some leading zeroes. Other reasons woellidhét telephone numbers can't be used the same way
from different locations, and you may also needgecify within a TelephoneNumber value some other
information like a area number or a country prefixe good way to specify that is to provide some
abstraction for telephone numbers and to design gatabase with a separate type instead of just
Number.

Why types are useful
So far, what we've done just seems like categaithings -- hardly a feature which would cause gveodern

programming language designer to incorporate imear tanguage! In the next section we explore hagkell
uses types to the programmer's benefit.

Using the interactive: t ype command

Characters and strings

The best way to explore how types work in Haslketbifire up GHCIi. Let's do it! Once we're up andrming,
let us get to know the :type command.

L
Example: Using the :t command in GHCi on a literal characte

PPrelude> ‘type 'H'
'H' 2 Char
(The :type can be also shortened tpwhich we shall use from now on.)

And there we have it. You give GHCi an expressiod i returns its type. In this case we gave itlitezal
value'H' - the letter H enclosed in single quotation mgekk.a. apostrophe, ANSI 39) and GHCi printed it

followed by the "::" symbol which reads "is of tygellowed by Char. The whole thing reads: 'H' idype
Char.

If we try to give it a string of characters, we d¢e enclose them in quotation marks:

25 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Example: Using the :t command in GHCi on a literal string

:Prelude> :t "Hello World" :
"Hello World" :: [Char] '

In this case we gave it some text enclosed in aogbbtation marks and GHCi printegkllo World" ::
[Char] . [Char] means list of charactersNotice the difference between Char and [Chahne-dquare brackets
are used to construct literal lists, and they &e ased to describe the list type.

Exercises

1. Try using thetype command on the literal valug" (notice the
double quotes). What happens? Why?

2. Try using thetype command on the literal valugello World'
(notice the single quotes). What happens? Why?

This is essentially what strings are in Haskelétsl of characters. A string in Haskell can beafized in sever:
ways: It may be entered as a sequence of charastelssed in double quotation marks (ANSI 34); @yrbe

constructed similar to any other list as individaEments of type Char joined together with thdtiriction and
terminated by an empty list or, built with indivaluChar values enclosed in brackets and separgtedrbmas.

So, for the final time, what precisely is this ceptof text that we're throwing around? One wantdrpreting
it is to say it's basically a sequence of charactEnink about it: the word "Hey" is just the chasa 'H'
followed by the character ‘e’ followed by the clotea'y'. Haskell uses a list to hold this sequesfaeharacters.
Square brackets indicate a list of things, for epl@nhergChar] means 'a list of Chars'.

Haskell has a concept of type synonyms. Just #eeilEnglish language, two words that mean the shimg,
for example 'fast' and 'quick’, are called synonyimsiaskell two types which are exactly the sameecalled
'type synonyms'. Everywhere you can use [Char],cauuse String. So to say:

Is also perfectly valid. From here on we'll mos#fer to text as String, rather than [Char].
Boolean values

One of the other types found in most languageallsa a Boolean, or Bool for short. This has twhuea: true
or false. This turns out to be very useful. Fornegke consider a program that would ask the usea fuame
then look that name up in a spreadsheet. It mightdeful to have a functiomameExists , which indicates
whether or not the name of the user exists in pneasisheet. If iloes existyou could say that it isue that the
name exists, and if not, you could say that falsethat the name exists. So we've come across Bblostwo

valuesof bools are, as we've mentioned, true and falsHaskell boolean values are capitalized (for oeas
that will later become clear):

26 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Example: Exploring the types of True and False in GHCi

:Prelude> 't True
:True :: Bool
\Prelude> :t False
:False :: Bool

This shouldn't need too much explaining at thisypoihe values True and False are categorized ale8&us,
that is to say, they have type Bool.

Numeric types

If you've been playing around with typing :t on thié familiar values you've come across, perhap&/gaun
into the following complication:

:Prelude> t5
B (Numt) =>t

We'll defer the explanation of this until later.efthort version of the story is that there are nthffgrent types
of numbers (fractions, whole numbers, etc) amman be any one of them. This weird-looking tydates to a
Haskell feature called type classes, which we bélplaying with later in this book.

Functional types

So far, the types we have talked about apply toes(strings, booleans, characters, etc), and we drplained
how types not only help to categorize them, but disscribe them. The next thing we'll look at isatvmakes

the type system truly powerful: We can assign typssonly to values, but to functions as Wl Let's look at
some examples.

Example: not

. L
Example: Negating booleans

1
not True = False
not False = True

not IS a standard Prelude function that simply negBtess, in the sense that truth turns into falaiyl vice
versa. For example, given the above example we gsing BoolspameExists , we could define a similar
function that would test whether a name doesndtenithe spreadsheet. It would likely look someghlike
this:

27 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

L
Example: nameDoesntExist : usingnot

To assign a type taot we look at two things: the type of values it takests input, and the type of values it
returns. In our example, things are easy.takes a Bool (the Bool to be negated), and retarBeol (the
negated Bool). Therefore, we write that:

. L
Example: Type signature fotiot

You can read this asot is a function from things of type Bool to thingstygpe Bool'.

Example: unl i nes and unwor ds

A common programming task is to take a list ofig&fsi, then join them all up into a single stringt insert a
newline character between each one, so they aluprah different lines. For example, say you haallitt
['Bacon", "Sausages", "Egg"] , and wanted to convert it to something resembdisgopping list, the natural
thing to do would be to join the list together iBtsingle string, placing each item from the listaoa new line.
This is precisely whaitnlines doesunwords is similar, but it uses a space instead of a mandis a separator.
(mnemonic: un = unite)

L
Example: unlines andunwords

:Prelude> unlines ["Bacon", "Sausages", "Egg"]
'Bacon\nSausages\nEgg\n"

\Prelude> unwords ['Bacon”, "Sausages", "Egg"]
:"Bacon Sausages Egg"

Notice the weird output frotunlines . This isn't particularly related to types, but iorth noting anyway, so
we're going to digress a little and explore wh tisi Basically, any output from GHCi is first rthrough the
show function, which converts it into a String. This kea sense, because GHCi shows you the result of you
commands as text, so it has to be a String. Howeweat doeshow do if you give it something which is already
a String? Although the obvious answer would benditing’, the behaviour is actually slightly ditéat: any
'special characters', like tabs, newlines and sim ¢ime String are converted to their ‘escaped $grwhich

means that rather than a newline actually makiegsthff following it appear on the next line, itsBown as

"\n". To avoid this, we can use thesstrLn function, which GHCi sees and doesn't run youpouthrough

show.

28 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

. . . 1
Example: UsingputstrLn in GHCi

PPrelude> putStrLn (unlines ['Bacon”, "Sausages", "E 09" :
'‘Bacon !
1 1
\Sausages |
a9 !
1 1
Prelude> putStrLn (unwords ['Bacon", "Sausages”, "E 09" 1

1

1

Bacon Sausages Egg

The second result may look identical, but notieeldtk of quotesutStrLn outputs exactly what you give it
(actuallyputstrLn appends a newline character to its input befargipg it; the functiorputStr outputs
exactlywhat you give it). Also, note that you can onlgga a String. Calls likputstrLn 5 will fail. You'd
need to convert the number to a String first, thatiseshow: putStrLn (show 5) (or use the equivalent
function print: print 5).

Getting back to the types. What would the typesntifes andunwords be? Well, again, let's look at both w
they take as an argument, and what they returnvedge just seen, we've been feeding these functdiss, and
each of the items in the list has been a Stringrdfore, the type of the argument is [String]. Tjoey all these
Strings together into one long String, so the retype has to be String. Therefore, both of thefions have
type[String] -> String . Note that we didn't mention the fact that the fwactions use different separators.
This is totally inconsequential when it comes foety — all that matters is that they return a Stririge type of
a String with some newlines is precisely the sagha type of a String with some spaces.

Example: chr andord

Text presents a problem to computers. Once evexyibireduced to its lowest level, all a computerks how
to deal with is 1's and 0's: computers work in ynAs working with binary isn't very convenienyrhans have
come up with ways of making computers store texer§ character is first converted to a number, tifwar
number is converted to binary and stored. Henpée@e of text, which is just a sequence of charactan be
encoded into binary. Normally, we're only interesite how to encode characters into their numerical
representations, because the number to binarg lagry easy.

The easiest way of converting characters to numbesisnply to write all the possible characters dothen
number them. For example, we might decide thablaesponds to 1, then 'b' to 2, and so on. Tregastly
what a thing called the ASCII standard is: 128haf nost commonly-used characters, numbered. OSepitr
would be a bore to sit down and look up a charantarbig lookup table every time we wanted to elecin, so

we've got two functions that can do it for us, (pronounced 'char’) arwd [41.

L
Example: Type signatures famr andord

:chr - Int -> Char
jord :: Char -> Int

Remember earlier when we stated Haskell has mamgna types? The simplestiis , which represents whole
numbers, or integers, to give them their propermzﬁwSo what do the above type signatures say? Remall h

29 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

the process worked fabt above. We look at the type of the function's argaoimthen at the type of the
function's result. In the case @it (find the character corresponding to a specifimerc encoding), the type
signature tells us that it takes arguments of tgpand has a result of type Char. The conversieeigase with
ord (find the specific numeric encoding for a giveradcter): it takes things of type Char and rettinnggs of
type Int.

To make things more concrete, here are a few exagdlfunction calls toehr andord , SO you can see how the

types work out. Notice that the two functions a@ranthe standard prelude, but instead in the @dtar module,
so you have to load that module with the :m (ordoie) command.

L
Example: Function calls tehr andord

:Prelude> :m Data.Char
:Prelude Data.Char> chr 97
Ly

:Prelude Data.Char> chr 98

:Prelude Data.Char> ord 'c'
'99

Functions in more than one argument

So far, all we've seen is functions that take glsiargument. This isn't very interesting! For ep&énthe
following is a perfectly valid Haskell function, bwhat would its type be?

L
Example: A function in more than one argument

As we've said a few times, there's more than ope fiyr numbers, but we're going to cheat here aeekpd that
x andy have to be Ints.

The general technique for forming the type of acfion in more than one

argument, then, is to just write down all the typéthe arguments in a row, in

order (so in this casefirst theny), then write> in between all of them. Finally, ~ There are very
add the type of the result to the end of the rod stick a final> in just before it. deep reasons for

So in this case, we have: this, which we'll
’ ' cover in the

FIXME: use images here. chapt_er on
Currying.
1. Write down the types of the arguments. We've alresaid thak andy have

to be Ints, so it becomes:

T TS TS S S EEmEmmEmEm - |
1 1
int Int 1
Mxisan Int My is an Int as well '
L e e fff e e e e c e mccccccm;;ccccccccc;cc - c e c— e ———m— == J

2. Fillin the gaps with>:

30 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

remains an Int.

1

int -> Int -> Int
M We're returning an Int

M There's the extra -> that got added i n

Real-World Example: openW ndow

As you'll learn in the Practical Haskell sectiortloé course, one popular group of
Haskell libraries are the GUI ones. These provigefions for dealing with all the

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

. Add in the result type and a final. In our case, we're just doing some basic arittnset the result

parts of Windows or Linux you're familiar with: amieg and closing application A library is a
windows, moving the mouse around etc. One of thetfans from one of these collection of
libraries is calledpenwindow , and you can use it to open a new window in your ~ common code used
application. For example, say you're writing a wprdcessor like Microsoft Word, E?/og;r;rs:s

and the user has clicked on the 'Options' butt@u iYeed to open a new window

which contains all the options that they can chahgés look at the type signature

for this function[6]:

Example: openwindow

Don't panic! Here are a few more types you hawanmite across yet. But don't worry, they're quitepsemAll

three of the types there, WindowTitle, WindowSinel &/indow are defined by the GUI library that pes
openWindow . As we saw when constructing the types above,Usecthere are two arrows, the first two types are
the types of the parameters, and the last is e df the result. WindowTitle holds the title oétivindow

(what appears in the blue bar - you didn't chahgecoblor, did you? - at the top), WindowSize hoy thie

window should be. The function then returns a valigype Window which you can use to get informatan

and manipulate the window.

31 of 290

Exercises

Finding types for functions is a basic Haskell Istkiat you should become
very familiar with. What are the types of the foliog functions?

1.

2.

Thenegate function, which takes an Int and returns thawith its
sign swapped. For examplegate 4 =-4 , andnegate (-2) = 2
The&as function, pronounced 'and’, that takes two Boal$ eturns
a third Bool which is True if both the argumentseyeand False
otherwise.

. The|| function, pronounced 'or', that takes two Boold eturns a

third Bool which is True if either of the argumemtsre, and False
otherwise.

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

For any functions hereafter involving numbers, gau just assume the
numbers are Ints.

1. fxy=notx&&y
2. gx=(2*x-1)"2
3. hxyz=chr(x-2)

Polymorphic types

So far all we've looked at are functions and valugls a single type. However, if you start playiagpund

with :t in GHCi you'll quickly run into things thaton't have types beginning with the familiar cabi¢tter. For
example, there's a function that finds the lendth Iest, called (rather predictablghgth . Remember that
[Foo] is a list of things of type Foo. However, @véke length to work on lists of any type. l.e. we'd rather not
have aengthints :: [Int] -> Int , as well as &ngthBools :: [Bool] -> Int ,aswell as a

lengthStrings :: [String] -> Int , as well as a...

That's too complicated. We want one single functiat will find the length of any type of list. Theay Haskell
does this is using type variables. For exampleatiteal type of length is as follows:

L
Example: Our first polymorphic type

The "a" you see there in the square brackets lisccatype variable. Type
variables begin with a lowercase letter. Indeed, hwhy types have to begin with
an uppercase letter — so they can be distinguiBbedtype variables. When
Haskell sees a type variable, it allows any typgke its place. This is exactly
what we want. In type theory (a branch of matheesatithis is called
polymorphism: functions or values with only a smgype (like all the ones we've
looked at so far excepingth) are called monomorphic, and things that use type
variables to admit more than one type are thergfohgmorphic.

We'll look at the
theory behind
polymorphism in
much more detail
later in the course.

Example: fst andsnd

As we saw, you can use tike andsnd functions to extract parts of pairs. By this tigmal should be in the
habit of thinking "What type is that function?" alie@very function you come across. Let's examineand
snd . First, a few sample calls to the functions:

L
Example: Example calls tést andsnd

32 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

PPrelude> fst (1, 2)
"n

\Prelude> fst ("Hello", False)
"Hello"
Prelude> snd (("Hello", False), 4)

To begin with, let's point out the obvious: these functions take a pair as their parameter angmeine part
of this pair. The important thing about pairs, amdeed tuples in general, is that they don't haveet
homogeneous with respect to types; their diffepamts can be different types. Indeed, that is #sean the
second and third examples above. If we were to say:

That would force the first and second part of inpait to be the same type. That illustrates an mand aspect
to type variables: although they can be replacdld any type, they have to be replaced with the sgpe
everywhere. So what's the correct type? Simply:

L
Example: The types ofst andsnd

I T T T T T T TS S S S S S S S S S EEEEEE 1
:fst t(a,b)->a :
isnd i (a, b) -> b !
I e e e e e e e e e e e e me e emmm-mm - -m-m--ece-cce e —eeee e e e — ==]

Note that if you were just given the type signasuse®u might guess that they return the first aawbad parts ¢
a pair, respectively. In fact this is not necedgamue, they just have to return something witd #ame type of
the first and second parts of the pair.

Type signatures in code

Now we've explored the basic theory behind typestgpes in Haskell, let's look at how they appeacade.
Most Haskell programmers wiinnotateevery function they write with its associated typkat is, you might
be writing a module that looks something like this:

Example: Module without type signatures

1

:module StringManip where
:import Data.Char

1

:uppercase = map toUpper
:Iowercase = map toLower
capitalise x =

1 letcapWord[] =1]

1 capWord (x:xs) = toUpper X : Xs

1 in unwords (map capWord (words X))
1

This is a small library that provides some freqliensed string manipulation functionsgpercase converts a

33 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

string to uppercaséwercase to lowercase, anchpitalize capitalizes the first letter of every word. Provg
a type for these functions makes it more obviouatviey do. For example, most Haskellers wouldenttie
above module something like the following:

Example: Module with type signatures

:module StringManip where
1

:import Data.Char

1

:uppercase, lowercase :: String -> String
wuppercase = map toUpper

lowercase = map toLower

1

‘capitalise :: String -> String

capitalise x =

!letcapWord[] =]

1 capWord (x:xs) = toUpper X : xs

' in unwords (map capWord (words x))

Note that you can group type signatures togetherarsingle type signature (like ours uppercase and
lowercase above) if the two functions share the same type.

Type inference

So far, we've explored types by using the :t conanarGHCi. However, before you came across thiptdra
you were still managing to write perfectly good Kelscode, and it has been accepted by the comjilerther
words, it's not necessary to add type signaturesieder, if you don't add type signatures, that doesean
Haskell simply forgets about typing altogether!ded, when you didn't tell Haskell the types of yfunctions
and variables, wvorked them oufThis is a process callégpe inferencewhereby the compiler starts with the
types of things it knows, then works out the typethe rest of the things. Type inference for Hdlske

decidable which means that the compiler cawayswork out the types, even if you never write thert].
Lets look at some examples to see how the compideks out types.

. . 1
Example: Simple type inference

- We're deliberately not providing a type signatur e for this function
isLc=c=="T
)

This function takes a character and sees if ini$' @haracter. The compiléerivesthe type folisL something
like the following:

Example: A typing derivation

34 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1

(==) ::a->a->Bool

"' Char

IReplacing the second "a" in the signature for (==) with the type of I
(==) = Char -> Char -> Bool

isL :: Char -> Bool

The first line indicates that the type of the fuoet==) , which tests for equality, is-> a -> Bool (8] (We
include the function name in parentheses becagsabperator. its name consists only of non-alphanumeric
characters. More on this later.) The compiler &lsows that something in 'single quotes' has typar 3o
clearly the literal 'I' has type Char. Next, thengiler starts replacing the type variables in tigaature for(==)
with the types it knows. Note that in one step west froma -> a -> Bool to Char -> Char -> Bool ,
because the type variakiavas used in both the first and second argumerihesoneed to be the same. And so
we arrive at a function that takes a single argur@hose type we don't know yet, but hold on!) apglies it
as the first argument {e=) . We have a particulanstanceof the polymorphic type qt=) , that is, here, we're
talking about==) :: Char -> Char -> Bool because we know that we're comparing Chars. Torexeds

(==) :: Char -> Char -> Bool and we're feeding the parameter into the firstisx@nt to==) , we know that
the parameter has the type of Char. Phew!

But wait, we're not even finished yet! What's teeurn type of the function? Thankfully, this bitadit easier.
We've fed two Chars into a function which (in tbése) has typenar -> Char -> Bool , SO we must have a
Bool. Note that the return value from the cal{de) becomes the return value of adir function.

So, let's put it all togethesL is a function which takes a single argument. e a@lvered that this argument
must be of type Char. Finally, we derived that etim a Bool. So, we can confidently say thkiat has the

type:

Example:isL with a type

:isL :: Char -> Bool
isLe=c=="

And, indeed, if you miss out the type signature, faskell compiler will discover this on its owrsjing exactly
the same method we've just run through.

Reasons to use type signatures

So if type signatures are optional, why bother whigm at all? Here are a few reasons:

= Documentation the most prominent reason is that it makes yodeeasier to read. With most functions,
the name of the function along with the type offilmction are sufficient to guess at what the figrct
does. (Of course, you should always comment yode @nyway.)

= Debugging if you annotate a function with a type, then makgpo in the body of the function, the
compiler will tell youat compile-timehat your function is wrong. Leaving off the typignature could
have the effect of allowing your function to conapiand the compiler would assign it an erroneops.ty
You wouldn't know until you ran your program thiatvias wrong. In fact, this is so important, lekplere
it some more.

35 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Types prevent errors

Imagine you have a few functions set up like tHe¥ang:

. L
Example: Type inference at work

ifiveOrsix :: Bool -> Int
fiveOrSix True =5

fiveOrSix False = 6

1

\pairTolnt :: (Bool, String) -> Int
pairTolnt x = fiveOrSix (fst x)

)

Our functionfiveorSix ~ takes a Bool. WheprirToint receives its arguments, it knows, because ofyie t
signature we've annotated it with, that the fitetreent of the pair is a Bool. So, we could exttht usingrst

and pass that intiveOrsix , and this would work, because the type of the &lsment of the pair and the type
of the argument toveOrsix are the same.

This is really central to typed languages. Whersipgsexpressions around you have to make surg/les t
match up like they did here. If they don't, yog#ittype errorswhen you try to compile; your program won't
typecheckThis is really how types help you to keep yowgrams bug-free. To take a very trivial example:

Example: A non-typechecking program

Having that line as part of your program will mak&il to compile, because you can't add two gfsitogether!
More likely, you wanted to use the string concat®maoperator, which joins two strings togetheoiatsingle
one:

Example: Our erroneous program, fixed

An easy typo to make, but because you use Ha#keths caught when you tried to compile. You didhate to
wait until you ran the program for the bug to beecapparent.

This was only a simple example. However, the idegpes being a system to catch mistakes works mueh
larger scale too. In general, when you make a ahémgour program, you'll change the type of onthef
elements. If this change isn't something that ydended, then it will show up immediately. A lotldéskell
programmers remark that once they have fixed altype errors in their programs, and their prograampile,
that they tend to 'just work': function flawlesélgt time, with only minor problem$&un-time errorswhere
your program goes wrong when you run it rather tivhen you compile it, are much rarer in Haskelhtha
other languages. This is a huge advantage of agstype system like Haskell's.

36 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Exercises

Infer the types of following functions:
1. fxy=uppercase (x ++Y)
2. g (x,y) = fiveOrSix (isL x) - ord y
3. hxy = pairTolnt (fst x,y) + snd x + length y

FIXME more to come...

Notes

1.
2.

1 At least as far as types are concerned, but Wwglrey to avoid that word :)

1 More technicallyjst andsnd have types which limit them to pairs. It wouldibgossible to define
projection functions on tuples in general, becahsg'd have to be able to accept tuples of diffeseres,
so the type of the function would vary.

. 1 In fact, these are one and the same concept ikeHas
. 1 This isn't quite whathr andord do, but that description fits our purposes weil] &'s close enough.
. T To make things even more confusing, there's dgtaaén more than one type for integers! Don't worr

we'll come on to this in due course.

. 1 This has been somewhat simplified to fit our pggm Don't worry, the essence of the functioneseth
. 1 Some of the newer type system extensions to @élreak this, however, so you're better off just

always putting down types anyway.

. 1 This is a slight lie. That type signature wouldamehat you can compare two values of any type

whatsoever, but this clearly isn't true: how can gee if two functions are equal? Haskell inclual&nd
of 'restricted polymorphism' that allows type vates to range over some, but not all types. Haskell
implements this usintype classeswhich we'll learn about later. In this case, tberect type of==) iSEq
a=>a->a->Bool

Simple input and output

So far this tutorial has discussed functions teatrn values, which is well and good. But how dowvie
"Hello world"? To give you a first taste of it, leeis a small variant of the "Hello world" program:

. L
Example: Hello! What is your name?

imain = do

1 putStrLn "Please enter your name: "

1 hame <- getLine

' putStrLn ("Hello, " ++ name ++ ", how are you?")

At the very least, what should be clear is thatidgavith input and output (10) in Haskell is notast cause!
Functional languages have always had a probleminpilt and output because they require side effects

37 of 290

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Functions always have to return the same resulthésame arguments. But how can a function "getLi
return the same value every time it is called? BeWwe give the solution, let's take a step backthimk about
the difficulties inherent in such a task.

Any 10 library should provide a host of functiom®ntaining (at a minimum) operations like:

print a string to the screen
read a string from a keyboard
write data to a file

read data from a file

There are two issues here. Let's first consideiiti@l two examples and think about what thepeg should
be. Certainly the first operation (I hesitate td tta "function”) should take ating argument and produce
something, but what should it produce? It coulddpiee a unit) , since there is essentially no return value f
printing a string. The second operation, similaslypuld return atring , but it doesn't seem to require an
argument.

We want both of these operations to be functionstley are by definition not functions. The itdmatreads a
string from the keyboard cannot be a functiont agli not return the samstring every time. And if the first
function simply returng every time, then referential transparency tellsvashould have no problem with
replacing it with a function_=() . But clearly this does not have the desired effect

Actions

The breakthrough for solving this problem came whRéit Wadler realized that monads would be a goay to
think about IO computations. In fact, monads aile &bexpress much more than just the simple op&st
described above; we can use them to express ayafieonstructions like concurrence, exceptiof, |
non-determinism and much more. Moreover, thereiking special about them; they can be defwédin
Haskell with no special handling from the compf{igmough compilers often choose to optimize monadic
operations). Monads also have a somewhat undeseggpathtion of being difficult to understand. Soree
going to leave things at that -- knowing simplyttf@ somehow makes use of monads without neccgsaril
understanding the gory details behind them (thallyraren't so gory). So for now, we can forget thanads
even exist.

As pointed out before, we cannot think of thing® liprint a string to the screen” or "read dataffile" as
functions, since they are not (in the pure mathemaksense). Therefore, we give them another nacteons
Not only do we give them a special name, we gieartla special type. One particularly useful act&
putStrLn , which prints a string to the screen. This actias type:

As expectedputstrLn takes a string argument. What it returns is oétgp) . This means that this function
actually an action (that is what tlee means). Furthermore, when this actiopvaluatedior "run”) , the result
will have type() .

Note

Actually, this type means thatitStrLn IS an action "within the IO monad", but we will

38 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:
gloss over this for now.

You can probably already guess the typegeafine

This means thajetLine is an 10 action that, when run, will have tygeng

The question immediately arises: "how do you 'aimaction?". This is something that is left uphte tompiler.
You cannot actually run an action yourself; instem@rogram is, itself, a single action that is when the
compiled program is executed. Thus, the compilguires that thenain function have typ& () , which means
that it is an 10 action that returns nothing. Tlhenpiled code then executes this action.

However, while you are not allowed to run actionsingelf, youare allowed tocombine actions. There are two
ways to go about this. The one we will focus othis chapter is thdo notation, which provides a convenient
means of putting actions together, and allows wgetaiseful things done in Haskell without haviag t
understand whatally happens. Lurking behind the do notation is theenexplicit approach using the (>>=)
operator, but we will not be ready to cover thisiltthe chapter Understanding monads.

Note

Do notation is just syntactic sugar fer=) . If you have experience with higher order

functions, it might be worth starting with the &teapproach and coming back here to
see how do notation gets used.

Let's consider the following name program:

. L
Example: What is your name?

imain = do

1 putStrLn "Please enter your name: "

1 hame <- getLine

' putStrLn ("Hello, " ++ name ++ ", how are you?")

We can consider th& notation as a way to combine a sequence of actMosover, the-- notation is a way
to get the value out of an action. So, in this paog we're sequencing three actionsutatrLn , agetLine and
anotherputstrLn . TheputStrLn action has typsatring -> 10 () , SO we provide it &tring , S0 the fully
applied action has type () . This is something that we are allowed to run psogram.

Exercises

Write a program which asks the user for the basehanght of a triangle,

39 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

calculates its area and prints it to the screee.ifiteraction should look
something like:

1 1
:The base? :
B33 .
iThe height? 1
I5 4 1
[. . 1
iThe area of that triangle is 8.91 1

1

Hint: you can use the functioead to convert user strings like "3.3" into
numbers like 3.3 and functiahow to convert a number into string.

Left arrow clarifications
The <- is optional

While we are allowed to get a value out of cerations likegetLine , we certainly are not obliged to do so.
For example, we could very well have written sormeghike this:

. . L
Example: executingetLine directly ﬁ

I T T T T T T TS S S S S S S S S S EEEEEE 1
:main =do :
| putStrLn "Please enter your name: " '
1 getLine 1
! putStrLn ("Hello, how are you?") '
L e e e e e e e e e e e mmemmemmmmmmmmmemmmmmmmmemme e e e — e ———————— 1

Clearly, that isn't very useful: the whole pointpsdbmpting the user for his or her name was sowieatould do
something with the result. That being said, itaaaeivable that one might wish to read a line andpetely
ignore the result. Omitting the will allow for that; the action will happen, bute data won't be stored

anywhere.

In order to get the value out of the action, weterame <- getLine , which basically means "rutLine , and
put the results in the variable callegne."

The <- can be used with any action (except the last)

On the flip side, there are also very few reswies which actions can have values gotten out ehil@onsider
the following example, where we put the resulteath action into a variable (except the last...enwor that
later):

L
Example: putting all results into a variable

:main =do

1 X <- putStrLn "Please enter your name: "

| hame <- getLine

! putStrLn ("Hello, " ++ name ++ ", how are you?")

40 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

The variablex gets the value out of its action, but that iselyMnteresting because the action returns the unit
value() . So while we could technically get the value dudmy action, it isn't always worth it. But waithat
about that last action? Why can't we get a valuebthat? Let's see what happens when we try:

L
Example: getting the value out of the last action

imain = do

1 X <- putStrLn "Please enter your name: "

1 hame <- getLine

Ly < putStrLn ("Hello, " ++ name ++ ", how are yo u?")

1
iYourName.hs:5:2:
1 The last statement in a 'do’ construct must be an expression

This is a much more interesting example, but itinexg a somewhat deeper understanding of Haslaallire
currently have. Suffice it to say, whenever you use get the value of an action, Haskell is alwayseeting
another action to follow it. So the very last antlzetter not have anry s.

Controlling actions

Normal Haskell constructions lili f/ t hen/ el se andcase/ of can be used within thi notation, but you need
to be somewhat careful. For instance, in a simgle$s the number" program, we have:

doGuessing num = do
putStrLn "Enter your guess:"
guess <- getLine
if (read guess) < num
then do putStrLn "Too low!"
doGuessing num
else if (read guess) > num
then do putStrLn "Too high!"
doGuessing num
else do putStrLn "You Win!"

If we think about how thef/ t hen/ el se construction works, it essentially takes threaiargnts: the condition,
the "then" branch, and the "else" branch. The dmmneeds to have tymol , and the two branches can have
any type, provided that they have g@metype. The type of the entiré/ t hen/ el se construction is then the
type of the two branches.

In the outermost comparison, we hawad guess) < num as the condition. This clearly has the correcetyp
Let's just consider the "then" branch. The code Ieer

do putStrLn "Too low!"
doGuessing num

Here, we are sequencing two actionsstrL.n anddoGuessing . The first has type () , which is fine. The
second also has type () , which is fine. The type result of the entire cartgtion is precisely the type of the
final computation. Thus, the type of the "then"rwia is alsao () . A similar argument shows that the type of

41 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

the "else" branch is also () . This means the type of the entife t hen/ el se construction iso () , which is
just what we wan

Note
In this code, the last line &se do putStrLn "You Win!" . This is somewhat overly
verbose. In facklse putStrLn "You Win!" would have been sufficient, singe is

only necessary to sequence actions. Since we hdy®oe action here, it is
superfluous.

It is incorrectto think to yourself "Well, | already startedi@block; | don't need another one," and hence write
something like:

do if (read guess) < num
then putStrLn "Too low!"
doGuessing hum
else ...

Here, since we didn't repeat tie the compiler doesn't know that thestr.n anddoGuessing calls are
supposed to be sequenced, and the compiler wilk tyou're trying to calputStrLn ~ with three arguments: the
string, the functionloGuessing and the integetum. It will certainly complain (though the error mhg
somewhat difficult to comprehend at this point).

We can write the sam®Guessing function using aase statement. To do this, we first introduce the tiel
functioncompare , which takes two values of the same type (indtieclass) and returns one @f, LT, EQ
depending on whether the first is greater thars, flean or equal to the second.

:doGuessing num = do

: putStrLn "Enter your guess:"
| guess <- getLine

I case compare (read guess) num of
i LT ->do putStrLn "Too low!"

1 doGuessing num

i GT ->do putStrLn "Too high!”

1 doGuessing num

' EQ -> putStrLn "You Win!"

Here, again, theos after the> s are necessary on the first two options, becaesar&sequencing actions.

If you're used to programming in an imperative laage like C or Java, you might think that ur n will exit
you from the current function. This is not so inskell. In Haskelly et ur n simply takes a normal value (for
instance, one of typet) and makes it into an action that returns thergwaue (for the same example, the
action would be of type int). In particular, in an imperative language, yogiwrite this function as:

42 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

1
wvoid doGuessing(int num) {

if (guess == num) {
print "You win!";
return ();

if (Quess < num) {
print "Too low!";
doGuessing(hum);
}else {
print "Too high!";
doGuessing(num);

Here, because we have th&rn ()

print "Enter your guess:";
int guess = atoi(readLine());

/I we won't get here if guess == num

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

in the firstif match, we expect the code to exit there (and istmo

imperative languages, it does). However, the edemtaode in Haskell, which might look somethingeti

:doGuessing num = do

putStrLn "Enter your guess:"

guess <- getLine

case compare (read guess) num of
EQ -> do putStrLn "You win!"

return ()

if (read guess < num)

then do print "Too low!";

doGuessing

else do print "Too high!";

doGuessing

1
1
1
1
1
1
|
1 - we don't expect to get here unless guess == nu
1
1
1
1
1
1
1
1

First of all, if you guess correctly, it will firgirint "You win!," but it won't exit, and it will kkeck whetheguess
is less thamum. Of course it is not, so the else branch is taked, it will print "Too high!" and then ask you to

guess again.

On the other hand, if you guess incorrectly, it til to evaluate the case statement and get aither GTas thi
result of thecompare . In either case, it won't have a pattern that hegcand the program will fail immediately
with an exception.

43 of 290

What does the following program print out?

1 .
imain =

1do x <- getX
1 putStrLn x

getX =

rdo return "hello"

return
return
return
return
return

"aren't"
"these"
"returns”
"rather"
"pointless?"

Exercises

Exercises

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Write a program that asks the user for his or la@na If the name is one
of Simon, John or Phil, tell the user that you khitaskell is a great
programming language. If the name is Koen, telithleat you think
debugging Haskell is fun (Koen Classen is one efpéople who works on
Haskell debugging); otherwise, tell the user that gon't know who he or
she is.

Write two different versions of this program, orgngi f

statements, the other usingae statement.

Actions under the microscope

Actions may look easy up to now, but they are dlyt@acommon stumbling block for new Haskellersydiu
have run into trouble working with actions, you htigonsider looking to see if one of your problesns
guestions matches the cases below. It might behwsbrmming this section now, and coming back tehien
you actually experience trouble.

Mind your action types

One temptation might be to simplify our programdetting a name and printing it back out. Herens o
unsuccessful attempt:

L
Example: Why doesn't this work?

1
main = 1
1do putStrLn "What is your name? " '
1 putStrLn ("Hello " ++ getLine) 1
1 1

1
YourName.hs:3:26:
1 Couldn't match expected type “[Char]

1 against inferred type 10 String'

e 1
1 . 1
imain = 1
1 H 1
1 do putStrLn getLine ,
L m e e e e fmf e m e e e mmmmmmccccc;;;c;c-c e ccc;;e_e e e e e —— . — = 1

For the most part, this is the same (attemptedjram, except that we've stripped off the superflbat is

44 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

your name" prompt as well as the polite "Hello".earick to understanding this is to reason aboint ierms of
types. Let us compare:

:putStan 22 String -> 10 ()
\getLine :: 10 String

We can use the same mental machinery we learn&gpia basics to figure how everything went wrongnidy

put, putStrLn is expectingsring as input. We do not havesaing
string . This represents an action that wjive us astring when it's run. To obtain th&ring

wants, we need to run the action, and we do thit thhe ever-handy left arrows; .

L
Example: This time it works

imain =
1do name <- getLine
1 putStrLn name

:main =

1 do putStrLn "What is your name? "
1 name <- getLine

! putStrLn ("Hello " ++ name)

Now the name is the String we are looking for amergthing is rolling agaii

Mind your expression types too

, but something tantalisingly close, ian
thatputStrLn

Fine, so we've made a big deal out of the ideaythatcan't use actions in situations that donltfoalthem. The
converse of this is that you can't use non-actiorsgtuations that DO expect actions. Say we wamjréet the
user, but this time we're so excited to meet theenjust have to SHOUT their name out:

45 of 290

Example: Exciting but incorrect. Why?

:import Data.Char (toUpper)
1

:main =

'do name <- getLine

! loudName <- makeLoud name

1 putStrLn ("Hello " ++ loudName ++ "I")

1 putStrLn ("Oh boy! Am | excited to meet you, " ++ loudName)
1

»-- Don't worry too much about this function; it jus t capitalises a String
imakelLoud :: String -> String
:makeLoud S = map toUpper s

This goes wrong...

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

T TS EE S ST EEEE S =
1 Couldn't match expected type "1O' against infer red type [] .
1 Expected type: 10 t .
1 Inferred type: String |
' In a 'do’ expression: loudName <- makeLoud name '
e ceccccece e e ccm e e e e e e e e e e e e e e e e e e e E E E E EEE EEEEEmmmmmmmmmmmmmmmmmmmmmmm = -1

This is quite similar to the problem we ran int@aé: we've got a mismatch between something that is
expecting an IO type, and something which is nbts Time, the cause is our use of the left arroywve're
trying to left arrow a value ofiakeLoud name , which really isn't left arrow material. It's beaily the same
mismatch we saw in the previous section, exceptweire trying to use regular old String (the lowh®) as an
IO String, which clearly are not the same thinge Tétter is an action, something to be run, whetleagormer
is just an expression minding its own businesseNoat we cannot simply ug@dName = makeLoud name
because ao sequenceactions andioudName = makeLoud name IS not an action.

So how do we extricate ourselves from this mess’héve a number of options:

= We could find a way to turmakeLoud into an action, to make it returm String . But this is not
desirable, because the whole point of functionagpamming is to cleanly separate our side-effecting
stuff (actions) from the pure and simple stuff. Egample, what if we wanted to use makelLoud from
some other, non-l10, function? An KaakeLoud is certainly possible (how?), but missing the peintirely.

= We could useeturn to promote the loud name into an action, writinghething likeloudName <-
return (makeLoud name) . This is slightly better, in that we are at |dlastving themakeLoud itself
function nice and IO-free, whilst using it in an-8@mpatible fashion. But it's still moderately diyn
because by virtue of left arrow, we're implyingtttigere's action to be had -- how exciting! -- otdyet
our reader down with a somewhat anticlimadtarn

= Or we could use a let binding...

It turns out that Haskell has a special extra-carerg syntax for let bindings in actions. It loakéttle like this:

Example:let bindings indo blocks.

main =

1do name <- getLine

1 let loudName = makeLoud name

1 putStrLn ("Hello " ++ loudName ++ "I")

1 putStrLn ("Oh boy! Am | excited to meet you, "
1

If you're paying attention, you might notice thia¢ fet binding above is missing @an This is becauslet
bindings indo blocks do not require the keyword. You could very well use it, but then ybhave to make a
mess of your do blocks. For what it's worth, thiéofeing two blocks of code are equivalent.

1do name <- getlLine

46 of 290

let loudName = makeLoud name
putStrLn ("Hello " ++ loudName ++ "I")
putStrLn ("Oh boy! Am | excited to meet you, "

unsweet

1do name <- getlLine

-
1
1
let loudName = makeLoud name '
in do putStrLn ("Hello " ++ loudName ++ "I") 1
putStrLn ("Oh boy! Am | excited to meet you, " #

d

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Exercises

1. Why does the unsweet version of the let bindingiiregan extraio
keyword?

. Do you always need the exua?

(extra credit) Curiouslyet withoutin is exactly how we wrote

things when we were playing with the interpretetna beginning of

this book. Why can you omit the keyword in the interpreter, when

you'd have to put it in when typing up a sourceil

w N

Learn more

At this point, you should have the skills you néedlo some fancier input/output. Here are someei@ted
options to consider.

= You could continue the sequential track, by leagmrore about types and eventually monads.
= Alternately: you could start learning about builgligraphical user interfaces in the GUI chapter
= For more IO-related functionality, you could alsmsider learning more about the System.IO library

Type declarations

Haskell has three basic ways to declare a new type:

m Thedata declaration for structures and enumerations.
m Thetype declaration for type synonyms.
= Thenewtype declaration, which is a cross between the other tw

In this chapter, we will focus on the most essémigy, data , and to make life easiaype . You'll find out
aboutnewtype later on, but don't worry too much about it; itilere mainly for optimisation.

dat a for making your own types
Here is a data structure for a simple list of aprsaries:

1

idata Anniversary =

1 Birthday String Int Int Int -- Name, y ear, month, day

1 | Wedding String String Int Int Int -- First p artner's name, second partner's name, year, month, day
1

47 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

This declares a new data typeiversary with two constructorfunctions calledirthday andwedding . As
usual with Haskell the case of the first letteimgortant: type names and constructor functionstralvgays
start with capital letters. Note also the vertigat: this marks the point where one alternativesendl the next
begins; you can think of it almost as an or - whjoly'll remember was || - except used in types.

The declaration says that an Anniversary can beobheo things; a Birthday or a Wedding. A Birthday
contains one string and three integers, and a Wigdatintains two strings and three integers. Thencents
(after the "--") explain what the fields actualleam.

Now we can create new anniversaries by callingtrestructor functions. For example, suppose we lahe
Smith born on 3rd July 1968:

:johnSmith - Anniversary
johnSmith = Birthday "John Smith" 1968 7 3

:smithWedding - Anniversary
ismithWedding = Wedding "John Smith" "Jane Smith" 19 8734

anniversaries :: [Anniversary] :
janniversaries = [johnSmith, smithWedding] '

(Obviously a real application would not hard-coteentries: this is just to show how constructerctions
work).

Constructor functions can do all of the things oady functions can do. Anywhere you could use ainairy
function you can use a constructor function.

Anniversaries will need to be converted into stsifigr printing. This needs another function:

:showAnniversaw - Anniversary -> String

1

ishowAnniversary (Birthday name year month day) =
! name ++ " born " ++ showDate year month day

:showAnniversaw (Wedding namel name2 year month day)=
| namel ++ " married " ++ name2 ++ " " ++ showDate year month day

This shows the one way that constructor functiorsspecial: they can also be used to deconstryetisb
showAnniversary takes an argument of typeniversary . If the argument is Birthday then the first version
gets used, and the variablesne, month , date andyear are bound to its contents. If the argument\gaéding
then the second version is used and the argumentsand in the same way. The brackets indicatetlea
whole thing is one argument split into five or paxrts, rather than five or six separate arguments.

Notice the relationship between the type and tmstractors. All versions (showAnniversary ~ convert an
anniversary to a string. One of them handlessthi@lay case and the other handles Weelding case.

It also needs an additionslowDate routine:

48 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Of course, it's a bit clumsy having the date passednd as three separate integers. What we mezdlgl is a
new datatype:

Constructor functions are allowed to be the sanmeenas the type, and if there is only one thengbisd
practice to make it so.

t ype for making type synonyms

It would also be nice to make it clear that thangs in the Anniversary type are names, but sélbble to
manipulate them like ordinary strings. Tige declaration does this:

This says that 8ameis a synonym for atring . Any function that takes string will now take aNameas well,
and vice versa. The right hand side afpa declaration can be a more complex type as wetlekample
string itself is defined in the standard libraries as

So now we can rewrite thrniversary type like this:

1 1
idata Anniversary = 1
1 Birthday Name Date '
1 | Wedding Name Name Date 1
1 1

The rest of the code needs to be changed to match:

49 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:johnSmith 2 Anniversary
:johnSmith = Birthday "John Smith" (Date 1968 7 3)

1

IsmithWedding :: Anniversary

ismithWedding = Wedding "John Smith" "Jane Smith" (D ate 1987 3 4)
1

,anniversaries :: AnniversaryBook
anniversaries = [johnSmith, smithWedding]
1

1
:showAnniversaw : Anniversary -> String

1
ishowAnniversary (Birthday name date) =
: name ++ " born " ++ showDate date

1
:showAnniversary (Wedding namel name2 date) =
, hamel ++ " married " ++ name2 ++ showDate date

:showDate :: Date -> String
ishowDate (Date y m d) = show y ++ "-" show m ++ "-" ++ show d

Elementary Haskell

Recursion

Recursionis a clever idea which plays a central role inké#igand computer science in general): namely,
recursion is the idea of using a given functiopad of its own definition. A function defined ihis way is sait
to berecursive. It might sound like this always leads to infinregress, but if done properly it doesn't have to.

Generally speaking, a recursive definition cometsvm parts. First, there are one or mbese casewhich say
what to do in simple cases where no recursiongeseary (that is, when the answer can be giveigistraway

without recursively calling the function being dedd). This ensures that the recursion can evewtst@p. The

recursive casés more general, and defines the function in teofres 'simpler’ call to itself. Let's look at a few
examples.

Numeric recursion

The factorial function

In mathematics, especially combinatorics, thewefisnction used fairly frequently called tfaetorial function

91 1t takes a single number as an argument, findb@lnumbers between one and this number, andpinest
them all together. For example, the factorial & x 2 x 3 x 4 x 5 x 6 = 720. This is an intaregtunction
for us, because it is a candidate to be writtem liacursive style.

The idea is to look at the factorials of adjacamnbers:

50 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

L
Example: Factorials of adjacent numbers

:Factorialof6:6x5x4x3x2x1
:FactorialofS: 5x4x3x2x1

Notice how we've lined things up. You can see ligaethe factorial of 6 involves the factorial oflb fact, the
factorial of 6 is just 6 x (factorial of 5). Letsok at some more examples:

L
Example: Factorials of adjacent numbers

1
IFactorial of 3=3x2x 1
Factorial of 2= 2x 1

1
Factorial of 8 =8 x7x6x5x4x3x2x1
[Factorial of 7= 7x6x5x4x3x2x1

Indeed, we can see that the factorial of any nunsbeist that number multiplied by the factorialtbé number
one less than it. There's one exception to thiseifisk for the factorial of 0, we don't want toltyply O by the

factorial of -1! In fact, we just say the factor@lO is 1 (wedefineit to be so. It just is, okaw]). So, O is the
base caséor the recursion: when we get to 0 we can imntetiissay that the answer is 1, without using
recursion. We can summarize the definition of getdrial function as follows:

m The factorial of O is 1.
» The factorial of any other number is that numbeltiplied by the factorial of the number one lesartht.

We can translate this directly into Haskell:

L
Example: Factorial function

:factorial 0=1
factorial n = n * factorial (n-1)

This defines a new function callédtorial . The first line says that the factorial of O isahd the second one
says that the factorial of any other numbés equal tan times the factorial af-1 . Note the parentheses around
then-1 : without them this would have been parse¢aasrial n) - 1 ; function application (applying a
function to a value) will happen before anythingeetioes (we say that function applicatoamds more tightly
than anything else).

This all seems a little voodoo so far. How doasatk? Well, let's look at what happens when yoweak®
factorial 3

= 3isn't 0, so weecur. work out the factorial of 2
= 2isn't 0, so we recur.
= 1isn't 0, so we recur.
m 0is 0, so we return 1.

51 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

= \We multiply the current number, 1, by the resultref recursion, 1, obtaining 1 (1 x 1).
= We multiply the current number, 2, by the resultref recursion, 1, obtaining 2 (2 x 1 x 1).
= We multiply the current number, 3, by the resultha recursion, obtaining 6 (3 x 2 x 1 x 1).

We can see how the multiplication 'builds up' tlylothe recursion.

(Note that we end up with the one appearing twsoge the base case is 0 rather than 1; but tiaissince
multiplying by one has no effect. We could haveigiesdfactorial to stop at 1 if we had wanted to, but it's
conventional, and often useful, to have the faat@f 0 defined.)

One more thing to note about the recursive definibffactorial : the order of the two declarations (one for
factorial 0 and one fofactorialn) is important. Haskell decides which function defioitito use by

starting at the top and picking the first one thatches. In this case, if we had the general caseriél n)
before the 'base castcforial 0), then the generalwould matchanythingpassed into it -- including 0. So
factorial 0 would match the generalcase, the compiler would conclude ttaatorial 0 equals *

factorial (-1) , and so on to negative infinity. Definitely not athwe want. The lesson here is that one should
always list multiple function definitions startimgth the most specific and proceeding to the mesiegal.

Exercises

1. Type the factorial function into a Haskell sourtte &nd load it into
your favourite Haskell environment.
= What isfactorial 5 ?
= What aboutactorial 1000 ? If you have a scientific
calculator (that isn't your computer), try it thdiret. Does
Haskell give you what you expected?
= What aboutactorial (-1) ? Why does this happen?

2. Thedouble factorialof a number n is the product @fery other
number from 1 (or 2) up to n. For example, the deddctorial of 8
IS8 x 6 x 4 x 2 =384, and the double factorialad 7 x5 x 3 x 1
= 105. Define aoublefactorial function in Haskell.

A quick aside
This section is aimed at people who are used teermoperative-style languages like C and Java.

Loops are the bread and butter of imperative langudgasexample, the idiomatic way of writing a factdri
function in an imperative language would be to aif@ loop, like the following (in C):

L
Example: The factorial function in an imperative language

:int factorial(int n) {
yintres =1;

 for (i=1;i<=n; i++)
' ores*=j;

, return res;

52 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

This isn't directly possible in Haskell, since chiag the value of the variabless andi (a destructive update)
would not be allowed. However, you can always ti@esa loop into an equivalent recursive form. idea is
to make each loop variable in need of updating &anparameter of a recursive function. For exanteg is a
direct 'translation’ of the above loop into Haskell

. - . 1
Example: Using recursion to simulate a loop

1

factorial n = factorialWorker 1 n 1

factorialWorkerinres |i<=n = factorialWork er (i+1) n (res *i)
1 | otherwise =res

The expressions after the vertical bars are cailedds and we'll learn more about them in the section on
control structures. For now, you can probably feggaut how they work by comparing them to the cqoesling
C code above.

Obviously this is not the shortest or most elegaay to implementactorial in Haskell (translating directly

from an imperative paradigm into Haskell like thasely is), but it can be nice to know that thist s
translation is always possible.

Another thing to note is that you shouldn't be vemtrabout poor performance through recursion widiskell.
In general, functional programming compilers in@wadlot of optimization for recursion, includingeon
important one callethil-call optimisation remember too that Haskell is lazy -- if a caltidla isn't needed, it
won't be done. We'll learn about these in lateptérs.

Other recursive functions

As it turns out, there is nothing particularly saabout theactorial function; a great many numeric
functions can be defined recursively in a naturay w-or example, let's think about multiplicatidhen you
were first introduced to multiplication (remembkat moment? :)), it may have been through a proakess
'repeated addition'. That is, 5 x 4 is the sams&uasning four copies of the number 5. Of course,mming four
copies of 5 is the same as summing three copiésthem adding one more -- that is, 5 x 4 =5 x3 Fhis
leads us to a natural recursive definition of nmlikation:

Example: Multiplication defined recursively

1 1
multn0=0 -- anything times 0 is zero 1
multnl=n -- anything times 1is itself '
multnm=(multn(m-1)) +n --recur: multipl y by one less, and add an extra copy
1 1

Stepping back a bit, we can see how numeric remufgs into the general recursive pattern. Theebzsse for
numeric recursion usually consists of one or mpezgic numbers (often 0 or 1) for which the answan be
immediately given. The recursive case computesdbelt by recursively calling the function with maller
argument and using the result somehow to produeérhl answer. The 'smaller argument’ used inaftee
less than the current argument, leading to recansituich ‘walks down the number line' (like the exdes of
factorial andmult above), but it doesn't have to be; the smallemraemt could be produced in some other
way as well.

53 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Exercises

1. Expand out the multiplication 5 x 4 similarly tcetexpansion we
used above fomctorial 3

2. Define a recursive functiogbwer such thapowerxy raisesx to
they power.

3. You are given a functioplusOne x = x + 1 . Without using any
other(+) s, define a recursive functi@aditon such thatddition
xy addsx andy together.

4. (Harder) Implement the functigeg2 , which computes the integer
log (base 2) of its argument. Thatlig2 computes the exponent of
the largest power of 2 which is less than or etpu#k argument.
For examplelog216 =4 ,log211=3 ,andlog21=0 . (Small
hint: read the last phrase of the paragraph imnegipreceding
these exercises.)

List-based recursion

A lot of functions in Haskell turn out to be recursiespecially those concerning li§t] consider théength
function that finds the length of a list:

L
Example: The recursive definition oéngth

:Iength :[a] -> Int :
length] =0 '
ilength (x:xs) = 1 + length xs 1
1 1

Don't worry too much about the syntax; we'll learare about it in the section on Pattern matchirg.rfow,
let's rephrase this code into English to get aa mfehow it works. The first line gives the typel@igth : it
takes any sort of list and producesian. The next line says that the length of an emjstyi$i 0. This, of cours
is the base case. The final line is the recursagerif a list consists of a first elemerdnd another lists
representing the rest of the list, the length efltbt is one more than the lengthxef

How about the concatenation functigr) , which joins two lists together? (Some examplegsafge are also
given, as we haven't come across this functiorasd f

Example: The recursive++)

54 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1

Prelude> [1,2,3] ++ [4,5,6]

11,2,3,4,5,6]

PPrelude> "Hello " ++ "world" -- Strings are lists o f Chars
:"HeIIo world"

i(++4) 1 [a] -> [a] > [a]
f++ys =ys
1I(X:XS) ++ YS = X : XS ++ ysS

This is a little more complicated thamgth but not too difficult once you break it down. Tiype says that
(++) takes two lists and produces another. The bagesess that concatenating the empty list withta/diss
the same ag itself. Finally, the recursive case breaks th&t fist into its headx(and tail ¢s) and says that to
concatenate the two lists, concatenate the talefirst list with the second list, and then tdlck head on the
front.

There's a pattern here: with list-based functitims base case usually involves an empty list, haddcursive
case involves passing the tail of the list to aurction again, so that the list becomes progrelssmaller.

Exercises

Give recursive definitions for the following lisebed functions. In each
case, think what the base case would be, then thiait the general case
would look like, in terms of everything smaller thia

1. replicate :: Int -> a -> [a] , Which takes an element and a
count and returns the list which is that elemepeated that many
times. E.greplicate 3 'a’' = "aaa" . (Hint: think about what

replicate of anything with a count of O should &e&ount of O is
your 'base case'.)

2. ():[a]->Int->a , which returns the element at the given
'index’. The first element is at index 0, the secahindex 1, and so
on. Note that with this function, you're recurringth numerically
and down a list.

3. (A bit harder.)ip : [a] -> [b] -> [(a, b)] , Which takes two
lists and 'zips' them together, so that the fiest ;m the resulting list
is the first two elements of the two lists, andso E.g.zip
[1,2,3] "abc" = [(1, &), (2, '), (3, '¢)] . If either of
the lists is shorter than the other, you can stageaither list runs
out. E.g.zip [1,2] "abc" = [(1, &), (2, 'b"]

Recursion is used to define nearly all functionddowith lists and numbers. The next time you reddt-based
algorithm, start with a case for the empty list anchse for the non-empty list and see if yourraigm is
recursive.

Don't get TOO excited about recursion...

Although it's very important to have a solid undansling of recursion when programming in Haskelke o
rarely has to write functions that are explicitbcursive. Instead, there are all sorts of stanliarary functions

55 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

56 of 290

which perform recursion for you in various waysdame usually ends up using those instead. For gheaa
much simpler way to implement theetorial function is as follows:

Example: Implementing factorial with a standard library étion

Almost seems like cheating, doesn't it? :) Thihesversion ofactorial that most experienced Haskell
programmers would write, rather than the explicidgursive version we started out with. Of coutise,

product function is using some list recursion behind themeglz], but writingfactorial in this way means
you, the programmer, don't have to worry about it.

Summary

Recursion is the practise of using a function ywde&fining in the body of the function itself. karly always
comes in two parts: a base case and a recursieeRasursion is especially useful for dealing vigk and
number-based functions.

Notes

1. 1 At least as far as types are concerned, but Wwglrey to avoid that word :)

2. 1 More technicallyjst andsnd have types which limit them to pairs. It wouldibgossible to define
projection functions on tuples in general, becahsg'd have to be able to accept tuples of diffesezes,
so the type of the function would vary.

. 1 In fact, these are one and the same concept ikeHas

. 1 This isn't quite whathr andord do, but that description fits our purposes weil] &'s close enough.

. T To make things even more confusing, there's dgtaaén more than one type for integers! Don't worr
we'll come on to this in due course.

. 1 This has been somewhat simplified to fit our pggm Don't worry, the essence of the functioneseth

. 1 Some of the newer type system extensions to @élreak this, however, so you're better off just
always putting down types anyway.

8. 1 This is a slight lie. That type signature wouldaméhat you can compare two values of any type
whatsoever, but this clearly isn't true: how can gee if two functions are equal? Haskell inclual&nd
of 'restricted polymorphism' that allows type vates to range over some, but not all types. Haskell
implements this usintype classeswhich we'll learn about later. In this case, tberect type of==) iSEq
a=>a->a->Bool

9. 1 In mathematicsy! normally means the factorial af but that syntax is impossible in Haskell, so we
don't use it here.

10. 1 Actually, defining the factorial of O to be 1 istrjust arbitrary; it's because the factorial oEpresents

an empty product.

11. 1 This is no coincidence; without mutable variablesursion is the only way to implement control

structures. This might sound like a limitation ligbu get used to it (it isn't, really).

12. 1 Actually, it's using a function calledidi , which actually does the recursion.

[S20F >~ OV)

~N O

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Pattern matching

Pattern matching is a convenient wayiod variables to different parts of a given value.

Note

Pattern matching on what?

Some languages like Perl and Python use patterchingtin a very specific way, that is
to match regular expressions against strings. Bfteqm matching we are referring to in
this chapter is quite different. In fact, you'r@lpably best of forgetting what you know
about pattern matching for now. Here, pattern matchs used in the same way as in
others ML-like languages : to deconstruct valuepating to their type specification.

What is pattern matching?

You've actually met pattern matching before, inltbs chapter. Recall functions likeap:

:map 0 =0
imap f (x:xs) = fx: map f xs

Here there are four different patterns going ora p&r equation. Let's explore each one in turt@aigh not in
the order they appeared in that example):

=] is a pattern that match#dse empty listlt doesn't bind any variables.

m (x:xs) IS a pattern that matches something (which gatsidhdox), which is cons'd, using the function
() , onto something else (which gets bound to theabéeks).

= f iS a pattern which matchasything at all and binds to that something.

= _ is the pattern which matches anything at all,dngsn't do any binding.

So pattern matching is a wayadsigning names to thingsr bindingthose names to those things), and possibly
breaking down expressions into subexpressatrise same time (as we did with the list in th&rdtion of map).

However, you can't pattern match with anything. &mmple, you might want to define a function like
following to chop off the first three elements dis:

However, thatvon't work , and will give you an error. The problem is tHa function++) isn't allowedin
patterns. So whas allowed?

The one-word answer nstructors. Recall algebraic datatypes, which look somethikey

57 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Irf:: Foo -> Int
fBar =1
f (Bazx)=x-1

Remember that lists are defined thusly (note timatdllowing isn't actually valid syntax: lists arereality
deeply grained into Haskell):

So the empty lisf] , and the:) function, are in reality constructors of the lbisttatype, so you can pattern
match with them.

Note, however, that ¢x, y, z] IS just syntactic sugar fary:zz] , you can still pattern match using the le
form:

If the only relevant information is the type of tbenstructor (regardless of the number of its el@s)ehe(}
pattern can be used:

:g :: Foo -> Bool
g Bar {} = True
ig Baz {} = False
1

The functiong does not have to be changed when the numbermkeaks of the constructoear or Baz
changes. Note: Foo does not have to be a recottifoto work.

For constructors with many elements, it can helps® records:

:h :: Foo2 -> Int

ih Baz2 {barName=name} = length name
hBar2 {} =0

1

The one exception

There is one exception to the rule that you cag pattern match with constructors. It's knowmss patterns.
It is indeed valid Haskell 98 to write somethinkgli

:pred nt->Int
pred (n+1) =n

58 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

However, this is generally accepted as bad formremignany Haskell programmers like this exceptand so
try to avoid it.

Where you can use it

The short answer is thatherever you can bind variables, you can pattertcimd_et's have a look at that more
precisely.

Equations

The first place is in the left-hand side of funatiequations. For example, our above codentqr

:map 0 =10
imap f (x:xs) =fx:map fxs

Here we're binding, and doing pattern-matchingthenleft hand side of both of these equations.

Let expressions / Where clauses

You can obviously bind variables with a let expresr where clause. As such, you can also do patte
matching here. A trivial example:

Case expressions

One of the most obvious places you can use patiading is on the left hand side of case branches:

:case someRandomlList of
"I ->"The list was empty"

' (x:xs) -> "The list wasn't empty: the first eleme ntwas " ++ x ++ ", and " ++

' "there were " ++ show (length xs) ++ " more elements in the list."

l o e e e e e e e m e e E e E e e E E E E E E E E E E E E E E E e e e e e e e e e e mmmmmmm == 1
Lambdas

As lambdas can be easily converted into functigag,can pattern match on the left-hand side of anb
expressions too:

Note that here, along with on the left-hand sideapiations as described above, you have to usathase:
around your patterns (unless they're just are just a binding, not a pattern, like

List comprehensions

After the| in list comprehensions, you can pattern matchs ©hactually extremely useful. For example, the
functioncatMaybes from Data.Maybe takes a list of Maybes, filterstla¢ Just x s, and gets rid of all thaist
wrappers. It's easy to write it using list comprediens:

59 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:catMaybes :: [Maybe a] -> [a] :
icatMaybes ms =[x | Just x <- ms] '

If the pattern match fails, it just moves on to tiext element ims. (More formally, as list comprehensions are
just the list monad, a failed pattern match invciail , which is the empty list in this case, and so ggtsred.)

A few other places

That's mostly it, but there are one or two othaces you'll find as you progress through the bétgke's a list
in case you're very eager already:

m Inp<-x indo-blocksp can be a pattern.
= Similarly, with let bindings in do-blocks, you caattern match analogously to 'real’ let bindings.

Exercises

1. If you have programmed in a language like PerlRyithon before, how does pattern
matching in Haskell compare to the pattern matchomgknow? What can you use it
on, where? In what sense can we think of Perl/Ryfaitern matching as being
"more powerful” than the Haskell one, and vice a@rére they even comparable?
You may also be interested in looking at the Hdskext.Regex
(http://www.haskell.org/ghc/docs/latest/html/libes/regex-compat/Text-Regex.html)
library wrapper.

More about lists

By now we have seen the basic tools for workindnwgts. We can build lists up from the cons oparaf

and the empty ligt (see Lists and tuples if you are unsure abou};thied we can take them apart by using a
combination of Recursion and Pattern matchinghis ¢hapter, we will delve a little deeper into the
inner-workings and the use of Haskell lists. Wiiicover a little bit of new notation and some eleéeristically
Haskell-ish features like infinite lists and lisitmprehensions. But before going into this, lettep $ack for a
moment and combine the things we have alreadydeaabout lists.

Constructing Lists

We'll start by making a function to double evergraént of a list of integers. First, we must spethfy type
declaration for our function. For our purposes h#re function maps a list of integers to anotrerdf integers:

Then, we must specify the function definition ifs&Ve'll be using a recursive definition, which ssts of

60 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1. the general case which iteratively generates aessoge and simpler general case and
2. the base case, where iteration stops.

:doubIeList (n:ns) = (n * 2) : doubleList ns
(doubleList [] =]

Since by definition, there are no more element®bdythe end of a list, intuition tells us iterationist stop at
the end of the list. The easiest way to accomphghis to return the null list: As a constanthalts our
iteration. As the empty list, it doesn't changevhkie of any list we append it to.

The general case requires some explanation. Remehdie:" is one of a special class of functiom®Wwn as
"constructors”. The important thing about consiougis that they can be used to break things deypas of
"pattern matching" on the left hand side of funetaefinitions. In this case the argument passetbtileList is
broken down into the first element of the list (kmoas the "head") and the rest of the list (knowtha "tail").

On the right hand side doubleList builds up a nistdy using ":". It says that the first elementlo¢ result is
twice the head of the argument, and the rest ofdbelt is obtained by applying "doubleList" to tiad. Note
the naming convention implicit in (n:ns). By appamgdan "s" to the element "n" we are forming itarpl. The
idea is that the head contains one item whilediebtntains many, and so should be pluralised.

So what actually happens when we evaluate theviollg?

We can work this out longhand by substituting trguenent into the function definition, just like sxibook
algebra:

doubleList 1:[2,3,4] = (1*2) : doubleList (2 : [3,4)

=(1*2) : (2*2) : doubleList (3:[4])

=(1*2) : (2*2) : (3*2) : doub leList (4 : 1)
=(1*2) : (2*2) : (3*2) : (4*2) : doubleList []
=(1*2) : (2*2) : (3*2) : (4*2)il
=2:4:6:8:]

=[2,4,6,8]

Notice how the definition for empty lists termingte recursion. Without it, the Haskell compilesuld have
had no way to know what to do when it reached titedd the list.

Also notice that it would make no differemaaenwe did the multiplications (unless one of theranserror or
nontermination: we'll get to that later). If | hddne them immediately it would have made absolutely
difference. This is an important property of Hatkiels a "pure" functional programming langua@ecause
evaluation order can never change the resultnitastly left to the compiler to decide when to adljuevaluate
things. Haskell is a "lazy" evaluation languagegsgaluation is usually deferred until the valueeially needed,
but the compiler is free to evaluate things sodinis will improve efficiency. From the programngepoint of
view evaluation order rarely matters (except ind¢ase of infinite lists, of which more will be satortly).

Of course a function to double a list has limiteserality. An obvious generalization would be toal
multiplication by any number. That is, we could tera function "multiplyList" that takes a multipdind as well
as a list of integers. It would be declared likisth

61 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:multipIyList .. Integer -> [Integer] -> [Integer]
imultiplyList _ [] =]

imultiplyList m (n:ns) = (m*n) : multiplyList m ns
1

This example introduces the "_", which is usedafddon't care" argument; it will match anythindgei* does in
shells or .* in regular expressions. The multiphdas not used for the null case, so instead afdobound to an
unused argument name it is explicitly thrown away,'setting” _ to it. ("_" can be thought of as ateronly
"variable".)

The type declaration needs some explanation. Hidetgnd the rather odd syntax is a deep and cideer The
"->" arrow is actually an operator for types, aadight associative. So if you add in the implieddkets the
type definition is actually

Think about what this is saying. It means that ‘tiplyiList" doesn't take two arguments. Insteadkds one (an
Integer), and then returasnew functionThis new function itself takes one argumentgadi Integers) and
returns a new list of Integers. This process otfioms taking one argument is called "currying'd avery
important.

The new function can be used in a straightforwaag:w

or it can do something which, in any other langyagsuld be an error; this is partial function apption and
because we're using Haskell, we can write theviolig neat & elegant bits of code:

:doubIeList = multiplyList 2
ievens = doubleList [1,2,3,4]

In other words "multiplyList 2" returns a new fuiwgt that is then applied to [1,2,3,4].

Dot Dot Notation

Haskell has a convenient shorthand for specifyihgtaontaining a sequence of integers. Some elesvgre
enough to give the flavor:

:Code Result

.

I1..10] [1,2,3,4,5,6,7,8,9,10]
12,4.10] [2,4,6,8,10]

5,4..1] [5.4,3,2,1]

(1,3.10] [1,3,5,7.,9]

1

The same notation can be used for floating poimilvers and characters as well. However, be carefal w
floating point numbers: rounding errors can causexpected things to happen. Try this:

62 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Infinite Lists

One of the most mind-bending things about Hasksh Is that they are allowed to indinite. For example, the
following generates the infinite list of integetarsing with 1:

(If you try this in GHCIi, remember you can stopeaaluation with C-c).

Or you could define the same list in a more priveitivay by using a recursive function:

:intsFrom n =n:intsFrom (n+1)
jpositivelnts = intsFrom 1

This works because Haskell uses lazy evaluatiarever actually evaluates more than it needs agaen
moment. In most cases an infinite list can be & aist like an ordinary one. The program will ogtyinto an
infinite loop when evaluation would actually recqiall the values in the list. Examples of this g sorting or
printing the entire list. However:

will define "evens" to be the infinite list [2,48,..]. And you can pass "evens" into other funeicand it will
all just work. See the exercise 4 below for an gxamf how to process an infinite list and theretéie first
few elements of the result.

Infinite lists are quite useful in Haskell. Oftdfsimore convenient to define an infinite list ahdn take the fir:
few items than to create a finite list. Functionattprocess two lists in parallel generally stofhwie shortest,
so making the second one infinite avoids havinna the length of the first. An infinite list isften a handy
alternative to the traditional endless loop atttpelevel of an interactive program.

Exercises

Write the following functions and test them out.Mdorget the type
declarations.

63 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

~ w

. takelnt returns the first items in a list. So takelnt 4

[11,21,31,41,51,61] returns [11,21,31,41]

. droplint drops the firgh items in a list and returns the rest. so dropint

3[11,21,31,41,51] returns [41,51].

. sumint returns the sum of the items in a list.

scanSum adds the items in a list and returns afligte running
totals. So scanSum [2,3,4,5] returns [2,5,9,14fhése any
difference between "scanSum (takeint 10 [1..])" 4a#&elnt 10
(scanSum [1..])"?

. diffs returns a list of the differences betweeraadpt items. So diffs

[3,5,6,8] returns [2,1,2]. (Hint: write a seconahétion that takes
two lists and finds the difference between corresirag items).

Deconstructing lists

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

So now we know how to generate lists by appendrthge empty list, or using infinite lists and theatation.

Very useful.

But what happens if our function is not genera#tirigst and handing it off to some other functiont Is rather
receiving a list? It needs to be analyzed and bral@vn in some way.

For this purpose, Haskell includes the same basictionality as other programming languages, exabt
better names than "cdr" or "car": the "head" amdl"™'functions.

head :: [a] -> a
tail :: [a] -> [a]

From these two functions we can build pretty mutkha functionality we want. If we want the firgdém in the
list, a simple head will do:

If we want the second item in a list, we have t@lmt clever: head gives the first item in a lestd tail
effectively removes the first item in a list. Thegn be combined, though:

Enough tails can reach to arbitrary elements; Wgtiak is generalized into a function which is ped a list and
a number, which gives the position in a list taret

64 of 290

Exercises

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Write a function which takes a list and a numbet geturns the given
element; use head or tail, and not !!.

List comprehensions

This is one further way to deconstruct lists; itédled a List comprehension. List comprehensioasuaeful and
concise expressions, although they are fairly rare.

List comprehensions are basically syntactic sugiaa fcommon pattern dealing with lists: when onat&ao
take a list and generate a new list composed drdyements of the first list that meet a certaindition.

One could write this out manually. For example,mge one wants to take a list [1..10], and onlginethe
even numbers? One could handcraft a recursiveiumcalled retainEven, based on a test for evenwagsh
we've already written called isEven:

isEven :: Integer -> Bool

1 1
1 1
' isEven n '
1 | n <0 =error "isEven needs a positive integer" 1
' | ((mod n2) ==0) = True --E ven numbers have no remainder when divided by 2 '
1 | otherwise = False -- Ifith as a remainder of anything but 0, it is not even 1
1 1

retainEven :: [Integer] -> [Integer]

1 1
1 1
1 retainEven [| =1 '
1 retainEven (e:es) 1
' | isEven e = e:retainEven es --If something is even, let's hang onto it '
1 | otherwise = retainEven es -- If something isn't even, discard it and move on 1
1 1

Exercises

Write a function which will take a list and retusnly odd numbers greater
than 1.Hint: isOdd can be defined as the negation of isEven.

This is fairly verbose, though, and we had to goulgh a fair bit of effort and define an entiregfunction
just to accomplish the relatively simple tasHiltering a list. Couldn't it be generalized? What want to do is
construct a new list with only the elements of &hlist for which some boolean condition is trueeNywe
could generalize our function writing above likésthinvolving the higher-order functiomsap andfiter . For
example, the above can also be written as

We can read the first half as an arbitrary expogssiodifyingn, which will then be prepended to a new list. In
this casen isn't being modified, so we can think of this epaatedly prepending the variable, like n:n:n:n:]
but wheren is different each timen is drawn (the "<-") from the list es (a subtleqtas that es can be the name
of a list, or it can itself be a list).

Thus ifes is equal to [1,2,3,4], then we would get backlisig]2,4].

65 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Suppose we wanted to subtract one from every even?

We can do more than that, and list comprehensiande easily modifiable. Perhaps we wish to geizeral
factoring a list, instead of just factoring it byemness (that is, by 2). Well, given that ((mod =x 0) returns
true for numbers n which are factorizable by %, ahvious how to use it, no? Write a function usarist
comprehension which will take an integer, and tedisntegers, and return a list of integers whach divisible
by the first argument. In other words, the typenatgre is thus:

#Main> returnFact 10 [10..1000]
1110,20,30,40,50,60,70,80,90,100,110,120,130,140,150 ,160,170,180,190,200,....etc.]

Which is as it should be. But what if we want tateitheopposit® What if we want to write a function which
returns those integers which are not divisible? Moglification is very simple, and the type signattire same.
What decides whether a integer will be added tdigh@r not is the mod function, which currentgturns true

for those to be added. A simple 'not' sufficeseteerse when it returns true, and so reverses tbeatpn of the
list:

:rmFact o Int -> [Int] -> [Int]
rmFact x ys = [n | n<-ys , (not ((mod n x) == 0))]

*Main> rmFact 10 [10..1000]
111,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28 29,......etc]

#Main> rmFact 0 [1..1000]
;* Exception: divide by zero

66 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Fortunately, our Boolean tests are commutativet doesn't matter whether (n > 2) or (isEven Zvaluated
first.

Pattern matching in list comprehensions

It's useful to note that the left arrow in list gmm@hensions can be used with pattern matchinge¥ample,

suppose we had a list of tupl@steger, Integer)] . What we would like to do is return the first ekemh of
every tuple whose second element is even. We cmitd it with a filter and a map, or we could writeas
follows:

Control structures

Haskell offers several ways of expressing a chbateveen different values. This section will deseribem all
and explain what they are for:

i f Expressions

You have already seen these. The full syntax is:

If the <condition> iSTrue then thectrue-value> is returned, otherwise the

<false-value> IS returned. Note that in Haskell is an expression (returning a Theelse is
value) rather than a statement (to be executedpuge of this the usual required!
indentation is different from imperative languagéyou need to break an

expression across multiple lines then you shoudém it like one of these:

1 1
iif <condition> 1
then <1> :

1 else <0> 1
1

1
1
| then '
1 <true-value> 1
| else '
1 <false-value> 1
1 1

67 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Here is a simple example:

1 1
imessage4?2 :: Integer -> String !
imessage42 n = '
1 ifn==42 1
i then "The Answer is forty two." '
1 else "The Answer is not forty two." 1
1 1

Unlike many other languages, in Haskell & is required. Sinceg is an expression, it must return a result,
and theelse ensures this.

case Expressions

case expressions are a generalizationf oexpressions. As an example, let's clonas acase :

case <condition> of
True -> <true-value>
False -> <false-value>
-> error "Neither True nor False? How ca n that be?"

First, this checksconditon> for a pattern match agaimste . If they match, the whole expression will
evaluate totrue-value> , otherwise it will continue down the list. You case _ as the pattern wildcard. In
fact, the left hand side of any case branch isgysttern, so it can also be used for binding:

1
icase str of

| (xixs) -> "The first character is " ++ [x] ++"; the rest of the string is " ++ xs
1 " ->"This is the empty string."

This expression tells you whether is the empty string or something else. Of cowyee,could just do this
with an if-statement (with a condition edli str), but using a case binds variables to the headahaf our
list, which is convenient in this instance.

Equations and Case Expressions

You can use multiple equations as an alternativesto expressions. Thease expression above could be
nameddescribeString and written like this:

1

idescribeString :: String -> String

idescribeString (x:xs) = "The first character is " + + [x] ++ "; the rest of the string is " ++ xs
describeString ™ ="This is the empty string."

1

Named functions and case expressions at the tebae® completely interchangeable. In fact the fiom
definition form shown here is just syntactic suffaracase expression.

The handy thing aboutse expressions is that they can go inside other espas, or be used in an anonymous
function. TODO: this isn't really limited to cas&or example, thisase expression returns a string which is
then concatenated with two other strings to créaeaesult:

68 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

data Colour = Black | White | RGB Int Int Int

1

:describeCoIour c=

1 "This colour is "

1 ++ (case c of

1 Black -> "black"

' White -> "white"

1 RGB _ _ _ ->"freaky, man, sort of in bet ween")
ot ", yeah?"

describeColour ¢ =
"This colour is "
++ (case c of
Black -> "black"
White -> "white"
RGB red green blue -> "freaky, man, sort of " ++ show av
where av = (red + green + blue) “div’ 3

Guards

As shown, if we have a top-levelse expression, we can just give multiple equatiomgHe function instead,
which is normally neater. Is there an analogueffoexpressions? It turns out there is.

We use some additonal syntax known as "guards'Uakdjis a boolean condition, like this:

1 1
describeLetter :: Char -> String 1
idescribeLetter ¢ '
| c>="a"' && ¢ <='z' = "Lower case" 1

| c >="A" && c <="'Z' = "Upper case" :
1

1

1
1
: | otherwise ="Not a letter"
1

Note the lack of a= before the first . Guards are evaluated in the order they appeait.i$hif you have a set
up similar to the following:

:f (patternl) | predicatel = w
' | predicate2 = x
if (pattern2) | predicate3 =y
! | predicated = z

Then the input to f will be pattern-matched agapadternl. If it succeeds, then predicatel wilelaluated. If
this is true, then w is returned. If not, then peatk?2 is evaluated. thisis true, then x is returned. Again, if r
then we jump out of this 'branch’ of f and try &itprn match against pattern2, repeating the gyamt®dure
with predicate3 and predicate4. If no guards madaherror will be produced at runtime, so it's alsva good
idea to leave an 'otherwise' guard in there to leatie "But this can't happen!' case.

Theotherwise you saw above is actually just a normal valuerdfiin the Standard Prelude as:

1
otherwise :: Bool
:otherwise =True

This works because of the sequential evaluationrdes] a couple of paragraphs back: if none ofjinerds
previous to your 'otherwise' one are true, therr ydlerwise will definitely be true and so whateigeon the

69 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

right-hand side gets returned. It's just nice &adability's sake.

‘wher e' and guards

One nicety about guards is thakr e clauses are common to all guards.

1 1
1 doStuff x !
1 | x <3 =report "less than three" '
1 | otherwise = report "normal" 1
, where '
1 reporty = "the inputis " ++y 1
1 1

The difference between if and case

It's worth noting that there is a fundamental ddfece betweem -expressions anchse -expressions.

if -expressions, and guards, onheck to see if a boolean expression evaluatedue. dase -expressions, and
multiple equations for the same functig@attern match against the inplNlake sure you understand this
important distinction.

List processing

Because lists are such a fundamental data typashketl, there is a large collection of standarcctioms for
processing them. These are mostly to be foundibrary module called the 'Standard Prelude’ wiéch
automatically imported in all Haskell programs. fiéhare also additional list-processing functionbeédound in
theData.List module.

Map

This module will explain one particularly importdanction, callednap, and then describe some of the othel
processing functions that work in similar ways.

Recall themultiplyList function from a couple of chapters ago.

:multipIyList .. Integer -> [Integer] -> [Integer]
imultiplyList _[] =]

imultiplyList m (n:ns) = (m*n) : multiplyList m ns
1

This works on a list of integers, multiplying eatdm by a constant. But Haskell allows us to pasgtions
around just as easily as we can pass integersisizad of passing a multipliemve could pass a functian like
this:

70 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:mapListl :: (Integer -> Integer) -> [Integer] -> [l nteger]
imapListl _[] =]

imaplListl f (n:ns) = (f n) : mapListl f ns

1

Take a minute to compare the two functions. Thiedihce is in the first parameter. Instead of bgistyan
Integer it is now a function. This function parameter ki@ type(integer -> Integer) , meaning that it is a
function from one integer to another. The second $ays that if this is applied to an empty ligtthhe result i
itself an empty list, and the third line says tlwaita non-empty list the resultfisapplied to the first item in the
list, followed by a recursive call teapList1 for the rest of the list.

Remember that) has typenteger -> Integer -> Integer . So if we write(2*) then this returns a new
function that doubles its argument and has tyfeger -> Integer . But that is exactly the type of functions
that can be passedrapListlt . So now we can writéoubleList like this:

(The two are equivalent because if we pass justogement to mapListl we get back a new functidre T
second version is more natural for newcomers tkeélgdut experts often favour the first, known'gaint free'
style.)

Obviously this idea is not limited to just integevge could just as easily write

:mapListString i1 (String -> String) -> [String] -> [String]
imaplListString _[] =]

imapListString f (n:ns) = (f n) : mapListl f ns

1

and have a function that does this for strings.tBistis horribly wasteful: the code is exactly #ame for both
strings and integers. What is needed is a wayyohsdmapList works for both Integers, Strings, and any other
type we might want to put in a list. In fact théseno reason why the input list should be the stpe as the
output list: we might very well want to convertist lof integers into a list of their string repretaions, or vice
versa. And indeed Haskell provides a way to da fhie Standard Prelude contains the following digdim of

map.

:map (a->b)->[a] > [b]

:map F(x:xs) = (fx) : map f xs
1

Instead of constant types lilkging orInteger this definition uses type variables. These statt lower case

letters (as opposed to type constants that sténtwpper case) and otherwise follow the same Iéxidas as
normal variables. However the convention is totstath "a" and go up the alphabet. Even the mostmaated
functions rarely get beyond "d".

So what this says is thatp takes two parameters:

= A function from a thing of type to a thing of type.

71 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

= A list of things of typea.

Then it returns a new list containing things ofayp constructed by applying the function to each eletof the

input list.
Exercises
1. Usemapto build functions that, given a list | of Intgtuarns:

= A list that is the element-wise negation of I.

= A list of lists of Ints Il that, for each elemertftlpcontains the
factors of I. It will help to know that
Efactors p=[f|f<-[1l.p],p mod f==0] i

= The element-wise negation of Il.

2. Implement a Run Length Encoding (RLE) encoder aawbder.

= The idea of RLE is simple; given some input:
1"aaaabbaaa" E
compress it by taking the length of each run ofati@rs:
E(4,'a‘), @,'b), (3, 'a) E

= Thegroup function might be helpful

= What is the type of youmcode anddecode functions?

= How would you convert the list of tuples (e/@,a),
(6,b0]) into a string (e.g. "4a6b")?

= (bonus) Assuming numeric characters are forbiddehe
original string, how would you parse that stringlo@to a list
of tuples?

Folds

A fold applies a function to a list in a way sinnita map, but accumulates a single result instead of a list

Take for example, a function likem, which might be implemented as follows:

Example: sum

1

1sum :: [Integer] -> Integer
rsum[] =0

1sum (X:xs) = X + sum xs

1

Or product

72 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

Or concat

Example: product

:product :: [Integer] -> Integer
tproduct[] =1

1 product (x:xs) = X * product xs
1

which takes a list of lists and joins (concatesathem into one:

Example: concat

1 1
rconcat :: [[a]] -> [a] 1
rconcat[] = :
1concat (x:xs) = X ++ concat xs 1
1 1

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

There is a certain pattern of recursion commoriltofdhese examples. This pattern is known add, foossibly
from the idea that a list is being "folded up" ist&ingle value, or that a function is being "faldetween” the
elements of the list.

The Standard Prelude defines four fold functigsis: , foldl , foldrl andfoldi1

foldr

The most natural and commonly used of these imyaléanguage like Haskell is thight-associativeoldr

ifoldr c(@a->b->b)->b->[a]->b
foldrfz[] =z

foldr f z (x:xs) = f x (foldr f z xs)

1

The first argument is a function with two argumenit® second is a "zero" value for the accumulatod, the
third is the list to be folded.

For example, isum, f is(+) , andz is0, and inconcat , f is(++) andz is[. In many cases, like all of our
examples so far, the function passed to a foldhvalle both its arguments be of the same type himits not
necessarily the case in general.

Whatfoldr f z xs

end withz. That is,

This is perhaps most elegantly seen by picturiegigt data structure as a tree:

73 of 290

does is to replace each cons (:) in thexlistvith the functiorf, and the empty list at the

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

-~
—

1

1

1

1

1

1

1

1

'

'

!

|
\%

o

-~
—

It is fairly easy to see with this picture thadr ()] is just the identity function on lists.

foldl

Theleft-associativeoldl processes the list in the opposite direction:

ifoldl s(@a->b->a)->a->[b]->a
foldifz] =z

foldl f z (x:xs) = foldl f (f z x) xs

1

So brackets in the resulting expression accumolatiae left. Our list above, after being transfodnbg fold!
fz becomes:

1 1
1 1
1 /\ 1
a foldifz f ¢ '
L B R > [\ !
'b fb !
VAN /\ 1
el z a '

Technical Note: The left associative foldad-recursive that is, it recurses immediately, calling itsélr this
reason the compiler will optimise it to a simplepo and it will then be much more efficient theler

However, Haskell is a lazy language, and so thésde f will by default be left unevaluated, building up an
expression in memory whose size is linear in thgtleof the list, exactly what we hoped to avoithmfirst
place. To get back this efficiency, there is ae@rsf foldl which i strict, that is, it forces the evaluation bf
immediately, calledbidr . Note the single quote character: this is pronadtfold-ell-tick". A tick is a valid
character in Haskell identifiers. foldl' can be faliin the libraryData.List . As a rule you should usedr on
lists that might be infinite or where the fold igilding up a data structure, afth if the list is known to be
finite and comes down to a single val@all (without the tick) should rarely be used at all.

foldrl and foldl1

As previously noted, the type declarationftadr makes it quite possible for the list elements @it to be

of different types. For example, "read" is a fuantthat takes a string and converts it into sorpe {¥he type
system is smart enough to figure out which onej)his case we convert it into a float.

74 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

L
Example: The list elements and results can have diffengread

1 1
raddStr :: String -> Float -> Float 1
1 addStr str x = read str + x '
1 1
1sumstr :: [String] -> Float '
1 sumStr = foldr addStr 0.0 1
1 1

If you substitute the typesoat andstring for the type variables andb in the type of foldr you will see that

this is type correct.

There is also a variant callegdr: ("fold - arr - one™) which dispenses with an egjtlzero by taking the last

element of the list instead:

:foldrl t(a->a->a)->[a]->a

foldrl f[x] = x

foldrl f (x:xs) = fx (foldrl f xs)

:foldrl _[I = error "Prelude.foldrl: empty li st"

Andfoldil as well:

Irfoldll t(a->a->a)->[a]->a

foldI1 f (x:xs) = foldl f x xs

foldll _[] = error "Prelude.foldl1: empty li st"
1

Note: There is additionally a strict version ofdtl called foldI1' in the Data.List librar

Notice that in this case all the types have toheesme, and that an empty list is an error. Thasants are

occasionally useful, especially when there is na@ls candidate faz, but you need to be sure that
not going to be empty. If in doubt, use foldr oldfo

folds and laziness

the list is

One good reason that right-associative folds aneematural to use in Haskell than left-associatimes is that
right folds can operate on infinite lists, whicle arot so uncommon in Haskell programming. If thguin
function f only needs its first parameter to proeltiee first part of the output, then everything kgojust fine.
However, a left fold will continue recursing, neygpducing anything in terms of output until it ceas the end

of the input list. Needless to say, this never lesspf the input list is infinite, and the progravitl spin
endlessly in an infinite loop.

As a toy example of how this can work, consideuractionechoes taking a list of integers, and prod
where if the number n occurs in the input listtimereplicated n times will occur in the output.lid/e

ucing a list
will

make use of the prelude functi@plicate : replicate n x is a list of length n with x the value of every

element.

We can write echoes as a foldr quite handily:

or as a foldl:

75 of 290

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

but only the first definition works on an infinitist like [1..]. Try it!

Note the syntax in the above example:\xs x ->

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

means thats is set to the first argument outside the

parentheses (in this cage), and x is set to the second (will end up beirgalgument oéchoes when it is

called).

As a final example, another thing that you mighticeis thatmap itself is patterned as a fold:

Folding takes a little time to get used to, bus i& fundamental pattern in functional programmauog

eventually becomes very natural. Any time you warttaverse a list and build up a result from iesnmbers you

want a fold.

Scans

Exercises

Define the following functions recursively (likealdefinitions forsum,
product andconcat above), then turn them into a fold:

® and :: [Bool] -> Bool , Which returns True if a list of Bools are all
True, and False otherwise.
® or :: [Bool] -> Bool , which returns True if any of a list of Bools

are True, and False otherwise.
Define the following functions usinglidil or foldrl

® maximum :: Ord a=>[a] -> a , Which returns the maximum
element of a list (hinthax :: Orda=>a->a->a returns the
maximum of two values).

® minimum :: Ord a=>[a] -> a , Which returns the minimum
element of a list (hinthin:: Orda=>a->a->a returns the
minimum of two values).

A "scan" is much like a cross betweemap and a fold. Folding a list accumulates a singlarrevalue, whereas
mapping puts each item through a function with ocuaulation. A scan does both: it accumulates aevhlke
a fold, but instead of returning a final valueaturns a list of all the intermediate values.

The Standard Prelude contains four scan functions:

This accumulates the list from the left, and theosel argument becomes the first item in the resylist. So

76 of 290

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

scanl (+) 0[1,2,3] = [0,1,3,6]

This is the same asanl , but uses the first item of the list as a zer@pwater. It is what you would typically
use if the input and output items are the same fyipéce the difference in the type signatukesani1 (+)
[1,2,3] = [1,3,6]

iscanr i (a->b->b)->b-> [a] -> [b] '
iscanrl : (a->a->a)->[a] ->[a] !

So:
iscanr (+) 0 [1,2,3] = [6,5,3,0] :
iscanrl (+) [1,2,3] = [6,5,3] '

Exercises

Define the following functions:

m factlist :: Integer -> [Integer] , Which returns a list of
factorials from 1 up to its argument. For examfie,ist 4 =
[1,2,6,24]

More to be added

More on functions

As functions are absolutely essential to functigpralgramming, there are some nice features yowsario
make using functions easier.

Private Functions

Remember theumstr function from the chapter on list processing.déd another function calleddstr :

1 1
raddStr :: Float -> String -> Float !
,addStr x str = x + read str '
1 1
isumStr :: [String] -> Float '
isumsStr = foldl addStr 0.0 1
1 1

So you could find that

77 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

gives 11.5.

But maybe you don't waitidstr cluttering up the top level of your program. Hdklets you nest declarations
in two subtly different ways:

: sumsStr = foldl addStr 0.0
i Wwhere addStr x str = x + read str

1
1sumStr =

1 letaddStr x str = x + read str

1 in foldl addStr 0.0

The difference betwedst andwhere lies in the fact thatt foo = 5 in foo + foo is an expression, bedo
+ foo where foo = 5 is not. (Try it: an interpreter will reject thettler expressior) Where clauses are part of
the function declaration as a whole, which makdgfarence when using guards.

Anonymous Functions

An alternative to creating a named function kkestr is to create an anonymous function, also knowa as
lambda function . For examplesumstr could have been defined like this:

The bit in the parentheses is a lambda functioe. @dckslash is used as the nearest ASCII equiviaehe
Greek letter lambda\). This example is a lambda function with two argmts,x andstr , and the result is "x

read str". So, theumstr presented just above is precisely the same am¢hat usedddstr in a let binding.

Lambda functions are handy for one-off functiongmaeters, especially where the function in quess@imple.
The example above is about as complicated as yot tovaet.

Infix versus Prefix

As we noted in the previous chapter, you can takeperator and turn it into a function by surrounggit in
brackets:

This is called making the operafarefix you're using it before its arguments, so it'swnas a prefix function.
We can now formalise the term 'operator": it'srection which is entirely non-alphanumeric charagtand is
used infix (normally). You can define your own ogt@rs just the same as functions, just don't uge an

78 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

alphanumeric characters. For example, here's thdifserence definition from Data.List:

:(\\) Egqa=>[a]->[a] ->[a]
xs \\ys =foldl (\x y -> delete y x) xs ys

Note that aside from just using operators infix) yan define them infix as well. This is a poirdttinosi
newcomers to Haskell miss. l.e., although one cbalek written:

It's more common to define operators infix. Howeder note that in type declarations, you have teosund the
operators by parentheses.

You can use a variant on this parentheses styledotions":

These sections are functions in their own righy has the typet -> Int , for example, and you can pass
sections to other functions, engap (+2) [1..4]

If you have a (prefix) function, and want to usastan operator, simply surround it by backticks:

This is called making the functionfix: you're using it in between its arguments. It'smally done for
readability purposes:elem [1..4] reads better thasiem 1 [1..4] . You can also define functions infix:

elem Eqa=>a->[a] -> Bool
X ‘elem’ xs = any (==x) xs

But once again notice that in the type signature lyave to use the prefix style.

Sections even work with infix functions:

(1 “elem’) [1..4]
(Celem™ [1.4]) 1

You can only make binary functions (those that take arguments) infix. Think about the functionsiyase,
and see which ones would read better if you usewh tinfix.

Exercises

= Lambdas are a nice way to avoid defining unnecgssgrarate
functions. Convert the following let- or where-bings to lambdas:
® mapfxswherefx=x*2+3
m letfxy=read x +yinfoldrf1lxs
® Sections are just syntactic sugar for lambda operat ions.

79 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

l.e. (+2) is equivalent to \x -> x + 2. What would the
following sections 'desugar' to? What would be thei r
types?

= (4+)

m (1 elem’)

® (‘notElem” "abc")

Higher-order functions and Currying

Higher-order functions are functions that take ofhiactions as arguments. We have already met sdrieem,
such asnap, so there isn't anything really frightening or amiliar about them. They offer a form of abstractio
that is unique to the functional programming stimefunctional programming languages like Haskielhctions
are just like any other value, so it doesn't ggtlearder to deal with higher-order functions.

Higher order functions have a separate chaptdrisnbook, not because they are particularly diffieuwe've
already worked with them, after all -- but becatis®y are powerful enough to draw special attentibotmem.
We will see in this chapter how much we can doafegn pass around functions as values. Generabgksp,
it is a good idea to abstract over a functionalihenever we can. Besides, Haskell without highdeior
functions wouldn't be quite as much fun.

The Quickest Sorting Algorithm In Town

Don't get too excited, butiickSort is certainlyoneof the quickest. Have you heard of it? If you didy can
skip the following subsection and go straight te tiext one:

The ldea Behindqui ckSort

The idea is very much simple. For a big list, wek@n element, and divide the whole list into thpeets.

The first part has all elements that should go feefioat element, the second part consists of dh@tlements
that are equal to the picked element, the thirdthea®lements that ought to go after that elermfemd. then, of
course, we are supposed to concatenate these \Wlgst is somewhat better, right?

The trick is to note that only the first and thedrare yet to be sorted, and for the second,repdoesn't really
make sense (they are all equal'). How to go abouing the yet-to-be-sorted sub-lists? Why... aghlsame
algorithm on them again! By the time the whole gsxcis finished, you get a completely sorted list.

So Let's Get Down To It!

80 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

- if the list is empty, we do nothing

I-- note that this is the base case for the recursio n
1 A

quickSort [=]

1

- if there's only one element, no need to sort it

- actually, the third case takes care of this one pretty well
i-- | just wanted you to take it step by step

quickSort [x] = [X]

1

- this is the gist of the process

- we pick the first element as our "pivot", the re st is to be sorted

i don't forget to include the pivot in the middle part!

iquickSort (x : xs) = (quickSort less) ++ (x : equal) ++ (quickSort more)
1

. where less = filter (< x) xs
1 equal = filter (== x) xs

' more = filter (> x) xs

And we are done! | suppose if ypavemetquickSort before, you thought recursion is a neat trickibutard
to implement as so many things need to be kept tvhc

Now, How Do We Use It?

With quickSort ~ at our disposal, sorting any list is a piece dec&Suppose we have a listsafing , maybe
from a dictionary, and we want to sort them, we applyquickSort to the list. For the rest of this chapter, we
will use a pseudo-dictionary of words (but a 25,0@0d dictionary should do the trick as well):

But, what if we wanted to sort them in ttlescendingrder? Easy, just reverse the listerse
sortedDictionary gives us what we want.

But wait! We didn't reallysortin the descending order, we sorted (indBeendingorder) and reversed it. They
may have the same effect, but they are not the Haimg

Besides, you might object that the list you gottigiat you wanted. "a" should certainly be plabetbre "I".
"Linux" should be placed between "have" and "thinghat's the problem here?

The problem is, the wastring s are represented in a typical programming setisgy a list of ASCII

characters. ASCII (and almost all other encodirfgsharacters) specifies that the character codedpital
letters are less than the small letters. BummetZS¢s less than "a". We should do something abbuooks
like we need a case insensitiygckSort as well. It might come handy some day.

But, there's no way you can blend that imiekSort as it stands. We have work to do.

Tweaking What We Already Have

What we need to do is to factor out the comparisoiegsort makes. We need to provideickSort with a
functior that compares two elements, and gives@aring , and as you can imagine, @rering is any ofLT,
EQ, GT.

81 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

To sort in the descending order, we supjplykSort

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

with a function that returns the opposite of tkeal

Ordering . For the case-insensitive sort, we may need toehe function ourselves. By all means, we want t
makequickSort applicable to all such functions so that we dend up writing it over and over again, each

time with only minor changes.

qui ckSort, Take Two

So, forget the version afiicksort we have now, and let's think again.

Our quicksort will take two things this time: first, the compson function, and second, the list to sort.

A comparison function will be a function that takes things, sayx andy, and compares them.«fis less thal
y (according to the criteria we want to implementlug function), then the value will he. If they are equal

(well, equal with respect to the comparison, we twamux" and "linux" to be equal when we are deglwith
the insensitive case), we will hage The remaining case gives @s(pronounced: greater than, for obvious

reasons).

-- N0 matter how we compare two things

-- the first two equations should not change

-- they need to accept the comparison function thou
JquickSort comparison [] = []

quickSort comparison [X] = [X]

1

I-- we are in a more general setting now

-- but the changes are worth it!

JquickSort comparison (x : xs) = (quickSort comparis
1 where less = filter (

' equal = filter (

1 more = filter (
1

on less) ++ (x : equal) ++ (quickSort comparison mo
\y -> comparison y x == LT) xs
\y -> comparison y x == EQ) xs
\y -> comparison y x == GT) xs

re)

Note

Almost all the basic data types in Haskell are memilof theord class. This class
defines an ordering, the "natural" one. The fumi¢or, operators, in this cage) ,

(<=) or(>) provide shortcuts to thempare function each type defines. When want
to use the natural ordering as defined by the tylpesiselves, the above code can be
written using those operators, as we did last timéact, that makes for much clearer
style; however, we wrote it the long way just tokedhe relationship between sorting
and comparing more evident.

But What Did We Gain?

Reuse. We can reuseickSort to serve different purposes.

82 of 290

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1

1-- the usual ordering

- uses the compare function from the Ord class
usual = compare

1

- the descending ordering, note we flip the order of the arguments to compare
:descending Xy = compare y X

1

-- the case-insensitive version is left as an exerc ise!

insensitive = ...

- can you think of anything without making a very big list of all possible cases?
1

The comparison is jusbmpare from theord class. This was oujuickSort , before the tweaking.

Exactly what we wanted!

Exercises

Write insensitive ~ , such thatjuickSort insensitive dictionary gives
[*a", "for", "have", "I", "Linux", "thing"]

Higher-Order Functions and Types

OurquickSort has typéda -> a -> Ordering) -> [a] -> [a]

83 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Most of the time, the type of a higher-order fuantprovides a good guideline about how to use it. A
straightforward way of reading the type signatuoaild be, quickSort takes a function that gives an ordering
of as, and a list ods, to give a list o&s". It is then natural to guess that the functiorissthe list respecting the
given ordering function.

Note that the parentheses surrounca -> a -> Ordering is mandatory. It says that> a -> Ordering

altogether form a single argument, an argumentttappens to be a function. What happens if we tmait
parentheses? We would get a function of typea -> Ordering -> [a] -> [a] , which accepts four

arguments instead of the desired twe>(a -> Ordering and[a]). Furthermore none of the four arguments,
neithera norordering norfa] are functions, so omitting the parentheses woivd gs something that isn't a
higher order function.

Furthermore, it's worth noting that the operator is right-associative, which means #hata -> Ordering

-> [a] -> [a] means the same thingas- (a -> (Ordering -> ([a] -> [a]))) . We really must insist
that thea -> a -> Ordering be clumped together by writing those parenthedast wait... if-> is
right-associative, wouldn't that mean that the@ettrsignaturea -> a -> Ordering) -> [a] -> [a] actualy
means..(a -> a -> Ordering) -> ([a] -> [a]) ?

Is thatreally what we want?

If you think about it, we're trying to build a fuien that takes two arguments, a function andtarturning a
list. Instead, what this type signature is tellusis that our function takes ONE argument (a fiongtand
returns another function. That is profoundly odolut if you're lucky, it might also strike you asiig
profoundly beautiful. Functions in multiple arguntgeare fundamentally the same thing as functioasttke
one argument and give another function back. IiKsf@ou're not entirely convinced. We'll go intditile bit
more detail below and then show how somethingthke can be turned to our advantage.

Exercises

The following exercise combines what you have ledrabout higher
order functions, recursion and 10. We are goingetoeate what
programmers from more popular languages call altiop”. Implement a
function

ifor :: a -> (a->Bool) -> (a->a) -> (a-> 10 ()) -> | 00
foripfjob=--2??

which prints the numbers 1 to 10 on the screen.

Starting from an initial value, thefor executegobi . It then modifies
this valuefi and checks to see if the modified value satisf@ae

condition. If it does, it stops; otherwise, the lmop continues, using the
modifiedfi in place of .

1. The paragraph above gives an imperative descriptidine for loop.
What would a more functional description be?

84 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

2. Implement the for loop in Haskell.
3. Why does Haskell not have a for loop as part ofldhguage, or in
the standard library?

Some more challenging exercises you could try

1. What would be a more Haskell-like way of performantask like
‘print the list of numbers from 1 to 10'? Are tharg/ problems with
your solution?

2. Implement a functiosequencelO :: [IO a] -> 10 [a] . Given a
list of actions, this function runs each of the@ts in order and
returns all their results as a list.

3. Implement a functiomaplO :: (a -> 10 b) -> [a] -> IO [b]
which given a function of type->10b and a list of typga] , runs
that action on each item in the list, and retuhesresults.

This exercise was inspired from a blog post byrsi@n. No peeking!

Currying

Intermediate Haskell

Modules

Modules

Haskell modules are a useful way to group a setlafed functionalities into a single package arohage a set
of different functions that have the same name.Mbdule definition is the first thing that goesywur Haskell

file.

Here is what a basic module definition looks like:

1. Each file contains only one module
2. The name of the module begins with a capital letter

85 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Importing

One thing your module can do is import functiormrirother modules. That is, in between the module
declaration and the rest of your code, you mayuishelsome import declarations such as

1

- import only the functions toLower and toUpper fr om Data.Char
import Data.Char (toLower, toUpper)

1

I-- import everything exported from Data.List

import Data.List

1

i-- import everything exported from MyModule
import MyModule
1

Imported datatypes are specified by their namévi@d by a list of imported constructors in paresis. For
example:

- import only the Tree data type, and its Node con structor from Data.Tree
import Data.Tree (Tree(Node))

Now what to do if you import some modules, but smh#hem have overlapping definitions? Or if youpiont &
module, but want to overwrite a function yoursdlfiere are three ways to handle these cases: @udalifi
imports, hiding definitions and renaming imports.

Qualified imports

Say MyModule and MyOtherModule both have a defimtforremove_e , which removes all instances @®from

a string. However, MyModule only removes lower-cass and MyOtherModule removes both upper andrdowe
case. In this case the following code is ambiguous:

- import everything exported from MyModule

import MyModule

1

- import everything exported from MyOtherModule

iimport MyOtherModule

1

I-- someFunction puts a c in front of the text, and removes all e's from the rest
isomeFunction :: String -> String

:someFunction text ='c' : remove_e text

:import qualified MyModule
import qualified MyOtherModule

1
IsomeFunction text = 'c' : MyModule.remove_e text -- Will work, removes lower case e's

isomeOtherFunction text = ¢’ : MyOtherModule.remove _e text -- Will work, removes all e's
isomelllegalFunction text ='c' : remove_e text -- W on't work, remove_e isn't defined.
1

See the difference. In this case the funciove_e isn't even defined. We call the functions from itngorted
modules by adding the module's name. NoteNligbdule.remove_e also works if the qualified flag isn't
included. The difference lies in the fact thatove_e is ambiguously defined in the first case, and @inéd in
the second case. If we haveemove_e defined in the current module, then usiegove_e without any prefix
will call this function.

86 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Note

There is an ambiguity between a qualified namenilt@odule.remove_e and function
composition (.). Writingeverse.MyModule.remove_e is bound to confuse your

Haskell compiler. One solution is stylistic: to alys use spaces for function
composition, for examplegverse . remove_e OrJust . remove_e or evenlust .
MyModule.remove_e

Hiding definitions

Now suppose we want to import biMyModule andMyOtherModule , but we know for sure we want to remove
all e's, not just the lower cased ones. It willdree really tedious (and disorderly) to aggbtherModule before
every call toremove_e . Can't we jushotimportremove_e from MyModule ? The answer is: yes we can.

1 1
- Note that | didn't use qualified this time. 1
iimport MyModule hiding (remove_e) '
import MyOtherModule 1
1 1

|

1

1 .
isomeFunction text = 'c' : remove_e text

This works. Why? Because of the wdniding on the import line. Followed by it, is a list afrfctions that
shouldn't be imported. Hiding more than one funcirks like this:

Note that algebraic datatypes and type synonymsatdre hidden. These are always imported. If yorels
datatype defined in more modules, you must usafggeahames.

Renaming imports
This is not really a technique to allow for overing, but it is often used along with the qualifigaly. Imagine:

1
:import qualified MyModuleWithAVeryLongModuleName

:someFunction text = 'c' : MyModuleWithAVeryLongModu leName.remove_e $ text
1

:import qualified MyModuleWithAVeryLongModuleName as Shorty
1

isomeFunction text = 'c': Shorty.remove_e $ text

This allows us to usshorty instead ofviyModulewithAVeryLongModuleName — as prefix for the imported
functions. As long as there are no ambiguous defims, the following is also possible:

:import MyModule as My
import MyCompletelyDifferentModule as My

87 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

In this case, both the functionsimyModule and the functions iMyCompletelyDifferentModule can be
prefixed with My.

Exporting

In the examples at the start of this article, tloeds "importeverything exportettom MyModule™" were used.
This raises a question. How can we decide whicbtfans are exported and which stay "internal™? Fdrew:

imodule MyModule (remove_e, add_two) where
1

1add_one blah = blah + 1

1

remove_e text = filter (/= 'e’) text

,add_two blah = add_one . add_one $ blah

In this case, onlyemove_e andadd_two are exported. Whiledd_two is allowed to make use adid_one ,
functions in modules that impaviyModule aren't allowed to try to use@ld_one , as it isn't exported.

Datatype export specifications are written quitaiksirly to import. You name the type, and followtlvihe list
of constructors in parenthesis:

:module MyModule2 (Tree(Branch, Leaf)) where
1

(data Tree a = Branch {left, right :: Tree a}
' | Leaf a

In this case, the module declaration could be teswi'MyModule2 (Tree(..))", declaring that all ciructors
are exported.

Note: maintaining an export list is good practis¢ only because it reduces namespace pollutioralsa
because it enables certain compile-time optiminatio
(http://www.haskell.org/haskellwiki/Performance/GH@lining) which are unavailable otherwise.

Notes

In Haskell98, the last standardised version of ldhsthe module system is fairly conservative. Badent
common practice consists of using an hierarchicaufe system, using periods to section off namesgpac

A module may export functions that it imports.
See the Haskell report for more details on the rfeodystem:

= http://www.haskell.org/onlinereport/modules.html

Indentation

Haskell relies on indentation to reduce the vetigasfiyour code, but working with the indentatiaries can be
a bit confusing. The rules may seem many and arlgjtbut the reality of things is that there aréyame or two
layout rules, and all the seeming complexity armtariness comes from how these rules interadt wour

88 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

code. So to take the frustration out of indentatiod layout, the simplest solution is to get a gnphese rules.

The golden rule of indentation

Whilst the rest of this chapter will discuss inaleHaskell's indentation system, you will do fgiwell if you
just remember a single ru

. Code which is part of some expression should bentet! further in than the
=4 line containing the beginning of that expression

What does that mean? The easiest example is mtkhf group. The equations binding the variablespart o
the let expression, and so should be indenteddunththan the beginning of the binding group: lgtekeyword.
So,

x
1
(3]

Although you actually only need to indent by on&r@space, it's more normal to place the first tengside
the 'let' and indent the rest to line up:

1

ido foo
1 bar

1 baz
1

1
1
1
1
1
1
:wherex=a :
, y=b !
1
1
1
1
1
1

:case x of
1 p ->foo
1 p'->baz
1

Note that with 'case’ it's less common to placent expression on the same line as the begirofitite
expression, as with 'do’ and 'where'. Also notdimexl up the arrows here: this is purely aesthestid isn't
counted as different layout; onitydentation whitespace beginning on the far-left edge, makddference to
layout. Things get more complicated when the bagmof the expression isn't right at the left-haude. In

this case, it's safe to just indent further thabiéginning of the lineontaining the beginning of the expression.

So,

[T TS S ST S S ST S S S S S S S S S S EEEE S S S S S 1
:myFunction firstArgument secondArgument = do -- the 'do’ isn't right at the left-hand edge :
; foo -- S0 indent these commands more than the beginning of th e line containi
1 bar 1
' baz !

Here are some alternative layouts to the abovelwhimuld have also worked:

89 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:myFunction firstArgument secondArgument =
; do foo

1 bar

baz

myFunction firstArgument secondArgument = do foo
bar
baz

A mechanical translation

Did you know that layout (whitespace) is optionkli® entirely possible to treat
Haskell as a one-dimensional language like C, usamgicolons to separate things,

and curly braces to group them back. It is sometimes
useful to avoid

To understand layout, you need to understand timgshwhere we need layout or to mix it

semicolons/braces, and how to get there from laykhe entire layout process can With semicolons

be summed up in three translation rules (plus aticone that doesn't come up and braces.

very often):

1. If you see one of the layout keywords; (, where , of , do), insert an open curly brace (right before the
stuff that follows it)

2. If you see something indented to the SAME levedeim a semicolon

3. If you see something indented LESS, insert a ctpsurly brace

4. If you see something unexpected in a list, likere , insert a closing brace before instead of a sdoico

Exercises
In one word, what happens if you see somethingnteteMORE?

to be completed: work through an example

Exercises

Translate the following layout into curly bracesla®micolons. Note: to
underscore the mechanical nature of this processlehNberately chose
something which is probably not valid Haskell:

way
1i let myself
1 abuse

i these
1layout rules
1

90 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Layout in action

‘ Wrong ‘ Right
T Hi i
1do first thing 1 [rdo first thing 1
1 second thing il second thing :
1 third thing 11 third thing 1
1 L 1
do within if

What happens if we putda expression with am ? Well, as we stated above, the keywardgen else , and
everything besides the 4 layout keywordsndbaffect layout. So things remain exactly the same:

‘ Wrong Right

5
1if foo 1[1if foo !
1 then do first thing i then do first thing :
1 second thing i second thing 1
' third thing " third thing :
1 else do something else 11 else do something else 1
1 i 1

Indent to the first

Remember from the First Rule of Layout Translafiabove) that although the keywatd tells Haskell to inse
a curly brace, where the curly braces goes depaoidsn thedo, but the thing that immediately follows it. For
example, this weird block of code is totally acedybe:

first thing
second thing
:third thing

Wrong Right
______________________ | e |
i f !lvif foo i
1if foo '

; then do first thing e tlf?resq %?ng i
' tsﬁcc??ﬁ- thing : ; second thing :
: rd thing 1l third thing :
1 1 1 1

1

else do something else .
else do something else

:main =do

, first thing

1 second thing
1

91 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

instead of

1

main =

1 do first thing

1 second thing

Both are acceptable
i f within do

This is a combination which trips up many Haskedgrammers. Why does the following block of codé no
work?

- why is this bad?
do first thing

i if condition

' then foo
, else bar
! third thing

Just to reiterate, thiethen else block is not at fault for this problem. Insteduk issue is that th& block
notices that thenen part is indented to the same column astthpart, so it is not very happy, because from
point of view, it just found a new statement of theck. It is as if you had written the unsugaredsion on the

ts

right:

‘ sweet (layout) ‘ unsweet

F--- === === ===- AT T ST s s s s s mmmm == 1
- why is this bad? 1 |i-- still bad, just explicitly so I
ido first thing 1 ido { first thing '
1 if condition i if condition |
' then foo 1[r ; then foo !
1 else bar /I :else bar '
1 third thing 11 ; third thing } 1
1 L) 1
ke cc e e cccccec == U 1

Naturally enough, your Haskell compiler is unimesd, because it thinks that you never finishedngiyour
if expression, before charging off to write some otiev statement, oh ye of little attention spanuiyo

compiler sees that you have written somethingitié@ndition; , Which is clearly bad, because it is
unfinished. So, in order to fix this, we need tdent the bottom parts of this if block a little bitvards

‘ sweet (layout) ‘ unsweet

FT-=s=s=s=s=s=s===== B 1 i
- whew, fixed it! i the fixed version without sugar :
\do first thing 1 lido { first thing :
1 if condition 1) ; if condition |
' then foo 11 then foo !
1 else bar ' else bar :
1 third thing 1)1 ; third thing } 1
1 11 1
| S U U g - - - -—--—-—-—-—-—-————— === === === - - ol

This little bit of indentation prevents the do dtdcom misinterpreting youten as a brand new expression.

Exercises

92 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

The if-within-do problem has tripped up so many kédiers, that one
programmer has posted a proposal
(http://hackage.haskell.org/trac/haskell-primeitR3) to the Haskell
prime initiative to add optional semicolons betweéeien else . How
would that fix the problem?

References

= The Haskell Report (lexemes) (http://www.hasketj/onlinereport/lexemes.html#sect2.7) - see 2.7 on
layout

More on datatypes

Enumerations

One special case of tketa declaration is thenumerationThis is simply a data type where none of the
constructor functions have any arguments:

:data Month = January | February | March | April | M ay | June | July
! | August | September | October | Novem ber | December

You can mix constructors that do and do not hagaraents, but its only an enumeration if none of the
constructors have arguments. The section belovwbeniVing” explains why the distinction is importafor
instance,

:data Colour = Black | Red | Green | Blue | Cyan
! | Yellow | Magenta | White | RGB Int In tint

The last constructor takes three argumentsogar is not an enumeration.

Incidentally, the definition of thBool datatype is:

data Bool = False | True
1 deriving (Eq, Ord, Enum, Read, Show, Bounded)

Named Fields (Record Syntax)

Consider a datatype whose purpose is to hold caraipn settings. Usually when you extract memifrens
this type, you really only care about one or pdgdio of the many settings. Moreover, if many lo¢ tsettings
have the same type, you might often find yourselhdering "wait, was this the fourth fifth element?" One
thing you could do would be to write accessor fiorg. Consider the following made-up configuratigpe for
a terminal program:

93 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

data Configuration =

deriving (Eq, Show)

1

1
1 Configuration String -- user name '
1 String -- local host 1
' String -- remote host '
| Bool -- is guest? |
! Bool -- is super user? !
' String -- current direct ory '
1 String -- home directory 1
' Integer -- time connected '
1 1
1 1

1 1
getUserName (Configurationun _ _ _ _)=un 1
\getLocalHost (Configuration _|h__)=l '
igetRemoteHost (_Configuration - rh__ ___) =rh 1
\getisGuest (Configuration __ _ig___ _)=ig '

1

1

You could also write update functions to updatengle element. Of course, now if you add an elenernie
configuration, or remove one, all of these funcsimow have to take a different number of arguméliis is
highly annoying and is an easy place for bugsifois| However, there's a solution. We simply gnames to
the fields in the datatype declaration, as follows:

1

idata Configuration =
i Configuration { username :: String,
1 localhost :: String,

' remotehost :: String,

| isguest :: Bool,

' issuperuser :: Bool,

. currentdir :: String,

1 homedir ;1 String,

' timeconnected :: Integer

1
1

This will automatically generate the following asser functions for us:

1
wsername :: Configuration -> String
localhost :: Configuration -> String

Moreover, it gives us very convenient update meshétkre is a short example for a "post workingaogy"
and "change directory” like functions that work @mfiguration S:

1

ichangeDir :: Configuration -> String -> Configurati on
ichangeDir cfg newDir =

1 -- make sure the directory exists

' if directoryExists newDir

1 .

, then -- change our current directory

1 cfg{currentdir = newDir}

1 else error "directory does not exist"

1
!

jpostWorkingDir :: Configuration -> String
1 -- retrieve our current directory
:postWorkingDir cfg = currentdir cfg

So, in general, to update the figldnh a datatype to z, you writey{x=z} . You can change more than one; each
should be separated by commas, for instayigez, a=b, c=d}

It's only sugar

94 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

You can of course continue to pattern match againsiguraton s as you did before. The named fields are
simply syntactic sugar; you can still write somathiike:

"= (h,rh)

This matches the variable against théocalhost field on thecConfiguraton ~ and the variablen against the
remotehost field on theConfiguraton . These matches of course succeed. You could alssirain the
matches by putting values instead of variable nam#sese positions, as you would for standardtgpés.

You can create values 0bnfiguration in the old way as shown in the first definitiordog, or in the
named-field's type, as shown in the second defimitielow:

iNitCFG =

1 Configuration "nobody” "nowhere" "nowhere”

1 False False "/" /" O

initCFG' =

Configuration

{ username="nobody",

localhost="nowhere",
remotehost="nowhere",
isguest=False,
issuperuser=False,
currentdir="/",
homedir="/",
timeconnected=0 }

Though the second is probably much more undersbdedaless you litter your code with comments.

Parameterised Types

Parameterised types are similar to "generic" anftiate” types in other languages. A parameterigeel takes
one or more type parameters. For example the Stairtalude typeaybe is defined as follows:

ThelookupBirthday ~ function takes a list of birthday records andrangtand returns &aybe Anniversary
Typically, our interpretation is that if it findbe name then it will retursust the corresponding record, and
otherwise, it will returmothing .

You can parameterisgoe andnewtype declarations in exactly the same way. Furthermpotecan combine
parameterised types in arbitrary ways to constmeut types.

95 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

More than one type parameter

We can also have more than one type parameterx&mme of this is theither type:

:eitherExampIe .. Int -> Either Int String
:eitherExampIe a | even a = Left (a/2)
1 | a “‘mod” 3 == 0 = Right "three"

! | otherwise = Right "neither two or three"

1

otherFunction :: Int -> String

jotherFunction a = case eitherExample a of

1 Left c ="Even: " ++ show a ++ " = 2*" ++ show ¢ ++
' Right s = show a ++ " is divisible by " ++ s ++ " "

In this example, when you cakherFunction , it'll return astring . If you give it an even number as argument,
it'll say so, and give half of it. If you give ihgthing elsegitherExample will determine if it's divisible by thre
and pass it through t@herFunction

Kind Errors

The flexibility of Haskell parameterised types d¢aad to errors in type declarations that are sonagvike type
errors, except that they occur in the type dedlamatrather than in the program proper. Errorese "types of
types" are known as "kind" errors. You don't prognaith kinds: the compiler infers them for itsebut if you
get parameterised types wrong then the compilérgplort a kind error.

Trees

Now let's look at one of the most important datagtires: Trees. A tree is an example of a recuikitatype
Typically, its definition will look like this:

As you can see, it's parameterised, so we canthee® ofint s, trees obtring S, trees ofMaybe Int S, even
trees of(int, String) pairs, if you really want. What makes it specgalhattree appears in the definition of
itself. We will see how this works by using an albtg known example: the list.

Lists as Trees

Think about it. As we have seen in the List Processhapter, we break lists down into two caseseApty
list (denoted by), and an element of the specified type, with aeolist (denoted by:xs)). This gives us

valuable insight about the definition of lists:

Which is sometimes written as (for Lisp-inclinecopée):

96 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

As you can see this is also recursive, like the tve had. Here, the constructor functionsfjarand() . They
represent what we have calleghi andBranch . We can use these in pattern matching, just adidvevith the
empty list and theéx:xs)

Maps and Folds

We already know about maps and folds for lists \Vgitir realisation that a list is some sort of tiee,can try to
write map and fold functions for our own typee . To recap:

:data Tree a = Leaf a | Branch (Tree a) (Tree a)
datafa] =0 |() ala]
1 - (:) a[a] would be the same as (a:[a]) with pr efix instead of infix notation.

| will handle map first, then folds.
Map
Let's take a look at the definition @hp for lists:

:map t(a->b)->[a] ->[b]
map _[1=]
imap f (x:xs) =fx: map f xs

First, if we were to writereeMap , what would its type be? Defining the functioreasier if you have an idea of
what its type should be.

We want it to work on a@ree of some type, and it should return anothee of some type. Whateemap does
is applying a function on each element of the tseewe also need a function. In short:

See how this is similar to the list example?

Next, we should start with the easiest case. Wakkmy about ¢Tree , this is obviously the case of.eaf . A
Leaf only contains a single value, so all we have tesdapply the function to that value and then netieaf
with the altered value:

:treeMap i (a->b)->Treea->Treeb
{treeMap f (Leaf x) = Leaf (f x)

Also, this looks a lot like the empty list caselwitap. Now if we have @ranch , it will include two subtrees;
what do we do with them? When looking at the diap; you can see it uses a call to itself on thedfihe list.
We also shall do that with the two subtrees. Thapete definition of treeMap is as follows:

97 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:treeMap (a->b)->Treea->Treeb

{treeMap f (Leaf x) = Leaf (f)

itreeMap f (Branch left right) = Branch (treeMap f | eft) (treeMap f right)
1

We can make this a bit more readable by notingttésap f is itself a function with typ&ree a -> Tree b ,
and what we really need is a recursive definitibneeMap f . This gives us the following revised definition:

:treeMap iz (a->b)->Treea->Treeb
{treeMap f = g where

1 g (Leaf x) = Leaf (f x)

g (Branch left right) = Branch (g left) (g right)

If you don't understand it just now, re-read itp&sially the use of pattern matching may seem wadifdst, but
it is essential to the use of datatypes. The nmgbitant thing to remember is that pattern matchigpens on
constructor functions.

If you understand it, read on for folds.
Fold

Now we've had thtreeMap , let's try to write areeFold . Again let's take a look at the definitionfatir for
lists, as it is easier to understand.

foldr :: (@ ->b ->b) > b -> [a] > b
foldrfz[=2z

ffoldr f z (x:xs) = f x (foldr f z xs)

1

Thusfoldr takes two arguments corresponding to the two coctstrs:

1
f:a->b->b --atwo-argument function
iZ b --like a zero-argument function

We'll use the same strategy to find a definitionteFold as we did foreeMap . First, the type. We want
treeFold to transform a tree of some type into a valueonfie other type; so in placefaf->b we will have
Treea->b . How do we specify the transformation? First nbegTree a has two constructors:

1
Branch :: Tree a -> Tree a -> Tree a
Leaf ::a->Tree a

SotreeFold will have two arguments corresponding to the twostructors:

iforanch :: b > b > b
:ﬂeaf ca->b

Putting it all together we get the following typefidition:

98 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

That is, the first argument, of type-> b -> b) , IS a function specifying how to combine subtrebe;second
argument, of type ->b , is a function specifying what to do with leavasgd the third argument, of typese

a, is the tree we want to "fold".

As with treeMap , we'll avoid repeating the argumemtgnch andfleaf by introducing a local functiog:

:treeFoId 2(b->b->b)->(a->b) ->Treea-> b
{reeFold foranch fleaf = g where
1 -- definition of g goes here

The argumentieaf tells us what to do witbeaf subtrees:

The argumentranch tells us how to combine the results of "folding/btsubtrees:

:treeFoId 2(b->b->b)->(a->b)->Treea-> b
{treeFold foranch fleaf = g where

1 g (Leaf x) = fleaf x

g (Branch left right) = fbranch (g left) (g right)

For examples of how these work, copy thee data definition and thieeeMap
Haskell file, along with the following:

1
itreel :: Tree Integer

ftreel =

1 Branch

' (Branch

| (Branch

' (Leaf 1)

. (Branch (Leaf 2) (Leaf 3)))

1 (Branch

' (Leaf 4)

1 (Branch (Leaf 5) (Leaf 6))))

' (Branch

| (Branch (Leaf 7) (Leaf 8))

! (Leaf 9))

1

idoubleTree = treeMap (*2) -- doubles each value in tree
isumTree = treeFold (+) id -- sum of the leaf values in tree
ffringeTree = treeFold (++) (: []) -- list of the | eaves of tree
1

1

idoubleTree treel
isumTree treel
fringeTree treel

1

99 of 290

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Other datatypes

Now, unlike mentioned in the chapter about trealsisfand maps aren't tree-only. They are very lafany
kind of data type. Let's look at the following, sewhat weird, type:

1 1
data Weird ab = !
| Firsta | '
1 Second b | 1
1 Third [(a,b)] | '
1 Fourth (Weird a b) 1
1 1

There's no way you will be using this in a prognariiten yourself, but it demonstrates how folds amaps are
really constructed.

General Map

Again, we start withweirdMap . Now, unlike before, thig/eird type haswo parameters. This means that we
can't just use one function (as was the casedts éindrree), but we need more. For every parameter, we need
one function. The type ofeirdvap will be:

Read it again, and it makes sense. Maps don't taweay the structure of a datatype, so if we stah aweird
thing, the output is alsowseird thing. Now we have to split it up into patternenRember that these patterns are
the constructor functions. To avoid having to tyipe names of the functions again and again, | weleese

clause:

1
weirdMap :: (a > c) -> (b -> d) -> Weird a b -> We ird ¢ d I
weirdMap fa fb = weirdMap' '
\ Where 1
1 weirdMap' (First a) = --More to follow 1
1 weirdMap' (Second b) = --More to follow '
1 weirdMap' (Third ((a,b):xs)) = --More to follow 1
1 weirdMap' (Fourth w) = --More to follow '

It isn't very hard to find the definition for tlrgst andsecond constructors. The list @é,b) tuples is harder.
TheFourth is even recursive!

Remember that a map preserves structure. Thisperiant. That means, a list of tuples stays afistiples.
Only the types are changed in some way or ano¥twer.might have already guessed what we should tlo tve
list of tuples. We need to make another list, ofchtthe elements are tuples. This might sound ®illsepeat,
but it becomes clear that \iiest have to change individual elements into otherdspandhenadd them to a
list. Together with the&irst andsSecond constructors, we get:

:weirdMap t(@->c)->(b->d)->Weirdab ->We irdcd :
weirdMap fa fb = weirdMap' '
\ Where \
1 weirdMap' (First a) = First (fa a) 1
1 weirdMap' (Second b) = Second (fb b) '
1 weirdMap' (Third ((a,b):xs)) = Third ((fa a, f b b) : weirdMap' (Third xs)) 1
1 weirdMap' (Fourth w) = --More to follow '

First we change (a,b) into (fa a, fb b). Next wedhéhe mapped version of the rest of the list thtadt. Since

100 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

we don't know a function for a list of (a,b), we shehange it back towaeird value, by addinghird . This isn't
really stylish, though, as we first "unwrap" tweird package, and then pack it back in. This can bagdth
into a more elegant solution, in which we don'trefaave to break list elements into tuples!

Remember we already had a function to change aflstme type into another list, of a differenté@pYup, it's
our good oldnap function for lists. Now what if the first type wasay(a,b) , and the second tyged) ? That
seems useable. Now we must think about the funetsre mapping over the list. We have already fond
the above definition: It's the function that seqdls to (fa a, fb b) . To write it in the Lambda Notation:
\(a, b) -> (fa a, fb b)

:weirdMap t(@->c)->(b->d)->Weirdab ->We irdcd

weirdMap fa fb = weirdMap'

1 Where

' weirdMap' (Firsta) = First (fa a)

i weirdMap' (Second b) = Second (fb b)

1 weirdMap' (Third list) = Third (map (\(a, b) - > (fa a, fb b)) list)
1 weirdMap' (Fourth w) = --More to follow

That's it! We only have to match the list once, aallithe listmap function on it. Now for th&ourth
Constructor. This is actually really easy. JustdMap it again!

:weirdMap t(@->c)->(b->d)->Weirdab ->We irdcd

weirdMap fa fb = weirdMap'

\ Where

' weirdMap' (Firsta) = First (fa a)

i weirdMap' (Second b) = Second (fb b)

1 weirdMap' (Third list) = Third (map (\(a, b) - > (fa a, fb b)) list)
i weirdMap' (Fourth w) = Fourth (weirdMap w)

General Fold

Where we were able to define a map, by givingfutrection for every separate type, this isn't enofagla fold.
For a fold, we'll need a function for every constar function. This is also the case with listshikenber the
constructors of a list afg and(:) . The 'z'-argument in thfeldr function corresponds to tlie-constructor.
The 'f-argument in thldr function corresponds to thig constructor. Th&veird datatype has four
constructors, so we need four functions. Next, exeha parameter of thveeirdab type, and we want to end
up with some other type of value. Even more spedifie return type of each individual function wasg to
weirdFold ~ will be the return type ofeirdFold itself.

This in itself won't work. We still need the typafssomethingl , something2 , something3 andsomething4 . But
since we know the constructors, this won't be nafch problem. Let's first write down a sketch faoir o
definition. Again, | use a where clause, so | dbalte to write the four function all the time.

weirdFold :: (somethingl -> c) -> (something2 -> c) -> (something3 -> c) -> (something4 -> c) -> Weird ab->c :
weirdFold f1 f2 f3 f4 = weirdFold' '
1 Where |
1 weirdFold' First a = --Something of ty pe ¢ here !
| weirdFold' Second b = --Something of ty pe ¢ here '
1 weirdFold' Third list = --Something of ty pe ¢ here 1
1 weirdFold' Fourth w = --Something of ty pe ¢ here '

Again, the types and definitions of the first tiumé€tions are easy to find. The third one isn't \affycult

101 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

either, as it's just some other combination witlral 'b'. The fourth one, however, is recursivel ae have to
watch out. As in the case wéirdMap , we also need to recursively use #leédrFold function here. This brings
us to the following, final, definition:

weirdFold :: (a -> ¢) -> (b -> ¢) -> ([(a,b)] ->) > (c->c)->Weirdab->c :
weirdFold f1 f2 3 f4 = weirdFold' '
1 Where 1
1 weirdFold' First a =fla !
| weirdFold' Second b =f2b '
1 weirdFold' Third list =1f3 list 1
1 weirdFold' Fourth w = f4 (weirdFold f1 f2 34 w) '

In which the hardest part, supplyingfof {2 , f3 andf4 , is left out.

Folds on recursive datatypes

Since | didn't bring enough recursiveness inwh@d ab datatype, here's some help for the even weirder
things. Someone, please clean this up!

Weird was a fairly nice datatype. Just one recursivesttantor, which isn't even nested inside othercstmes.
What would happen if we added a fifth constructor?

A valid, and difficult, question. In general, tr@ldwing rules apply:

= A function to be supplied to a fold has the samewmh of arguments as the corresponding constructor.
The type of such a function is the same as theayjplee constructor.

The only difference is that every instance of §petthe constructor belongs to, should be replagate
type of the fold.

» |If a constructor is recursive, the complete folddiion should be applied to the recursive part.

» If a recursive instance appears in another stractbe appropriate map function should be used

Sofs would have the type:

The definition ofweirdrFold® for theFifth constructor will be:

weirdFold' Fifth list a (waa, maybe) = f5 (map (weirdFold f1 f2 f3 f4 f5) list) a (waa, maybeMap (weirdFold f1 f:
where !
maybeMap f Nothing = Nothing :
maybeMap f (Just w) = Just (f w) !

Now note that nothing strange happens withweirdaa part. NoweirdFold gets called. What's up? This is a
recursion, right? Well... not reallweirdaa has another type thameirdab , so itisn't a real recursion. It

102 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

isn't guaranteed that, for exampte,will work with something of type 'a’, where it eeqis a type 'b'. It can be
true for some cases, but not for everything.

Also look at the definition ohaybeMap. Verify that it is indeed a map function:

m |t preserves structure.
= Only types are changed.

Class declarations

Type classesre a way of ensuring you have certain operatii@fimed on your inputs. For example, if you
know a certain typenstantiateshe class Fractional, then you can find its reaxpt.

Please not¢ For programmers coming from C++, Java and othgrottoriented languages: the concept of
"class" in Haskell is not the same as in OO langgaghere are just enough similarities to causéuswn, but
not enough to let you reason by analogy with wioat glready know. When you work through this sectrgrio
forget everything you already know about classessarbtyping. It might help to mentally substitute word
"group” (or "interface") for "class" when readirigs section. Java programmers in particular may iuseful
to think of Haskell classes as being akin to Jateriaces. For C++ programmers, Haskell classesianiéar to
the informal notion of a "concept" used in specifytype requirements in the Standard Template byleag.
Inputlterator, EqualityComparable, etc.)

Introduction

Haskell has several numeric types, includimg, Integer andFloat . You can add any two numbers of the

same type together, but not numbers of differgmesy You can also compare two numbers of the sgpeefdr
equality. You can also compare two values of @@ for equality, but you cannot add them together.

The Haskell type system expresses these rules alsisges. A class is a template for types: it $igsdhe
operations that the types must support. A typaid ® be an "instance" of a class if it suppdntsse
operations.

For instance, here is the definition of the "Eqi'sd from the Standard Prelude. It defines-thand/=
functions.

class Egqa where
(==), (/=) :: a->a -> Bool

(==)or (/=)
X/=y = not(x==Yy)
Xx==y = not(x/=y)

1
1
:
1
. Minimal complete definition:
1
1
1
1

This says that a typeis an instance dq if it supports these two functions. It also gikgault definitions of
the functions in terms of each other. This meaasiftan instance afq defines one of these functions then the
other one will be defined automatically.

Here is how we declare that a type is an instah&g:o

103 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1
:data Foo = Foo {x :: Integer, str :: String}

1 (Foo x1 strl) == (Foo x2 str2) =
1 (X1 ==x2) && (strl == str2)

1
:
1 1
instance Eq Foo where 1
1
1
1
1

There are several things to notice about this:

= The clas€q is defined in the standard prelude. This code $agfines the typeoo and then declares it
to be an instance @&k. The three definitions (class, data type and mstaare completely separate and
there is no rule about how they are grouped. Yaudcjust as easily create a new class and then
declare the typeteger to be an instance of it.

= Types and classes are not the same thing. A dasstemplate” for types. Again this is unlike mGsd
languages, where a class is also itself a type.

= The definition of== depends on the fact thateger andstring are also members af. In fact almost
all types in Haskell (the most notable exceptiomgpéunctions) are members Bd.

= You can only declare types to be instances of ssdfahey were defined wittmta or newtype . Type
synonyms are not allowed.

Deriving

Obviously most of the data types you create inra@ay program should be members of Eq, and forrtfster a
lot of them will also be members of other Stand@relude classes such@s andshow. This would require

large amounts of boilerplate for every new typeHsskell has a convenient way to declare the "als/io
instance definitions using the keywargtiving . Using it,Foo would be written as:

data Foo = Foo {x :: Integer, str :: String}
, deriving (Eq, Ord, Show)

This makesoo an instance afq with exactly the same definition ef as before, and also makes it an instance
of ord andshow for good measure. If you are only deriving froneatass then you can omit the parentheses
around its name, e.g.:

:data Foo = Foo {x :: Integer, str :: String}
, deriving Eq

You can only uséeriving with a limited set of built-in classes. They are:

Eq
Equality operators= and/=
Ord
Comparison operatoks<=>>= . Alsomin andmax.
Enum
For enumerations only. Allows the use of list sydach agBlue .. Green]
Bounded

104 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Also for enumerations, but can also be used orstyip&t have only one constructor. Provigé®ound
andmaxBound, the lowest and highest values that the type ala®. t

Show
Defines the functioshow (note the letter case of the class and functionasd which converts the type to
a string. Also defines some other functions thditlva described later.

Read
Defines the functiomead which parses a string into a value of the typewih Show it also defines some
other functions as well.

The precise rules for deriving the relevant funcsi@re given in the language report. However tlagy c
generally be relied upon to be the "right thing” i@ost cases. The types of elements inside thetgatamust
also be instances of the class you are deriving.

This provision of special magic for a limited sépoedefined classes goes against the general Haske
philosophy that "built in things are not speciddowever it does save a lot of typing. Experimemtatk with
Template Haskell is looking at how this magic, omething like it, can be extended to all classes.

Class Inheritance

Classes can inherit from other classes. For exarhple is the definition of the classi from the Standard
Prelude, for types that have comparison operators:

:class (Eq @) => Ord a where

, compare :ra->a-> Ordering
1 (<), (=), (>=), (>) za->a->Bool
I max, min ta->a->a

The actual definition is rather longer and includeault implementations for most of the functiofhke point
here is thadrd inherits fromeq. This is indicated by the> symbol in the first line. It says that in order &
type to be an instance ofd it must also be an instanceraf, and hence must also implement theand/=
operations.

A class can inherit from several other classed:gusall the ancestor classes in the parentheseseithe=>.
Strictly speaking those parentheses can be onfidteal single ancestor, but including them acts aisaal
prompt that this is not the class being defined lagrace makes for easier reading.

Standard Classes

This diagram, copied from the Haskell Report, shtvesrelationships between the classes and typtbe in
Standard Prelude. The names in bold are the claBsesion-bold text are the types that are instanteach
class. The->) refers to functions and the refers to lists.

105 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

Eq Show
All except All except
10, [-=) 1Q, [-=)

Num
Int, Integer
Float, Double

ord
All except 10,
|OError, (-=)

Enum

), Bool, Char, Ordering, Int ﬁﬁtaelger
Int, Integer, Float, Float, Double

Double

RealFrac

Integral
Float, Double

Int, Integer

Monad
10, [1. Maybe

MonadPlus
10, [1. Maybe

Classes and types

Classes and Types

Simple Type Constraints

RealFloat
Float, Double

Functor
10, [1, Maybe

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Read
All except
10, (-]}

Bounded

Int, Char, Bool, ()

Ordering, tuples

Fractional
Float, Double

Floating
Float, Double

So far we have seen how to declare classes, hdedare types, and how to declare that types atannes of
classes. But there is something missing. How ddeatare the type of a simple arithmetic function?

Obviouslyx andy must be of the same type because you can't afddedif types of numbers together. So how

about:

106 of 290

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

which says thatlus takes two values and returns a new value, arttirg¢ values are of the same type. But
there is a problem: the argumentsite need to be of a type that supports addition. irtsta of the clagsum
support addition, so we need to limit the type atgre to just that class. The syntax for this is:

This says that the type of the argumentgd® must be an instance wém which is what we want.

You can put several limits into a type signatuke lihis:

1 1
foo :: (Num a, Show a, Show b) =>a->a->b-> St ring 1
fooxyt= '
1 show x ++ " plus " ++ show y ++ " is " ++ show (X+y) ++". " ++ show t 1

1

This says that the argumentandy must be of the same type, and that type must lyestéance of bothiumand
Show. Furthermore the final argumenimust be of some (possibly different) type thatlg an instance chow.

You can omit the parentheses for a single congtrairt they are required for multiple constraimstually it is
common practice to put even single constraintsareptheses because it makes things easier to read.

More Type Constraints

You can put a type constraint in almost any typdatation. The only exception issgwe synonym declaration.
The following is not legal:

This declares a typeo with two constructors1 takes any numeric type, white takes an integer.

You can also use type parametersantype andinstance declarations. Class inheritance (see the previous
section) also uses the same syntax.

Monads

Understanding monads

107 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

This page is undergoing a major rewrite. Meanwliigre's the previous version
(http://en.wikibooks.org/w/index.php?title=Hask#ltiderstanding_monads&oldid=933545)

Notes and TODOs

Loose end:
= Explain monadic parser combinators! But in anotbkapter.

» The basic triad "rock, scissors, paper" err, "readeriter, state" is best introduced in another pher,
maybe entitled "A Zoo of Monads". Reader must ohelilne famous functida->b)] -> a -> [b] also
known asequence !

= TheRandom a is too cute to not elaborate it further to probigtic functional programming. The Monty
Hall problem can be solved with that. Key: the iempéntation can be changed, it effectively becohees t
Set-Monad then. Extensioguard and backtracking.

Introduction

What is a Monad?

We're bold and present the exact definition of "aw¥n This should (hopefully) prevent common cowfusi
about the definition and remove the buzzword stg&dfi€ourse, this paragraph has to be really stsante it
doesn't explain why | should care about monaddlairavhat the intuition behind bind and return is.

A monadis a triple(M', return, :::}:) consisting of a type constructierand two polymorphic functions

return 1 a — Ma

(=) == Ma— (a— Mb)— Mb
that obey the following three laws

Right unit m == refurn = m
Leftunit returnxr 3= f = fr
Associativity(m. == f) 3= g =m 3= (Ax. fz 3= g)

The operato™3==is commonly calledbind". Often, one simply refers to the type construdtoas the monad.

In Haskell, we can capture this definition as aetgfass

1
iclass Monad m where

1
1
yreturnza->ma '
1 (>>=) mma->(@->mb)->mb 1
1 1

Any instance of this clasgonad is assumed to fulfill the three laws stated abavether words, a monad is a

108 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

type constructor for which those two functions ianplemented. This class is, slightly expanded, pathe
Haskell Prelude (http://www.haskell.org/onlineregstandard-prelude.html) and defined in the stashdlbrary
module Control.Monad (http://www.haskell.org/ghatdtatest/html/libraries/base/Control-Monad.html) .

What use are Monads?

After maturing in the mathematical discipline ofegory theory for some time, monads were introduoed

programming when Eugenio Moggi showkd how they can unify the description of the semantitdifferent
programming languages. Depending on the concreteadohosen, different semantics emerge. For ingtanc
mutable state can be modeled by the manad s -> (a,s) . Lists are a monad, too, and model

nondeterminism and backtracking whereas the menas Either e a models exceptions.

One aim of the chapters on monads is to exempl#gyof these different forms of computation. Of is&y it's

not our main interest to study programming langusegeantics, but it was Philip Wadler who notic&hlLol
that we can directly implement Moggi's monads irskédl. This is a powerful idea since each monalitle
minilanguage specially suited for a particular tdstr instance, to program a state transformegareuse a
monad to model state. To solve a logic problemusethe list monad to transparently handle badkimgc To
handle failure and exceptions easily, we haveetihere monad. And last but not least, there isithenonad
to perform input/output, something that did notrsde fit well into a purely functional language.igfand
subsequent chapters are to guide you to througte thenilanguages and to show they can simplifysinetture
your daily Haskell code.

But how can the rather short definition of monan®y above relate all these very different forms of
computation? They all share a common use pattamely the ability to combine two computatidrendg into
a compound computaticf == g by first "executing'f and "then" binding, i.e. feeding the resulgtdrhis is
what the operatCs=— captures and that's why it's called "bind". Inevttvords 3= is similar to function
composition. Of course, depending on the underlymogad, "executing” and "then" may have quite dffe
meanings. Don't worry if this seems too abstraegt,nee will detail the genesis === with our first example
monad in the section #Stateful Computations.

Stateful Computations

Example state monads, i.e. particular state ty@e®e of them is to be treated before/in paralleio a . The
others may be useful for exercises!

= random numbers. Drawback™s> is meaningless, using an infinite list of randoambers is a better
abstraction. Highlights: the state is more an immpéntation detail than of individual importance,shi
makes explanation easier!

= name-supply. Task: label all leaves in a tree frbito n.

m Data.Map for depth first search in a graph.

m SOE, chapter 19: interactive robot language. Nixaraple monad to program in. But not a good example
for implementation.

Of course, the problem with an example is that aedrto explain the example use case before plungiag
>>=, But it's probably worth it. Huh, it turns out thae even have to explain the- (a,s) pattern for
threading state. Seems that random numbers aresasi explain.

Random Number Generation

109 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

We will introduce 3= with a practical example of stateful computatiar@srdom number generation. This
subsection will present the example, it's the sexisection that will show the monad behind.

Computers usually create random numbers by stantitiga single random number (frequently callsded)
and applying some arithmetic operations to it tbageew random number. By repeating this procesget a
sequence of fairly random numbers. Of course, séaod number is generated in a deterministic way the
previous one, they are not truly random, psguuido-random numbers. But by choosing the arithmetic
operations carefully to properly "scramble” theuhpumber, they behave like real random numbergiv®an
impression of how this "scrambling” works, hereiseaample function that generates a pseudo-randonber
from a previous one:

:type Seed = Int
1

rrandomNext:: Seed -> Seed

:randomNext rand = if newRand > 0 then newRand else newRand + 2147483647
where

' newRand = 16807 * lo - 2836 * hi

' (hi,lo) = rand “divMod" 127773

There is much research on constructing good psearttom number generators, but fortunately, the elask
standard library module System.Random
(http://www.haskell.org/ghc/docs/latest/html/libes/base/System-Random.html) already implements a
ready-to-use generator for us. However, its interfia best explained withndomNext , SO we will stick to that

for now.

Let's implement a function that simulates a didg re. that returns a random number from 1 t@6t
randomNext uses large numbers since they can be scrambled batter, so we need to convetdead to a
number from 1 to 6. This can be done by dividinggéed by 6 and taking the remainder

:toDieRoII :: Seed -> Int
toDieRoll seed = (seed ‘'mod” 6) + 1

> toDieRoll 362354 -- hand-crafted initial random s eed :-)
3

But something is missing: what if we want to rblétdie a second time? For that, we have to genanagev
randomseed from the old one viaandomNext . In other words, we have to change the cursead, i.e. thestate

of our pseudo-random number generator. In Hastkedl,can be accomplished by returning the new statiee
result

:rollDie :: Seed -> (Int, Seed) :
rroliDie seed = ((seed ‘'mod" 6) + 1, randomNext seed) '

This is the description of state transformer: an initial state (th&eed) is transformed to a new one while
yielding a result (thent between 1 and 6). We can visualize it as ... (TODRAW THE PICTURE!).

To roll two dice and sum their pips, we can nowdfégeseed from the first roll to the second roll. Of course,
we have to return the new state from the secoralrdit as well for our functiosumTwoDice to be as useful as
rollDie

110 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1 1
isumTwoDice :: Seed -> (Int, Seed) 1
isumTwoDice seed0 = '
1 let (diel, seedl) = rolIDie seed0 1
| (die2, seed2) = rollDie seed1 '
1 in (diel + die2, seed?2) 1
1 1

Again, a picture shows clearly how the state ispd$rom oneoliDie to the next (PICTURE!). Note that
nextRandom does not appear in the definitionsofnTwoDice , the state change it performs is already embetded
roliDie . The functiorsumTwoDice merely propagates the state updates.

This is the model that System.Random
(http://www.haskell.org/ghc/docs/latest/html/libes/base/System-Random.html) employs, so we can now
elaborate on its concrete interface. The libragsusvo type classerandomGenandRandom Any instance of th
former acts similar to owseed, it's just called "random number generator”, rsetetd"”. This makes sense since
the seed may have more complicated internals just aand is closely linked to the function that genesat
new pseudo-random numbers. In any case, the medplats a convenient random number genesateen

and you most likely won't have to deal with thedomGenclass at all.

The interesting functions are those of the ckasslom, in particularrandom andrandomR. They are implemented
for a few types likeool , Char, Int etc. SO you can use them to generate differemlorarthings than numbers.
The functionrandomR returns a random number in a specified rangeh@owe can conveniently write

:import System.Random (http://www.haskell.org/ghc/do cs/latest/html/libraries/base/System-Random.html)
1

roliDie :: StdGen -> (Int, StdGen)
:roIIDie =randomR (1,6)

As a final note, you may want to compare randomlmemareation in Haskell to its counterpart in ingiee
languages like C. In the latter, there usually l&iaction"rand() that returns a different and random result at
each call but internally updates the random semdeSHaskell is pure, the result of a function ésedmined
solely by its parameters and manipulating the randeed has to manifest itself in the type.

Exercises

=

Roll two dice! WithsumTwoDice thatis :-) . Usést to extract the result.

2. Write a functiorroliNDice :: Int -> Seed -> ([Int],Seed) that rolls dice n
times and returns a list of the n resuligtra: If you know about infinite lists, use
unfoldr andtake to get the result list (but without seed this fime

3. Reimplementeed androliDie with StdGen andrandom from System.Random

(http://www.haskell.org/ghc/docs/latest/html/libes/base/System-Random.html)

4. Now that you have random numbers, do some statigtiperiments with the
help ofroliNDice . For example, do a sanity check thiéibie is not skewed

and returns each number with equal likelyhood. Hothe sum of pips of a
double dice roll distributed? The difference? Angdlé rolls?

Threading the State withbind

111 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

>> for the state monad is easier thasx. But it's meaningless for random numbers :-/ PI&BES for the
plumbing! Somehow shorten the discussion, maittgdaicereturn more fluently. Expanding the definitions
of the new combinators as exercises to check liganéw code for sumTwoDice is the same as thengld o

In the last subsection, we've seen that stateftnaners like random number generators can be mddsje
functionss -> (a,s) wheres is the type of the state. Such a function takstste and returns a result of type
and a transformed state. However, programming thigse functions is a bit tedious since we havexphiatly
pass the state from one computation to the nextikaén the definition oumTwoDice

1 1
isumTwoDice :: Seed -> (Int, Seed) !
isumTwoDice seed0 = '
1 let (diel, seedl) = rolIDie seed0 1
i (die2, seed2) =rolIDie seed1 '
1 in (diel + die2, seed2) 1
1 1

Each state has to be named and we have to takéocaoé pass the wrong state to the next functadeident.

Of course, we are Haskell programmers: if therecaremon patterns or boilerplate in our code, waukho
search for a way to abstract and capture themhigteer order function. Thus, we want to find sonmajtthat
can combine state transformers (a,s) to larger ones by passing the state from onedméxt. A first

attempt is an operator nametien”

:(>>) fg seed0 =
! let (resultl, seedl) = f seed0
(result2, seed2) = g seedl

1
1
' in (result2, seed?2)

without seeing a single state! Unfortunateby) doesn't allow us to use the result of the firstrdil in the

following ones, it's simply ignored. In other woydisis combinaton changes the random seed thress tomt
only returns the pips from the last die roll. Ratpeintless for random numbers, but we're on thletrirack.
PICTURE FOR(>>) !

We somehow need a way to pass the result fromrtecbmputation to the second, "then" is not yateyal
enough to allow the implementationsafTwoDice . But first, we should introduce a type synonynsitaplify

the type signatures

1
:type Random a = Seed -> (a, Seed)

rollDie :: Random Int

1
:
:(>>) :: Random a -> Random b -> Random b :
1
isumTwoDice :: Random Int :

1

Astonishingly, this gives an entirely new pointvidéw: a value of typ&andom a can be seen as a value of type

112 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

a that varies randomly. Salibie can be interpreted as a number between 1 and &itjgets” and is
sometimes "here" and sometimes "there" when adbedtas value. We will explore this idea furtheut ffor
now, let's stick to our initial goal thatndom a is a simple shortcut for a state transformer. thist a mental
note about the observation that our aim of exg@igitemoving the state from our functions naturaliks for
removing the state from our types, too.

Now, how to pass the result from one computatiothéonext? Well, we may simply give it as parametehe
next one

In other words, the second state transformer is mephaced by a function so that its result of typeay depend
on the previous resuit The implementation is almost that>of

:(>>=) fgseed0 =
! let (resultl, seedl) = f seed0

(result2, seed2) = (g resul t 1) seedl
in (result2, seed?2)

with the only difference being thatnow takesesult1 as parameteRICTURE!

This combinator namedlInd" should finally allow us to implemestmTwoDice . Let's see: we roll the first die
and feed the result to a function that adds a sedanroll to that

:sumTwoDice :» Random Int
isumTwoDice = rollDie >>= (\diel -> addToDie diel)

:addToDie :: Int -> Random Int
:addToDie diel seedl =

1 let (die2, seed?2) = rolIDie seedl
' in (diel + die2, seed?)

(Remember thagandom Int = Seed -> (Int, Seed) .) That's still unsatisfactory, since we would likeavoid
all explicit state and just use= a second time to feed the second dice roll tastime

:addToDie diel = rollDie >>= (\die2 -> addThem die2)
' where
1 addThem die2 seed?2 = (diel + die2, seed?2)

113 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

though not quite since the latter doesn't type klsgtce the sum has type instead of the expectendom
Int . But we can convert the former into the lattettwathelper function calledéturn ™!

:addToDie diel = rollDie >>= (\die2 -> return (diel + die2))
1

return :: a -> Random a
freturn x = \seedO -> (x, seed0)

So,return doesn't change the state but sinmetyirnsits argument as result. For random numbers, te@ns
thatreturn creates a number that isn't random at all. Lashbtleast, we can drop the definitionadfiToDie
and directly write

:sumTwoDice :» Random Int

isumTwoDice = rollDie >>= (\diel -> rolIDie >>= (\di e2 ->return (diel + die2)))
e e e e e e cmfeEmmEcCCmmm e m e m e e s e s e e s e s e E - m - = m === === === e e = e = e e e e mmm——————— 1
Exercises
1. ImplementroliNDice :: Int -> Random [Int] from the previous

subsection withl>= andreturn

To conclude, the quest of automating the passirgadé from one computation to the next led uséativo
operations that define a monad. Of course, thissisthe beginning. The reader is probably notagetustomed
to the>>=-combinator, how to program with it effectively? Wthabout the three monad laws mentioned in the

introduction? But before we embark to answer tlggsestions in the next big section, let us emphabieaeed
for using>>= as a main primitive in a slightly different examph the next subsection.

Input/Output needs bind

l0 is the one type that requires the programmer tmvkwhat a monad is, the other monads are moress le
optional. It makes abstraeéturn andbind necessary. Explainingorld -> (a, World) = 10 a and the need
to hide theworld naturally leads taeturn and>>=. | guess we need to mention somewherenthiat: 10

0 is the link to the real world.

Performing input/output in a purely functional laragie like Haskell has long been a fundamental probHow
to implement operations likgtChar which returns the latest character that the uasityped oputChar ¢

which prints the characteron the screen? GivingitChar the typegetChar :: Char is not an option, since a
pure function with no arguments must be constam.sdmehow have to capture thatchar also performs the
side effectof interacting with the user. Likewise, a ty@&Char :: Char -> () is useless since the only value
this function can return has to pe

The breakthrough came when it was reali®¥ahat monads, i.e. the operations andreturn can be used to
elegantly deal with side effects. The idea is i@g@ur two primitive operations the types

:getChar i 10 Char
jputChar :: Char -> 10 ()

and interpret a value of type a as acomputation or action that performs a side effect before returning the

114 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

valuea. This is rather abstract, so a more concrete wé&y interpreto as a state transformer

that acts on and changes the "state of the wdriddther words, printing a character takes the evarid returns
one where the character has been printed and geadiharacter returns a world where the charaetebken
read. With this model, an actietho :: 10 () that reads a character and immediately printstihé screen

would be written as

iecho world0 =

 let (c, worldl) = getChar worldO
i (0, world2) = putChar ¢ world1
tin ((), wordI2)

But forio a , the use o$>= is not a convenience, it sandatory This is because by passing around the world
explicitly, we could write (either accidentally even consiously) something that duplicates thedvorl

:havoc world0 =

' let (c , world1) = getChar world0

i (0, world2) = putChar ¢ wor | d0
Yin ((), world2)

Now, where doeputChar get the characterfrom? Did the state of world roll back similaradime travel?

This makes no sense, we have to ensure that tHd isarsed in a single-threaded way. But this syda
achieve: we just make a an abstract data type and export oy andreturn for combining actions,
together with primitive operations lik@tChar .

There's even more: the modedrid -> (a,World) for input/output just doesn't work, one of the reiges
shows why. Also, there is no hope to extend itdootirrency and exceptions. In other words, it ipenative to
make>>= for composing effectful computationsa an abstract primitive operation.

Exercises

1. Write a functionputString :: String -> 10 () that outputs a
sequence of characters with the helpwhar .
2. The program

:Ioop 210 ()
iloop =return () >>loop

loops forever whereas

115 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:IoopX 210 ()
1 loopX = putChar "X’ >> loopX

prints an infinite sequencexxxxx... of x-s. Clearly, a user can
easily distinguish them by looking on the screeowklver, show
that the modelo a = World -> (a, World) gives the same
denotationl for both. This means that we have to abandon this
model as possible semantics o .

Programming with bind and return

Time to write programs! More complicated stuff kahdom a. Examples to code: St.Petersburg paradox, Lewis
Carroll's pillow problem. Somewhere make explicgtances of theonad-class? Hm, we really need to

incorporate the monad class in the type signatufesnot sure whether the nuclear waste metaphor is
necessary?

In the last section, we showed how the two defimpgrations->= andreturn of a monad arise as abstraction
for composing state transformers. We now want ¢o$con how to program effectively with these.

Nuclear Waste Containers

Random a as fuzzy. Programming would be so much easier if we &adct :: Random a -> a , bind is
sooo unwieldy. Mental prevention: think of monaglSiduclear waste containers”, the waste may ndt lea
outside at any cost. The thing closeségact we can have igin::m (ma)->ma . The text probably
tells too much about "monads as containers", I'msuve what to do.

We saw that the bind operation takes a computatiwecutes it, and feeds its result to the nex, ilik

: echo = getChar >>=\char -> putChar char
1 sumTwoDice = rollDie >>=\diel -> rollDie >>=\die 2 ->return (diel + die2)

(Note that for parsing, lambda expressions extanfdrato the right as possible, so it's not necgdsaput them
in parantheses.) However, it could be temptingeteetute” a monadic action likea with some hypothetical
function

1 extract 10a->a 1
1

Of course, such a function does not make sensest&ta transformers likRandom a = Seed -> (a, Seed) it

would have to invent a state and discard it agauns regressing from our goal of passing the nate 4o the
next computation.

116 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Here's a metaphor to strengthen your mind agaknatt

= Think of a monadic computatioma as a container for a value of typéhat is unfortunately paired with
highly dangerousuclear waste Under no circumstance should this tightly sealedtainer be opened to
extract thea or the nuclear waste will leak out, resulting inagiastrophe!.

So, there are some likgetChar :: 10 Char Or rollDie :: Random Int that produce a precious value but
unfortunately cannot operate without tainting ithwnuclear waste. But fortunately, we have our fiamc

that nonetheless allows us to operate on the \aotined irv a by entering the container and applying the
given function to the value inside it. This wayegthing happens inside the container and no nuoheaerials
leak out.

Arguably, this description of "bind" probably apgsibetter to a function

:fmap ' Monadm=>(@->b)->ma->mb
fmap f m = m >>=\x -> return (f x)

that takes a pure function into the containeraadform the value within. You may notice that tkithe
defining mapping for functors, i.e. every monad isinctor. Apparentlyfmap is less general tham= since the
latter excepts the function to be lifted into tloat@iner to produce nuclear waste, too. The beatiwhp can
dois

to produce a nested container. Of course, it is ®abpen the inner container since the outer aoertatill
shields the environment from the nuclear waste

:join 2 Monadm=>m(ma)->ma
:join m=m>>=id

i.e. it lifts a waste-producing computation int@ ttontainer and flattens the resulting nested augris
We will explore this futher in #Monads as Contagmer

Of course, we shouldn't take the nuclear waste phetatoo literally, since there usually is some w@yrun”
the computation. For instance, random numbers eavbberved as an infinite list of random numbeosipced
by an initial random seed.

Only thelo monad is a primitive in Haskell. How do we "ruh"then? The answer is that the link of a Haskell

117 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

program to outside world is the function

which will be run by the operating system. In otherds, the Haskell program itself ultimately prods
nuclear waste, so there is no need to extagt> a

Exercises

1. Implementrun with unfoldr

do-Notation

A common way to write the composition of multipl@nadic computations is

:sumTwoDice =do
' diel <- rolIDie
die2 <- rollDie

1
1
' return (diel + die2)

Control Structures

Needs a better title. Introdutsequence, fmap, liftMn, forM, mapM and friends.

The three Monad Laws

In the state monaceturn doesn't touch the state. That can be formulatedrabtly with the first two monad
laws. Hm, what about the third? How to motivatettha

Monads as containers

Needs a better title. Introduce the second instaméenonads, name[a] andMaybe a . Shows that the
operations return and bind are applicable to quateange of problems. The more "exotic" example

belongs here, too, probably as exercise.
Lists

concatMap andsequence ..

Maybe

MaybeEither , t00?

118 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

References

1. 1 At least as far as types are concerned, but weyieg to avoid that word :)

2. 1 More technicallyfst andsnd have types which limit them to pairs. It woulditn@ossible to define
projection functions on tuples in general, becatlsy'd have to be able to accept tuples of diffeseres,
so the type of the function would vary.

3. 1 In fact, these are one and the same concept ikédlas

4. 1 This isn't quite whathr andord do, but that description fits our purposes welidat's close enough.

5. 1 To make things even more confusing, there's dgtaaén more than one type for integers! Don't worr
we'll come on to this in due course.

6. 1 This has been somewhat simplified to fit our pagso Don't worry, the essence of the functionaseth

7. 1 Some of the newer type system extensions to GH@edk this, however, so you're better off just
always putting down types anyway.

8. 1 This is a slight lie. That type signature wouldaméhat you can compare two values of any type
whatsoever, but this clearly isn't true: how can gee if two functions are equal? Haskell inclual&nd
of 'restricted polymorphism' that allows type vates to range over some, but not all types. Haskell
implements this usintype classeswhich we'll learn about later. In this case, tberect type of==) iSEq
a=>a->a->Bool

9. 1 In mathematics)! normally means the factorial af but that syntax is impossible in Haskell, so we
don't use it here.

10. 1 Actually, defining the factorial of O to be 1 istrjust arbitrary; it's because the factorial oEpresents
an empty product.

11. 1 This is no coincidence; without mutable variablesursion is the only way to implement control
structures. This might sound like a limitation ligbu get used to it (it isn't, really).

12. 1 Actually, it's using a function calledidi , which actually does the recursion.

13. 1 Moggi, Eugenio (1991). "Notions of Computation aidnads".Information and Computatio®3 (1).

14. 1 w:Philip Wadler. Comprehending Monads (http://eger.ist.psu.edu/wadler92comprehending.html) .
Proceedings of the 1990 ACM Conference on LISPRutttional Programming, Nice. 1990.

15. 1 w:Philip Wadler. The Essence of Functional Progreing
(http://citeseer.ist.psu.edu/wadler92essence.ht@dnference Record of the Nineteenth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of ProgramgiLanguages. 1992.

16. 1 Simon Peyton Jones, Philip Wadler (1993). "Impeeafunctional programming”

(http://lhomepages.inf.ed.ac.uk/wadler/topics/mortadg#imperative) 20'th Symposium on Principles
Programming Languages

Advanced monads

This chapter follows on from Understanding monauaigl explains a few more of the more advanced cdsicep

Monads as computations

The concept

A metaphor we explored in the last chapter wasdhatonads as container$hat is, we looked at what
monads are in terms of their structure. What washed on but not fully explored vehy we use monadafter
all, monads structurally can be very simple, so Wbther at all?

119 of 290

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

The secret is in the view that each monad represehiferent type of computatiokhlere, and in the rest of this
chapter, a 'computation' is simply a function cakre computing the result of this function. Imanute, we'll
give some examples to explain what we mean by Ivhitsfirst, let's re-interpret our basic monadiexgtors:

>>=

The>>= operator is used ®equence two monadic computationsat means it runs the first computation, then
feeds the output of the first computation into $keond and runs that too.

return

return x , in computation-speak, is simply the computatiwet has resukt, and 'does nothing'. The meaning of
the latter phrase will become clear when we loo&tate below.

So how does the computations analogy work in pra@tLet's look at some examples.

The Maybe monad

Computations in the Maybe monad (that is, functialss which result in a type wrapped up in a Maybe)
representomputations that might failhe easiest example is with lookup tables. A igntable is a table
which relatekeysto values Youlook upa value by knowing its key and using the lookugdaFor example,
you might have a lookup table of contact namesegs ko their phone numbers as the values in a floarke
application. One way of implementing lookup takilesiaskell is to use a list of painga, b)) . Herea is the
type of the keys, angthe type of the values. Here's how the phonebookup table might look:

1 1
phonebook :: [(String, String)] 1
iphonebook = [("Bob", "01788 665242"), '
1 ("Fred", "01624 556442"), 1
' ("Alice", "01889 985333"), '
' ("Jane", "01732 187565") | 1
1 1

The most common thing you might do with a lookupledas look up values! However, this computatiomgini
fail. Everything's fine if we try to look up one @ob", "Fred", "Alice" or "Jane" in our phonebodiyt what if
we were to look up "Zoe"? Zoe isn't in our phondham the lookup has failed. Hence, the Haskelttiom to
look up a value from the table isvaybe computation:

:Iookup :Eqa=>a --akey
i ->I(a b)] --the lookup table to use
1 -> Maybe b -- the result of the lookup

Prelude> lookup "Bob" phonebook
:Just "01788 665242"

Prelude> lookup "Jane" phonebook
Just "01732 187565"

iPrelude> lookup “Zoe" phonebook
:Nothing

Now let's expand this into using the full powettlod monadic interface. Say, we're now working far
government, and once we have a phone number frorontiact, we want to look up this phone numbex in
big, government-sized lookup table to find out tgistration number of their car. This, of counsdl, be

120 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

anothemaybe-computation. But if they're not in our phonebowale, certainly won't be able to look up their

registration number in the governmental databaseVisat we need is a function that will take theutessfrom
the first computation, and put it into the secomaklup, but only if we didn't getothing the first time around.

we did indeed geNothing from the first computation, or if we gebthing from the second computation, our
final result should b&othing .

:comb :: Maybe a -> (a -> Maybe b) -> Maybe b
icomb Nothing _ = Nothing

icomb (Just x) f=fx

1

Observant readers may have guessed where we'rg \gitinthis one. That's right, comb is just, but
restricted to Maybe-computations. So we can chamrcomputations together:

1 1
igetRegistrationNumber :: String -- their name 1
' -> Maybe String -- their regi stration number '
igetRegistrationNumber name = lookup name phonebook >>= (\number -> lookup number governmentalDatabase) 1
1 1

If we then wanted to use the result from the govemmtal database lookup in a third lookup (say wetwa
look up their registration number to see if theyeamy car tax), then we could extend our
getRegistrationNumber function:

1 1
igetTaxOwed :: String -- their name 1
' -> Maybe Double -- the amount of tax the y owe '
igetTaxOwed name = lookup name phonebook >>= (\numbe r -> lookup number governmentalDatabase) >>= (\registration -> lookup:
1 1

:getTawaed name = do

; humber <- lookup name phonebook

1 registration <- lookup number governmentalDatabas e
' lookup registration taxDatabase

Let's just pause here and think about what woupipéa if we got alothing anywhere. Trying to use-= to
combine avothing from one computation with another function wilstdt in theNothing being carried on and
the second function ignored (refer to our defimtadf comb above if you're not sure). That islosing atany
stagein the large computation will result innathing overall, regardless of the other functions! Thessay
that the structure of theaybe monadpropagates failures

An important thing to note is that we're not by amgans restricted to lookups! There are many, mamgtions
whose results could fail and therefore wsgbe. You've probably written one or two yourself. Any

computations imaybe can be combined in this way.

Summary

The important features of theaybe monad are that:

1. It represents computations that could fail.
2. It propagates failure.

The List monad

121 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Computations that are in the list monad (thathsytend in a type [a]) represe@mputations with zero or more
valid answersFor example, say we are modelling the game ofhtsuand crosses (known as tic-tac-toe in
some parts of the world). An interesting (if someawvtontrived) problem might be to find all the pbssways
the game could progress: find the possible stdtdsedioard 3 turns later, given a certain boarfigaration

(i.e. a game in progress).

Here is the instance declaration for the list monad

1

iinstance Monad [] where
| return a = [a]

1 Xs >>= f = concat (map f xs)

As monads are only really useful when we're chaimiomputations together, let's go into more detaibur
example. The problem can be boiled down to thetahg steps:

1. Find the list of possible board configurationsttoe next turn.

2. Repeat the computation for each of these configunsit replace each configuration, calCitwith the list
of possible configurations of the turn aft@r

3. We will now have a list of lists (each sublist repenting the turns after a previous configuratisa)in
order to be able to repeat this process, we needliapse this list of lists into a single list.

This structure should look similar to the monadistance declaration above. Here's how it might |@othout
using the list monad:

:getNextConfigs :: Board -> [Board]
1getNextConfigs = undefined -- details not important

itick :: [Board] -> [Board]
fick bds = concatMap getNextConfigs bds

:find3rdConfig :: Board -> [Board]
find3rdConfig bd = tick $ tick $ tick [bd]

(concatMap is a handy function for when you need to concatrésults of a magbncatMap f xs = concat
(mapfxs) .) Alternatively, we could define this with thetlimonad:

:find3rdConfig :: Board -> [Board]
ffind3rdConfig bd0 = do

bd1 <- getNextConfigs bd0
bd2 <- getNextConfigs bd1
bd3 <- getNextConfigs bd2
return bd3

List comprehensions

An interesting thing to note is how similar listneprehensions and the list monad are. For exanteslaissic
function to find Pythagorean triples:

This can be directly translated to the list monad:

122 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:import Control.Monad (guard)
1

:pythags =do
)z < [1..]

1 X<- [l..Z]

Ly <-[x.Z]

, guard (x"2 + y"2 == z/"2)
1 return (X, Y, 2)

1

The only non-trivial element heregdsard . This is explained in the next module, Additivemads.

The State monad

The State monad actually makes a lot more sense whaeed as a computation, rather than a container.
Computations in State represents computationsgdgqand on and modify some internal st&@r example, say
you were writing a program to model the three bpablem
(http://en.wikipedia.org/wiki/Three_body_problem#&a_body_problem) . The internal state would be the
positions, masses and velocities of all three ®diben a function, to, say, get the acceleratfaspecific
body would need to reference this state as pats$ chlculations.

The other important aspect of computations in Sgatleat they can modify the internal state. Agairthe
three-body problem, you could write a function flgaten an acceleration for a specific body, upsiate
position.

The State monad is quite different from the Maybe #e list monads, in that it doesn't represemtahult of a
computation, but rather a certain property of thepgutation itself.

What we do is model computations that depend oresatarnal state as functions which take a statarpeter.
For example, if you had a function String -> Int -> Bool , and we want to modify it to make it depend

on some internal state of typethen the function becomes String -> Int -> s -> Bool . To allow the

function to change the internal state, the functetarns a pair of (new state, return value). Sofauoiction
becomes :: String -> Int -> s -> (s, Bool)

It should be clear that this method is a bit curebere. However, the types aren't the worst of itatwiould
happen if we wanted to run two stateful computatj@all thent andg, one after another, passing the result of
f intog? The second would need to be passed the newfrstateunning the first computation, so we end up
'threading the state"

1 1
fThenG :: (s->(s,a)) ->(a->s->(s, b)) ->s -> (s, b) 1
fThenGfgs= '
vlet (s, v)=fs --run fwith our initial state s. 1
1 (s",v)=gvs'--run g with the new stat e s' and the result of f, v. '
1 in(s", v) -- return the latest state and the result of g 1
1 1

All this 'plumbing’ can be nicely hidden by usiing tState monad. The type constructiate takes two type
parameters: the type of its environment (interteated, and the type of its output. Sate sa indicates a
stateful computation which depends on, and can fjagbme internal state of tyge and has a result of type
How is it defined? Well, simply as a function thakes some state and returns a pair of (new siaiiee):

The above example ofhenG is, in fact, the definition of>= for the State monad, which you probably

123 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

remember from the first monads chapter.

The meaning of return

We mentioned right at the start thatrn x was the computation that 'did nothing' and justrreedx. This
idea only really starts to take on any meaning amaus with side-effects, like State. That is, cotafons in
State have the opportunity to change the outconft@f computations by modifying the internal stitie a

similar situation with 10 (because, of course, $just a special case of State).

returnx doesn't do this. A computation produceddayn generally won't have any side-effects. The monad
law return x >>=f==fx basically guarantees this, for most uses of tira t®ide-effect'.

Further reading

= A tour of the Haskell Monad functions (http://meméehello.nl/hjgtuyl/tourdemonad.html) by Henk-Jan
van Tuyl

= All about monads (http://www.haskell.org/all_abaubnads/html/index.html) by Jeff Newbern explains
well the concept of monads as computations, ushogl gxamples. It also has a section outlininghal t
major monads, explains each one in terms of thispeational view, and gives a full example.

MonadPlus

MonadPlus is a typeclass whose instances are maviads represent a number of computations.

Introduction

You may have noticed, whilst studying monads, thatMaybe and list monads are quite similar, in thay
both represent the number of results a computaBorhave. That is, you use Maybe when you wantdicate
that a computation can fail somehow (i.e. it caveh@ or 1 result), and you use the list monad wimenwant to
indicate a computation could have many valid ansyieg. it could have 0 results -- a failure -naany results).

Given two computations in one of these monadsjghtrbe interesting to amalgamate these: &tdhe valid
solutions. l.e. given two lists of valid solutions,find all of the valid solutions, you simply amatenate the lis
together. It's also useful, especially when workaitp folds, to require a 'zero results' value. (iaglure). For
lists, the empty list represents zero results.

We combine these two features into a typeclass:

1

iclass Monad m => MonadPlus m where
| mzero::ma
implus:ma->ma->ma

1

Here are the two instance declarations for Maylzkthae list monad:

124 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1
linstance MonadPlus [] where

1

1
1 mzero =] '
1 mplus = (++) 1
1 1
instance MonadPlus Maybe where :
| mzero = Nothing '
i Nothing “'mplus’ Nothing = Nothing -- 0 solutions + 0 solutions = 0 solutions .
1 Just x ‘mplus’ Nothing = Just x -- 1 solution + 0 solutions = 1 solution 1
1 Nothing “mplus’ Just x = Just x -- 0 solutions + 1 solution = 1 solution '
1 Just x ‘mplus’ Justy =Just x -- 1 solution + 1 solution = 2 solutions, 1
' -- but as Maybe can only have up to one '
1 -- solution, we disregard the second one. 1
1 1

:instance (Error €) => MonadPlus (Either e) where
| mzero = Left noMsg

v Left_ "'mplus’n=n

' Right x "'mplus® _ = Right x

Remember that (Either e) is similar to Maybe it iheepresents computations that can fail, batlaws the
failing computations to include an error messagpidally, Leits means a failed computation with error
message, andright x means a successful computation with result

Example

A traditional way of parsing an input is to writenctions which consume it, one character at a firhat is,
they take an input string, then chop off (‘consyis@ne characters from the front if they satisfitaia criteria
(for example, you could write a function which canges one uppercase character). However, if thecteas
on the front of the string don't satisfy theseeti#, the parsers havaled, and therefore they make a valid
candidate for a Maybe.

Here we usenplus to run two parsers parallel. That is, we use the result of the first one futceeds, but if
not, we use the result of the second. If that tolg,fthen our whole parser retumshing

1

- | Consume a digit in the input, and return the d igit that was parsed. We use
i ado-block so that if the pattern match fails at any point, fail of the

- the Maybe monad (i.e. Nothing) is returned.

(digit :: Int -> String -> Maybe Int

digitis|i>9]|i<0=Nothing

' | otherwise =do
ylet(c)=s

! if read [c] == i then Just i else Nothing

- | Consume a binary character in the input (i.e. either a 0 or an 1)
lbinChar :: String -> Maybe Int

binChar s = digit 0 s ‘'mplus’ digit 1 s

1

The MonadPlus laws

Instances of MonadPlus are required to fulfill gaVeules, just as instances of Monad are requoddlfill the
three monad laws. Unfortunately, these laws aset'in stone anywhere and aren't fully agreed onekample,
the Haddock documentation
(http://haskell.org/ghc/docs/latest/html/librariesée/Control-Monad.html#t%3AMonadPlus) for
Control.Monad quotes them as:

125 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1
imzero >>=f = mzero
Vv >>mzero = mzero

adds:

! ~ ~
imzero ‘mplus"m = m
im “mplus” mzero = m

There are even more sets of laws available, arréftire you'll sometimes see monads like 10 beiregles a
MonadPlus. The Haskell Wiki page (http://www.hasket/haskellwiki/MonadPlus) for MonadPlus has more
information on thisTODO: should that information be copied here?

Useful functions

Beyond the basimplus andmzero themselves, there are a few functions you shondhkabout:

msum

A very common task when working with instances afriddPlus is to take a list of the monad, pgybe a]
or[[a]] , and fold down the list withnplus . msumfulfills this role:

1
imsum :: MonadPlus m=>[ma]->ma
imsum = foldr mplus mzero

A nice way of thinking about this is that it genesas the list-specificoncat operation. Indeed, for lists, the
two are equivalent. For Maybe it finds the fissét x in the list, or returnsiothing if there aren't any.

guard

This is a very nice function which you have almoettainly used before, without knowing about it itsed in
list comprehensions, as we saw in the previoustehalpst comprehensions can be decomposed intbsthe
monad, as we saw:

:pythags =do

P x<-[1.]

1y <-[x.]

tz<-[y.]

| guard (X2 + y*2 == z°2)
! return (X, y, z)

guard looks like this:

126 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1

iguard :: MonadPlus m => Bool -> m ()
iguard True = return ()

iguard False = mzero

1

Concretelyguard will reduce a do-block tezero if its predicate isalse . By the very first law stated in the
'MonadPlus laws' section above,razero on the left-hand side of aix= operation will producenzero again.
As do-blocks are decomposed to lots of expresgmnsed up by->=, an mzero at any point will cause the er
do-block to become mzero.

To further illustrate that, we will examigard in the special case of the list monad, extendmghepythags
function above. First, here ¢gsard defined for the list monad:

Eguard 2 Bool -> [()]
guard True =[()]
iguard False =]

1

guard blocks offa route. For example, pythags , we want to block off all the routes (or combioat ofx, y
andz) wherex~2 + yr2 == z2 isFalse . Let's look at the expansion of the abaveblock to see how it
works:

pythags =

p[1]>>=\x->

1 [x]>>=Yy >

Py.]>>=\z ->

1 guard (X2 + yA2 == z/2) >>=_
! return (X, y, z)

Replacing>>= andreturn with their definitions for the list monad (and ngisome let-bindings to make things
prettier), we obtain:

:pythags =

' letretxyz=[(X,Y, z)]

i 0d xyz=concatMap (_->retxy z) (guard $ X2 + yN2 == z/'2)
I doZxy =concatMap (gd xy) [y..]

1 doYx =concatMap (doZ x) [..]

1 doX = concatMap (doY)[1.]

1in doX

Remember thajuard returns the empty list in the case of its argunbemgralse . Mapping across the empty
list produces the empty list, no matter what fumttyou pass in. So the empty list produced by #tlet@guard
in the binding ofyd will causegd to be the empty list, and therefoee to be the empty list.

To understand why this matters, think about ligiapatations as a tree. With our Pythagorean trilgerdghm,
we need a branch starting from the top for eveniaghofx, then a branch from each of these branches fayeve
value ofy, then from each of these, a branch for every vafue So the tree looks like this:

1 1
:start :
1 | 1
e I I '
1 2 3 :
v | '
T T T T] [:
y1 2 3 1 2 3 1 2 3 .
N) E P AP I N W N I I !
RURUS IR (11111 '
z 123123123 123123123123 123123 |
1 1

127 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Any combination of x, y and z represents a routeugh the tree. Once all the functions have begiexph each
branch is concatenated together, starting fronbtdteom. Any route where our predicate doesn't levialuates
to an empty list, and so has no impact on this abaperation.

Exercises

1. Prove the MonadPlus laws for Maybe and the list awlon
2. We could augment our above parser to involve agpdos any character:

1

1-- | Consume a given character in the input, and r eturn the the character we
|- just consumed, paired with rest of the string . We use a do-block so that
1-- if the pattern match fails at any point, fail of the Maybe monad (i.e.

1_

1

- Nothing) is returned.

\ char :: Char -> String -> Maybe (Char, String)
tcharcs=do

| let(cis)=s

1 if ¢ == ¢' then Just (c, s') else Nothing
1

It would then be possible to writehexChar function which parses any valid hexidecimal chemaf0-9
or a-f). Try writing this function (hintmap digit [0..9] :: [Maybe Int]).
3. More to come...

Relationship with Monoids

TODQO.: is this at all useful?f you don't know anything about the Monoid dataucture, then don't worry about
this section. It's just a bit of a muse.)

Monoids are a data structure with two operatiorfsidd: an identity (or 'zero’) and a binary operat{or 'plus’)
which satisfy some axioms.

1

iclass Monoid m where
| mempty :m

1 mappend :: m->m->m
1

:instance Monoid [a] where
1 mempty =]

1 mappend = (++)
1

Note the usage of [a], not [], in the instance detion. Monoids are not necessarily 'containdrahgthing. Fo
example, the integers (or indeed even the natui@is) two possible monoids:

1

newtype Additivelnt = Al Int
inewtype Multiplicativelnt = Ml Int

1

instance Monoid Additivelnt where
1 mempty =Al0

' Al X “'mappend” Aly = Al (X +Y)

1
iinstance Monoid Multiplicativelnt where
1 mempty =Ml 1

1 MI x ‘mappend” Mly = MI (x *y)
1

(A nice use of the latter is to keep track of ptubges.)

128 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Monoids, then, look very similar to MonadPlus imgtes. Both feature concepts of a zero and plusiraiekd
MonadPlus can be a subclass of Monoid (the follgwsnnot Haskell 98, but works witfylasgow-exts):

1

linstance MonadPlus m => Monoid (m a) where
| mempty =mzero

1 mappend = mplus
1

However, they work at different levels. As notdtkre is no requirement for monoids to be any kihd o
container. More formally, monoids have kind *, Imgtances of MonadPlus, as they're Monads, hawkin

*

Monad transformers

Introduction
Monad transformers are special variants of standemdads that facilitate the
combining of monads. For exampkeaderT EnviOa IS a computation which
Monad can read from some environment of tywe, can do somed and returns a type
transformers are , .
monads too! Their type constructors are parameterized over @achdype constructor, and they

produce combined monadic types. In this tutoria,wil assume that you

understand the internal mechanics of the monadaaibsin, what makes monads

"tick". If, for instance, you are not comfortabléthvthe bind operator-¢=), we
would recommend that you first read Understandiogaals.

Transformers are cousins

A useful way to look at transformers is@misinsof somebase monad For example, the monaétT is a
cousin of its base monaét . Monad transformers are typically implemented atrexactly the same way that
their cousins are, only more complicated becausg dhe trying to thread some inner monad through.

The standard monads of the monad template libtehasge transformer versions which are defined iastly
with their non-transformer versions. However, ihi the case that all monad transformers applgénee
transformation. We have seen that thetT transformer turns continuations of the foga»r)->r into
continuations of the forra->mr)->mr . ThestateT transformer is different. It turns state transferm
functions of the form->(a,s) into state transformer functions of the fos¥m (a,s) . In general, there is no
magic formula to create a transformer version wicamad — the form of each transformer depends on wha
makes sense in the context of its non-transforgpe.t

Standard Monad | Transformer Version | Original Type | Combined Type
Error ErrorT Either e a m (Either e a)

State StateT s ->(a,s) s->m (a,s)

Reader ReaderT r->a r>ma

129 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Writer WriterT (a,w) + (a,w)
Cont ContT @a->n->r (@a-> ﬂﬂ r->mr

In the table above, most of the transfornrexsr differ from their base monagbo by the wrapping of the result
type (right-hand side of the for function kinds, or the whole type for non-failen types) in the threaded
monad). TheCont monad has two "results" in its type (it maps fiorcs to values), and swntT wraps both
in the threaded monad. In other words, the comniyriztween all these transformers is like so, wibime
abuse of syntax:

‘ Original Kind ‘ Combined Kind
* ‘m *
* > % * _F m*

(*_>*)_>* (*_>n‘-|*)_>m*

Implementing transformers

The key to understanding how monad transformer&wgounderstanding how they implement the bisek)
operator. You'll notice that this implementatiomyelosely resembles that of their standard, nandformer
cousins.

Transformer type constructors

Type constructors play a fundamental role in Hd'skelonad support. Recall thdaderra is the type of
values of type within a Reader monad with environment of typ&he type construct@eaderr is an
instance of th&lonad class, and theinReader::Reader r a->r->a function performs a computation in the
Reader monad and returns the result of type

A transformer version of the Reader monad, catledierT , exists which adds a monad type constructor as an
addition parametereaderTrma is the type of values of the combined monad incwhReader is thbase
monad andmis theinner monad.

ReaderTrm IS an instance of the monad class, anduhreaderT::ReaderT r m a->r->m a function
performs a computation in the combined monad andrme a result of typa a.

The Maybe transformer

We begin by defining the data type for the Maylams$former. OumaybeT constructor takes a single argument.
Since transformers have the same data as theitransformer cousins, we will use thevtype keyword. We
could very well have chosen to ugea , but that introduces needless overhead.

130 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

This might seem a little off-putting at first, bitls actually simpler than it looks. syntactic sugar
The constructor for MaybeT takes a single argunrtypem (Maybe a) . That is

all. We use some syntactic sugar so that you caegbeT as a record, and

access the value of this single argument by callimgaybeT . One trick to understanding this is to see monad
transformers as sandwiches: the bottom slice ofaémelwhich is thbasemonad (in this casejaybe). The

filling is theinner monadm And the top slice is the monad transformeybeT. The purpose of th@nMaybeT
function is simply to remove this top slice fronetbandwich. What is the type @fiMaybeT ? It is(MaybeT m

a) -> m (Maybe a)

As we mentioned in the beginning of this tutorranad transformers are monads too. Here is a partia
implementation of theaybeT monad. To understand this implementation, it ydadlips to know how its

simpler cousirmaybe works. For comparison's sake, we put the two mamgatementations side by side

Note

Note the use of 't', 'm' and 'b' to mean 'topddta’, '‘bottom' respectively

Maybe MaybeT
| o B 1 A
:instance Monad Maybe where i :instance (Monad m) => Monad (MaybeT m) where :
1b_v>>=f= Titmb_v >>=f= '
1 1 [t MaybeT $ runMaybeT tmb_v 1
1case b_v of 1h>>=\p v->caseb_ v of !
1 Nothing -> Nothing Il Nothing -> return Nothing '
1 Justv->fv 1r Justv->runMaybeT $fv 1
1 i 1

You'll notice that theiaybeT implementation looks a lot like theéaybe implementation of bind, with the
exception thamaybeT is doing a lot of extra work. This extra work cwts of unpacking the two extra layers of
monadic sandwich (note the conventigsmidBot to reflect the sandwich layers) and packing th@mifuyou

really want to cut into the meat of this, read lbyou think you've understood up to here, why tmgthe
following exercises:

Exercises

1. Implement the return function for thaybeT monad
2. Rewrite the implementation of the bind operater to be more
concise.

Dissecting the bind operator

So what's going on here? You can think of this askimg in three phases: first we remove the sankltager
by layer, and then we apply a function to the daal finally we pack the new value into a new sandw

Unpacking the sandwich Let us ignore thelaybeT constructor for now, but note that everything ‘thgbing on
after thes is happening within themonad and not th@aybeT monad!

131 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

=

The first step is to remove the top slice of thedsech by callingunMaybeT topMidBotV

2. We use the bind operator=€) to remove the second layer of the sandwich --eraber that we are
working in the confines of th@monad.

3. Finally, we usease and pattern matching to strip off the bottom lagkthe sandwich, leaving behind the

actual data with which we are working

Packing the sandwich back up

= If the bottom layer waRothing , we simplyreturn Nothing (which gives us a 2-layer sandwich). This
value then goes to thaybeT constructor at the very beginning of this functiasnich adds the top layer
and gives us back a full sandwich.

= If the bottom layer wasustv (note how we have pattern-matched that bottone slfanonad off): we
apply the function to it. But now we have a problem: applyingo v gives a full three-layer sandwich,
which would be absolutely perfect except for thet that we're now going to apply tlaybeT constructo
to it and get a type clash! So how do we avoid2iidy first runningunMaybeT to peel the top slice off so
that themaybeT constructor is happy when you try to add it back o

The List transformer

Just as with thelaybe transformer, we create a datatype with a consirdbat takes one argument:

The implementation of thiegstT monad is also strikingly similar to its cousinetlst monad. We do exactly
the same things fanist , but with a little extra support to operate wittire inner monaey and to pack and
unpack the monadic sandwichktT - m- List .

1

tinstance (Monad m) => Monad (ListT m) where
itmb_v>>=f=

1 ListT $ runListT tmb_v

1>>=\b_v -> mapM (runListT . f) b_v

1 >>=\x -> return (concat X)

1

1
linstance Monad [] where
b v>>=f=

.
Vletx=map fb_v
1in concat x

1

Exercises

1. Dissect the bind operator for the (ListT m) mon&or example,
which do we now have mapM and return?

2. Now that you have seen two simple monad transfanverite a
monad transformadentityT , which would be the transforming
cousin of thadentity monad.

3. Would identityT SomeMonad ~ be equivalent tSomeMonadT
Identity ~ for a given monad and its transformer cousin?

Lifting

FIXME: insert introductiol

132 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

liftM

We begin with a notion which, strictly speakingy'isabout monad transformers. One small and sumgtys
useful function in the standard libraryiitan , which as the API states, is meant for lifting amanadic

functions into monadic ones. Let's take a lookat type:

So let's see here, it takes a functian->r) , takes a monad with an al in it, applies thationcto the al,
and returns the result. In my opinion, the best twaynderstand this function is to see how it sdusThe
following pieces of code all mean the same thing

do notation liftM [iftM as an operator
| el B I el L e el i |
:do foo <- someMonadicThing : :IiftM myFn someMonadicThing : :myFn *liftM” someMonadicThing :
rreturn (myFn foo) M . . 3
L= - 1

What made the light bulb go off for me is this thexample, where we ugiev as an operatolitM is just a
monadic version of) !

non monadic monadic

Exercises

1. How would you writgiftM ? You can inspire yourself from the the
first example

lift

When using combined monads created by the monasftraners, we avoid having to explicitly manage the
inner monad types, resulting in clearer, simpletecdnstead of creating additional do-blocks wittiia
computation to manipulate values in the inner maypd, we can use lifting operations to bring fumas from
the inner monad into the combined monad.

Recall theiftm family of functions which are used to lift non-nazhc functions into a monad. Each monad
transformer providesia function that is used to lift a monadic computatinto a combined monad.

TheMonadTrans class is defined in Control.Monad.Trans
(http://www.haskell.org/ghc/docs/latest/html/basai€ol.Monad.Trans.html) and provides the singlection
lit . Thelift function lifts a monadic computation in the inmeonad into the combined monad.

:class MonadTrans t where
lift :: (Monad m) =>ma->tma

133 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Monads which provide optimized support for lifti@ operations are defined as members ofvb&diO class,
which defines theéftto function.

:class (Monad m) => MonadlO m where
iflo 10 a->ma

Usinglift
Implementing 1i ft

Implementingit is usually pretty straightforward. Consider trensformemaybeT:

:instance MonadTrans MaybeT where
1 lift mon = MaybeT (mon >>= return . Just)

We begin with a monadic value (of the inner mon#d), middle layer, if you prefer the monadic sarafwi
analogy. Using the bind operator and a type coaosdrdor the base monad, we slip the bottom slice base
monad) under the middle layer. Finally we placettpeslice of our sandwich by using the construstaweT.
So using the lift function, we have transformeadwly piece of sandwich filling into a bona-fide derlayer
monadic sandwich.

As with our implementation of th@onad class, the bind operator is working within the confinethefinner monad.

Exercises

1. Why is it that theiit function has to be defined seperately for each
monad, where agtM can be defined in a universal way?

. Implement theift ~ function for theListT transformer.

. How would you lift a regular function into a monednsformer?
Hint: very easily.

wWnN

The State monad transformer

Previously, we have pored over the implementatioivo very simple monad transformek&ybeT andListT .
We then took a short detour to talk about liftingnanad into its transformer variant. Here, we Wiihg the two
ideas together by taking a detailed look at thelemgntation of one of the more interesting transgrs in the
standard librarystateT . Studying this transformer will build insight intbe transformer mechanism that you

can call upon when using monad transformers in gode. You might want to review the section onS$tete
monad before continuing.

Just as the State monad was built upon the defimiti

the StateT transformer is built upon the definition

134 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

State s IS an instance of both thénad class and th®lonadState s class, so

StateTsm should also be members of thenad andmonadState s classes. Furthermore nifis an instance of
MonadPlus ,

StateTsm should also be a membermdnadPlus .

To defineStateTs m as avionad instance:

:newtype State s a = State { runState :: (s -> (a,s) :newtype StateT s m a = StateT { runStateT :: (s -> m (a,s)) }:
1 1

linstance Monad (State s) where
Ireturn a = State $\s -> (a,s)

1 (State x) >>=f=

1 State $\s -> let (v,s) =x s

I
instance (Monad m) => Monad (StateT s m) where .
Ireturn a = StateT $\s ->return (a,s) '
| (StateT x) >>=f = .
1 StateT $\s -> do -- get new value, state 1
1(v,s') <-xs :
I
I
I
I
I
I

1in runState (fv) s'
Lo o o o e e e 1|1 - apply bound function to get new state transform ation fn
! (StateT x') <-return $ f v
1 - apply the state transformation fn to the new st ate
'X's'
1
L e m e e e e e e e e e e e e e e e e .. e . m e e e e e e e -

Our definition ofreturn makes use of theturn function of the inner monad, and the binding ofmerases a
do-block to perform a computation in the inner nthna

We also want to declare all combined monads thathestateT transformer to be instances of theénadState
class, so we will have to give definitions t@t andput :

:instance (Monad m) => MonadState s (StateT s m) whe re
1get = StateT $\s -> return (s,s)

(put s = StateT $_ -> return ((),s)

1

Finally, we want to declare all combined monadw/imch stateT is used with an instance mbnadPlus to be
instances ofonadPlus :

1 1
linstance (MonadPlus m) => MonadPlus (StateT s m) wh ere 1
\mzero = StateT $\s -> mzero .
1 (StateT x1) ‘'mplus’ (StateT x2) = StateT $\s -> (x1s) ‘mplus’ (x2 s) 1
1 1

The final step to make our monad transformer fuitggrated with Haskell's monad classes is to nsadeT s
an instance of theonadTrans class by providing &t function:

:instance MonadTrans (StateT s) where
1 lift ¢ = StateT $ \s -> ¢ >>= (\x -> return (x,s))

135 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Thelift ~ function creates atateT state transformation function that binds the cotaton in the inner monad
to a function that packages the result with thesirgtate. The result is that a function that retwatist (i.e., a
computation in the List monad) can be lifted istateTs[] , where it becomes a function that returns a
StateT (s -> [(a,s)]) . That is, the lifted computation producesiltiple (value,state) pairs from its input
state. The effect of this is to "fork” the compidatin StateT, creating a different branch of tbenputation for
each value in the list returned by the lifted fumict Of course, applyingtateT to a different monad will
produce different semantics for thife function.

Acknowledgements

This module uses a large amount of text fisimMAbout Monadswith permission from its author Jeff Newbern.

Practical monads

Parsing monads

In the beginner's track of this book, we saw howats were used for 10. We've also started workingem
extensively with some of the more rudimentary manlédde Maybe, List or State . Now let's try using monads
for something quintessentially "practical”. Let\gwriting a very simple parser. We'll be using Bersec
(http://www.cs.uu.nl/~daan/download/parsec/pargetd)Hibrary, which comes with GHC but may needt®
downloaded separately if you're using another ctanpi

Start by adding this line to the import section:

:import System
iimport Text.ParserCombinators.Parsec hiding (spaces)

This makes the Parsec library functions and getAxgslable to us, except the "spaces” function, sehmame
conflicts with a function that we'll be definingéa.

Now, we'll define a parser that recognizes ondefdymbols allowed in Scheme identifi

:symbol :: Parser Char
isymbol = oneOf "I$%&[*+-/:<=>?@"_~"

This is another example of a monad: in this cdse;'¢xtra information” that is being hidden istak info about
position in the input stream, backtracking recdirdt and follow sets, etc. Parsec takes carelaffahat for us.
We need only use the Parsec library function oneOf
(http://www.cs.uu.nl/~daan/download/parsec/parged#ioneOf) , and it'll recognize a single one oy ahthe
characters in the string passed to it. Parsec gesva number of pre-built parsers: for exampléiet
(http://www.cs.uu.nl/~daan/download/parsec/pardedetter) and digit
(http://www.cs.uu.nl/~daan/download/parsec/parged#digit) are library functions. And as you're alb¢o
see, you can compose primitive parsers into mgolisticated productions.

S Let's define a function to call our parser anadh@ any possible errors:

136 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:readExpr 11 String -> String

jreadExpr input = case parse symbol "lisp" input of
i Lefterr ->"No match: " ++ show err

' Right val -> "Found value"

As you can see from the type signature, readExpifusiction (->) from a String to a String. We nathe
parameter input, and pass it, along with the syrabttbn we defined above and the name of the pélisgp™),
to the Parsec function parse (http://www.cs.uuddan/download/parsec/parsec.html#parse) .

Parse can return either the parsed value or an soave need to handle the error case. Followipgal
Haskell convention, Parsec returns an Either
(http://www.haskell.org/onlinereport/standard-paihtml#$tEither) data type, using the Left condiuto
indicate an error and the Right one for a normalea

We use a case...of construction to match the re$plirse against these alternatives. If we gedfavalue
(error), then we bind the error itself to err aptlurn "No match" with the string representationha error. If we
get a Right value, we bind it to val, ignore itdareturn the string "Found value".

The case...of construction is an example of patt&tching, which we will see in much greater detail
[evaluatorl.html#primitiveval later on].

Finally, we need to change our main function té dExpr and print out the result:

:main 210 ()
imain = do args <- getArgs
1 putStrLn (readExpr (args !! 0))

To compile and run this, you need to specify "-@agkparsec” on the command line, or else thereowilink
errors. For example:

:debian:/home/jdtang/haskelI_tutorial/code# ghc -pac kage parsec -0 simple_parser [../code/listing3.1.hs IistingS.l.hs]:
\debian:/homefjdtang/haskell_tutorial/code# ./simple _parser $

iFound value

debian:/home/jdtang/haskell_tutorial/code# ./simple _parser a

iNo match: "lisp" (line 1, column 1):
wnexpected "a"
1

Whitespace

Next, we'll add a series of improvements to ouseathat'll let it recognize progressively more ptinated
expressions. The current parser chokes if thel@®space preceding our symbol:

1

idebian:/home/jdtang/haskell_tutorial/code# ./simple _parser" %"
iNo match: "lisp" (line 1, column 1):

unexpected " "

1

137 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Let's fix that, so that we ignore whitespace.

First, lets define a parser that recognizes anybaurof whitespace characters. Incidentally, thishy we
included the "hiding (spaces)” clause when we irtggbParsec: there's already a function "spaces
(http://www.cs.uu.nl/~daan/download/parsec/pargetd#spaces) " in that library, but it doesn't quitewhat
we want it to. (For that matter, there's also a@acalled lexeme
(http://www.cs.uu.nl/~daan/download/parsec/pargetdiiexeme) that does exactly what we want, buli we'
ignore that for pedagogical purposes.)

:spaces i Parser 0
:spaces = skipMany1 space

Just as functions can be passed to functions,rsactéons. Here we pass the Parser action space
(http://www.cs.uu.nl/~daan/download/parsec/pardedftspace) to the Parser action skipManyl
(http://www.cs.uu.nl/~daan/download/parsec/pargetd#skipManyl), to get a Parser that will recognize on
more spaces.

Now, let's edit our parse function so that it ubes new parser. Changes are in

1

readExpr input = case parse (spaces >> symbol) "lis p" input of
1 Lefterr -> "No match: " ++ show err

1 Right val -> "Found value"

1

We touched briefly on the >> ("bind") operator @s$on 2, where we mentioned that it was used bé¢hend
scenes to combine the lines of a do-block. Hereuseeit explicitly to combine our whitespace anohisyl
parsers. However, bind has completely differentesgios in the Parser and IO monads. In the Parsaad)
bind means "Attempt to match the first parser, thtd@mpt to match the second with the remainingtingnd
fail if either fails.” In general, bind will haveilaly different effects in different monads; itistended as a
general way to structure computations, and so nieelds general enough to accomodate all the diftegpes
of computations. Read the documentation for theaddn figure out precisely what it does.

Compile and run this code. Note that since we eefispaces in terms of skipMany1, it will no longecognize
a plain old single character. Instead ymve topreceed a symbol with some whitespace. We'll s@ethis is
useful shortly:

:debian:/home/jdtang/haskelI_tutorial/code# ghc -pac kage parsec -0 simple_parser [../code/listing3.2.hs Iistin93.2.hs]:
\debian:/homefjdtang/haskell_tutorial/code# ./simple _parser" %" Found value !
debian:/home/jdtang/haskell_tutorial/code# ./simple _parser %

No match: "lisp" (line 1, column 1):

unexpected "%"

lexpecting space

idebian:/homefjdtang/haskell_tutorial/code# ./simple _parser" abc"
iNo match: "lisp" (line 1, column 4):

junexpected "a"

expecting space

1

Return Values

138 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Right now, the parser doesdtt much of anything - it just tells us whether a gistring can be recognized or
not. Generally, we want something more out of ansers: we want them to convert the input intota da
structure that we can traverse easily. In thisisectve learn how to define a data type, and homaalify our
parser so that it returns this data type.

First, we need to define a data type that can aoydLisp value:

data LispVal = Atom String
| List [LispVal]
| DottedList [LispVal] LispVal
| Number Integer
| String String

1
|
1
1
1
:
1
1 | Bool Bool
1

This is an example of agebraic data typeit defines a set of possible values that a végiabtype LispVal
can hold. Each alternative (called@nstructorand separated by |) contains a tag for the cartstralong with
the type of data that that constructor can holdhis example, a LispVal can be:

1. An Atom, which stores a String nhaming the atom

2. A List, which stores a list of other LispVals (Hadldists are denoted by brackets)

3. A DottedList, representing the Scheme form (a)} This stores a list of all elements but the last]
then stores the last element as another field

4. A Number, containing a Haskell Integer

5. A String, containing a Haskell String

6. A Bool, containing a Haskell boolean value

Constructors and types have different namespaggsmuscan have both a constructor named Stringaagde
named String. Both types and constructor tags awagin with capital letters.

Next, let's add a few more parsing functions t@a@ealues of these types. A string is a doubldéegoark,
followed by any number of non-quote characterdowed by a closing quote mark:

1
parseString :: Parser LispVal
iparseString = do char ™"

' char ™
1 return $ String x
1

We're back to using the do-notation instead oBth@perator. This is because we'll be retrievirg\hlue of
our parse (returned by many (http://www.cs.uu.rdafdownload/parsec/parsec.html#many) (noneOf
(http://www.cs.uu.nl/~daan/download/parsec/pargedimoneOf) "\"")) and manipulating it, interleagrsome
other parse operations in the meantime. In genasal >> if the actions don't return a value, >>yoifi'll be
immediately passing that value into the next a¢teord do-notation otherwise.

Once we've finished the parse and have the HaSkatig returned from many, we apply the String ¢arcdor
(from our LispVal data type) to turn it into a LMal. Every constructor in an algebraic data ty® alcts like a
function that turns its arguments into a valuetetype. It also serves as a pattern that can ée insthe
left-hand side of a pattern-matching expressionsawg an example of this in [#symbols Lesson 3.1g¢nwve
matched our parser result against the two consirsiat the Either data type.

139 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

We then apply the built-in function return
(http://www.haskell.org/onlinereport/standard-pasihtml#$tMonad) to lift our LispVal into the Pargsonad.
Remember, each line of a do-block must have the dgpe, but the result of our String constructqust a
plain old LispVal. Return lets us wrap that up iRaser action that consumes no input but rettias the
inner value. Thus, the whole parseString actioh lale type Parser LispVal.

The $ operator is infix function application: ittee same as if we'd written return (String x), $us
right-associative, letting us eliminate some pdresés. Since $ is an operator, you can do anytiihgt that
you'd normally do to a function: pass it aroundtipfly apply it, etc. In this respect, it functieiike the Lisp
function apply (http://www.schemers.org/Documentsfards/R5RS/HTML/r5rs-Z-H-9.html#% _ sec 6.4) .

Now let's move on to Scheme variables.atom
(http://www.schemers.org/Documents/Standards/R5RBIHr5rs-Z-H-5.html#%_sec_2.1) is a letter or
symbol, followed by any number of letters, digds,symbols:

1
parseAtom :: Parser LispVal
jparseAtom = do first <- letter <|> symbol
1 rest <- many (letter <|> digit <|> s ymbol)
let atom = [first] ++ rest
return $ case atom of
"#t" -> Bool True
"#f" -> Bool False
otherwise -> Atom atom

Here, we introduce another Parsec combinator,libe&ee operator <|>
(http://www.cs.uu.nl/~daan/download/parsec/parged#or) . This tries the first parser, then ifail§, tries the
second. If either succeeds, then it returns theevedturned by that parser. The first parser naisbéfore it
consumes any input: we'll see later how to implarbecktracking.

Once we've read the first character and the retsteoAtom, we need to put them together. The Sgitement
defines a new variable "atom". We use the list etereation operator ++ for this. Recall that fissjust a single
character, so we convert it into a singleton lisphtting brackets around it. If we'd wanted toateea list
containing many elements, we need only separate byecommas.

Then we use a case statement to determine whipivaldo create and return, matching against tleedit
strings for true and false. The otherwise alteugais a readability trick: it binds a variable nahwgherwise,
whose value we ignore, and then always returngahees of atom

Finally, we create one more parser, for numbers 3imows one more way of dealing with monadic vstlue

:parseNumber .. Parser LispVal
iparseNumber = liftM (Number . read) $ many1 digit

It's easiest to read this backwards, since botbtiimm application ($) and function compositiongssociate to
the right. The parsec combinator manyl (http://wesanu.nl/~daan/download/parsec/parsec.html#manyl)
matches one or more of its argument, so here weltehing one or more digits. We'd like to constaucumber
LispVal from the resulting string, but we have @ figpe mismatches. First, we use the built-in fiorctead
(http://www.haskell.org/onlinereport/standard-pasihtml#$vread) to convert that string into a numibaen

we pass the result to Number to get a LispVal. flinetion composition operator "." creates a functilbat

140 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

applies its right argument and then passes thét tesine left argument, so we use that to combieetwo
function applications.

Unfortunately, the result of manyl digit is actyallParser String, so our combined Number . rali¢tan't
operate on it. We need a way to tell it to justrapeon the value inside the monad, giving us lzePRrser
LispVal. The standard function liftM does exacthat, so we apply liftM to our Number . read funatiand
then apply the result of that to our Parser.

We also have to import the Monad module up atapeof our program to get access to liftM:

This style of programming - relying heavily on faion composition, function application, and pasdungctions
to functions - is very common in Haskell code.ftea lets you express very complicated algorithma single
line, breaking down intermediate steps into otharctions that can be combined in various ways. tinfately,
it means that you often have to read Haskell conia fight-to-left and keep careful track of thedgpWe'll be
seeing many more examples throughout the restediutiorial, so hopefully you'll get pretty comfdsta with it.

Let's create a parser that accepts either a saingmber, or an atom:

:parseExpr .. Parser LispVal
jparseExpr = parseAtom

1 <|> parseString

' <|> parseNumber

:readExpr :: String -> String

jreadExpr input = case parse parseExpr "lisp” input of
i Lefterr->"No match: " ++ show err

' Right _ -> "Found value"

iNo match: "lisp" (line 1, column 1):
junexpected "("

expecting letter, "\"" or digit

1

1
debian:/home/jdtang/haskell_tutorial/code# ghc -pac kage parsec -0 simple_parser [.../code/listing3.3.h s listing3.3.hs!
idebian:/homef/jdtang/haskell_tutorial/code# ./simple _parser "\"this is a string\"" '
iFound value 1
\debian:/homef/jdtang/haskell_tutorial/code# ./simple _parser 25 Found value '
debian:/home/jdtang/haskell_tutorial/code# ./simple _parser symbol 1
'Found value !
:debian:/home/jdtang/haskelI_tutoriaI/code# JIsimple _parser (symbol) '
bash: syntax error near unexpected token “symbol’ !
\debian:/home/jdtang/haskell_tutorial/code# ./simple _parser "(symbol)" '
1
1
1
1
1

141 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Exercises

1. Rewrite parseNumber using
1. do-notation
2. explicit sequencing with the >>=
(http://www.haskell.org/onlinereport/standard-padEihtml#tMonad) operator
2. Our strings aren't quite R5RS compliant
(http://www.schemers.org/Documents/Standards/RS5RBIHr5rs-Z-H-9.html#%_sec 6.3.5)
, because they don't support escaping of intemmaties within the string. Change parseString
so that \" gives a literal quote character instefat@rminating the string. You may want to
replace noneOf "\"" with a new parser action tradeptseithera non-quote character a
backslash followed by a quote mark.

. Modify the previous exercise to support \n, \r\\\tand any other desired escape characters

. Change parseNumber to support the Scheme starafaddférent bases

(http://www.schemers.org/Documents/Standards/RS5RBIHr5rs-Z-H-9.html#%_sec _6.2.4)
. You may find the readOct and readHex
(http://www.haskell.org/onlinereport/numeric.htmd#$14) functions useful.

5. Add a Character constructor to LispVal, and cregparser for character literals
(http://www.schemers.org/Documents/Standards/R5RBIHr5rs-Z-H-9.html#%_sec_6.3.4)
as described in R5RS.

6. Add a Float constructor to LispVal, and support B5¥ntax for decimals
(http://www.schemers.org/Documents/Standards/RS5RBIHr5rs-Z-H-9.html#%_sec _6.2.4)
. The Haskell function readFloat (http://www.hasket/onlinereport/numeric.html#sect14)
may be useful.

7. Add data types and parsers to support the full mienb@wer
(http://www.schemers.org/Documents/Standards/R5RBIHr5rs-Z-H-9.html#%_sec_6.2.1)
of Scheme numeric types. Haskell has built-in tyjpe®present many of these; check the
Prelude (http://www.haskell.org/onlinereport/stamdprelude.html#$tNum) . For the others,
you can define compound types that represent Bgtianal as a numerator and denominator,
or a Complex as a real and imaginary part (eaelf &asReal number).

AW

Recursive Parsers: Adding lists, dotted lists, anquoted datums

Next, we add a few more parser actions to our pnéer. Start with the parenthesized lists thateriakp
famous:

:parseList :: Parser LispVal
:parseLlst = liftM List $ sepBy parseExpr spaces

This works analogously to parseNumber, first paysirseries of expressions separated by whitespap8y
parseExpr spaces) and then apply the List constrtwit within the Parser monad. Note too thatoae pass
parseExpr to sepBy (http://www.cs.uu.nl/~daan/deadlparsec/parsec.html#sepBy) , even though it's an
action we wrote ourselves.

The dotted-list parser is somewhat more complekstilliuses only concepts that we're already feanivith:

142 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1 1
parseDottedList :: Parser LispVal 1
iparseDottedList = do '
head <- endBy parseExpr spaces 1
tail <- char '.' >> spaces >> parseExpr '
return $ DottedList head tail '
1

Note how we can sequence together a series ofrRansens with >> and then use the whole sequendée
right hand side of a do-statement. The expresdian 'C >> spaces returns a Parser (), then contpthat with
parseExpr gives a Parser LispVal, exactly the typaneed for the do-block.

Next, let's add support for the single-quote syitastigar of Schem

:parseQuoted :: Parser LispVal

; parseQuoted = do

i+ char'\"

' X <- parseExpr

i return $ List [Atom "quote", X]
1

1

Most of this is fairly familiar stuff: it reads @ngle quote character, reads an expression and lttimal x, and
then returns (quote x), to use Scheme notation Akbm constructor works like an ordinary functigiou pass
it the String you're encapsulating, and it gives pack a LispVal. You can do anything with thisgV&al that
you normally could, like put it in a list.

Finally, edit our definition of parseExpr to inclidur new parsers:

:parseExpr :: Parser LispVal

jparseExpr = parseAtom

<|> parseString

<|> parseNumber

<|> parseQuoted

<|>do char ‘('
X <- (try parseList) <|> parseDotted List
char')'
return x

This illustrates one last feature of Parsec: backing. parseList and parseDottedList recognizatidal strings
up to the dot; this breaks the requirement thdtaace alternative may not consume any input befafimg. The
try (http://www.cs.uu.nl/~daan/download/parsec/parstml#try) combinator attempts to run the spedifi
parser, but if it fails, it backs up to the pre\gatate. This lets you use it in a choice alteveatiithout
interfering with the other alternative.

Compile and run this code:

iNo match: "lisp" (line 1, column 24):
junexpected end of input

expecting space or)"

1

1 1
debian:/home/jdtang/haskell_tutorial/code# ghc -pac kage parsec -0 simple_parser [../code/listing3.4.hs listing3.4.hs]!
idebian:/homef/jdtang/haskell_tutorial/code# ./simple _parser "(a test)" '
iFound value 1
\debian:/homef/jdtang/haskell_tutorial/code# ./simple _parser "(a (nested) test)" Found value '
debian:/home/jdtang/haskell_tutorial/code# ./simple _parser "(a (dotted . list) test)" 1
'Found value !
:debian:/home/jdtang/haskelI_tutoriaI/code# JIsimple _parser "(a '(quoted (dotted . list)) test)" '
1IFound value !
idebian:/home/jdtang/haskell_tutorial/code# ./simple _parser "(a '(imbalanced parens)” '
1
1
1
1
1

143 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Note that by referring to parseExpr within our @#ss we can nest them arbitrarily deep. Thus, we dell Lisg
reader with only a few definitions. That's the powgrecursion.

Exercises

1. Add support for the backquote
(http://www.schemers.org/Documents/Standards/R5RBIHr5rs-Z-H-7.html#%_sec_4.2.6)
syntactic sugar: the Scheme standard details wkhould expand into (quasiquote/unquote).

2. Add support for vectors
(http://www.schemers.org/Documents/Standards/R5RBIHr5rs-Z-H-9.html#%_sec_6.3.6)

. The Haskell representation is up to you: GHC dweg an Array
(http://www.haskell.org/ghc/docs/latest/html/linem/base/Data-Array.html) data type, but it
can be difficult to use. Strictly speaking, a vecbould have constant-time indexing and
updating, but destructive update in a purely florail language is difficult. You may have a
better idea how to do this after the section oh keer in this tutorial.

3. Instead of using the try combinator, left-factog frammar so that the common subsequence
is its own parser. You should end up with a pattsar matches a string of expressions, and
one that matches either nothing or a dot and desexgressions. Combining the return values
of these into either a List or a DottedList is lafta (somewhat tricky) exercise for the reader:
you may want to break it out into another helperction

Generic monads

Write me: The idea is that this section can shomesof the benefits of not tying yourself to onglsin
monad, but writing your code for any arbitrary maha. Maybe run with the idea of having some
elementary monad, and then deciding it's not goaxligh, so replacing it with a fancier one... andrth
deciding you need to go even further and just hugg monad transformer

For instance: Using the Identity Monad:

imodule Identity(ld(Id)) where
1

1
:
inewtype Id a = Id a :
:instance Monad Id where 1
L (>>) (ldx) f=fx :
1 return = Id 1
1 1

:

1

1

instance (Show a) => Show (Id a) where
' show (Id x) = show x

1

limport Identity

itype M = Id

1

imy_fib :: Integer -> M Integer
my_fib =my_fib_acc01

1

:my_fib_acc .. Integer -> Integer -> Integer -> M In teger
imy_fib_acc _fnl 1 =return fnl

imy_fib_acc fn2 _ 0 = return fn2

my_fib_acc fn2 fnl n_rem = do

' val <-my_fib_acc fnl (fn2+fn1) (n_rem - 1)

1+ return val

144 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Doesn't seem to accomplish much, but It allowsow gdd debugging facilities to a part of your pesgron the
fly. As long as you've used return instead of epld constructors, then you can drop in the failog monad:

:module PMD (Pmd(Pmd)) where --PMD = Poor Man's Debu gging, Now available for haskell
1

:import 10

1

inewtype Pmd a = Pmd (a, 10 ())

1

instance Monad Pmd where

(>>=) (Pmd (x, prt)) f =let (Pmd (v, prt)) = fx
in Pmd (v, prt >> prt)]

return x = Pmd (x, return ())

instance (Show a) => Show (Pmd a) where
show (Pmd (x, _)) = show x

:import Identity
iimport PMD
import 1O
ttype M = Pmd

e
my_fib_acc :: Integer -> Integer -> Integer -> M In teger
imy_fib_acc _ fn1 1 = return fnl

my_fib_acc fn2 _ 0 = return fn2

imy_fib_acc fn2 fnl n_rem =

1 val <-my_fib_acc fnl (fn2+fnl) (n_rem - 1)

' Pmd (val, putStrLn (show fn1))

All we had to change is the lines where we wanteprint something for debugging, and add some code
wherever you extracted the value from the Id Motmaexecute the resulting 10 () you've returned. Sitvimg
like

:main 210 ()

:main =do

1 let (Id f25) = my_fib 25

' putStrLn ("f25 is: " ++ show 25)

1 1
imain :: 10 () !
imain = do '
let (Pmd (25, prt)) = my_fib 25 1
prt !
putStrLn ("f25 is: " ++ show f25) :
1

For the Pmd Monad. Notice that we didn't have tekoany of the functions that we weren't debugging.

Advanced Haskell

145 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Arrows

Introduction

Arrows are a generalization of monads. They caewtything monads can do, and more. They serve tgch
same purpose as monads -- providing a common steuftdr libraries -- but are more general. In gatr they
allow notions of computation that may be partialigtic (independent of the input) or may take midtinputs.
If your application works fine with monads, you migas well stick with them. But if you're usingtausture
that's very like a monad, but isn't one, maybeait'sarrow.

proc and the arrow talil

Let's begin by getting to grips with the arrowsatmn. We'll work with the simplest possible arrtvere is (the
function) and build some toy programs strictlyhe &aims of getting acquainted with the syntax.

Fire up your text editor and create a Haskell By toyArrows.hs:

:import Control.Arrow (returnA)
1

jdA 1a->a

:idA =proc a ->returnA -< a

1
iplusOne :: Int -> Int
iplusOne = proc a -> returnA -< (a+1)

These are our first two arrows. The first is theniity function in arrow form, and second, slightipre
exciting, is an arrow that adds one to its inpaad. this up in GHCIi, using the -farrows extensiod aee what
happens.

% ghci -farrows toyArrows.hs
1

VNN (O
VI NI]| GHC Interactive, version 6.4.1, for Haskell 98.
VIV __ /1 || http:/iwww.haskell.org/g hc/

i\ NI_N\ /l_| Type :? for help.
1

:Loading package base-1.0 ... linking ... done.

:Compiling Main (toyArrows.hs, interpre ted)
|0k, modules loaded: Main.

:*Main> idA 3

:*Main> idA "foo"
:nfoon

*Main> plusOne 3

4

1*Main> plusOne 100
:101

Thrilling indeed. Up to now, we have seen three mewstructs in the arrow notation:
= the keywordproc
<

= the imported functiometurnA

Now that we know how to add one to a value, legfsomething twice as difficult: adding TW

146 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

:plusOne = proc a -> returnA -< (a+1)
iplusTwo = proc a -> plusOne -< (a+1)

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

One simple approach is to feed (a+1) as inputtim@lusone arrow. Note the similarity betweemsone and
plusTwo . You should notice that there is a basic pattene kvhich goes a little something like this: pr&a®

-> SOME_ARROW -< (SOMETHING_WITH_FOO)

do notation

Exercises

1. plusOne is an arrow, so by the pattern abesternA must be an
arrow too. What do you thinkturnA does?

Our current implementation efusTwo is rather disappointing actually... shouldn'uitjbeplusone twice? We
can do better, but to do so, we need to introdoneald notation:

1
plusTwoBis =

1proc a -> do b <- plusOne -< a

plusOne -< b

1
Prelude> :r

iCompiling Main
10k, modules loaded: Main.

Main> plusTwoBis 5

(toyArrows.hs, interpre

:plusFive =

1 proc a ->do b <- plusOne -< a

Monads and arrows

147 of 290

C <- plusOne < b
d <- plusOne -< ¢
e <- plusOne -< d
plusOne < e

FIXME: I'm no longer sure, but | believe the intenthere was to show what the difference is hathing
proc notation instead to just a regular chain okdo

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Understanding arrows

We have permission to import material from the K#skrows page (http://www.haskell.org/arrows)eesthe
talk page for details.

The factory and conveyor belt metaphor

In this tutorial, we shall present arrows from gegspective of stream processors, using the faactetaphor
from the monads module as a support. Let's gehands dirty right away.

You are a factory owner, and as before you owrt afygrocessing machinesProcessing machines are just a
metaphor for functions; they accept some input@oeduce some output. Your goal is to combine these
processing machines so that they can perform rietmel more complicated tasks. Monads allow yowtoline
these machines in a pipeline. Arrows allow youdmbine them in more interesting ways. The resuthisfis
that you can perform certain tasks in a less carafgd and more efficient manner.

In a monadic factory, we took the approach of wiagphe outputs of our machines in containers. dinew
factory takes a completely different route: ratthem wrapping the outputs in containers, we wheggpmachines
themselvesMore specifically, in an arrow factory, we attacpair of conveyor belts to each machine, one for
the input and one for the output.

So given a function of type->c , we can construct an equivalenarrow by attaching e andc conveyer belt
to the machine. The equivalent arrow is of type , which we can pronounce as an arefiomb toc.

Plethora of robots

We mentioned earlier that arrows give you more waysombine machines together than monads didebhde
the arrow type class provides six distinmbots (compared to the two you get with monads).

arr

The simplest robot isr with the type signaturar :: (b->c)->abc . In other words, the arr robot
takes a processing machine of type c , and adds conveyor belts to formaaarrow fromb toc.

=]
!

(>>>)

The next, and probably the most important, robetsis) . This is basically the arrow equivalent to the auic
bind robot(>>=) . The arrow version of bin@>>) puts two arrows into a sequence. That is, it cotanhe
output conveyor belt of the first arrow to the ibhpanveyor belt of the second one.

148 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

What we get out of this is a new arrow. One consitiien to make, though is what input and outpuesypur
arrows may take. Since we're connecting outputth@dnput conveyor belts of the first and secondws, the
second arrow must accept the same kind of inputhed the first arrow outputs. If the first arrowabtypea b
c, the second arrow must be of typed . Here is the same diagram as above, but with shamgthe conveyor
belts to help you see the issue with types.

N/

Exercises
What is the type of the combined arrow?

first

Up to now, our arrows can only do the same thihgs inonads can. Here is where things get inteigstine
arrows type class provides functions which allovoas to work withpairs of input. As we will see later on,

this leads us to be able to express parallel coatipatin a very succinct manner. The first of thisections,
naturally enough, isrst

If you are skimming this tutorial, it is probablygaod idea to slow down at least in this secti@tavse the
first ~ robot is one of the things that makes arrows tuskgful.

I Bk

- r 1

___aarrrl ¢
-—-—-1-_-‘]-—'—-1

Given an arrow, thefirst robot attaches some conveyor belts and extra maghio form a new, more
complicated arrow. The machines that bookend tpetiarrow split the input pairs into their componparts,
and put them back together. The idea behind thisaisthe first part of every pair is fed into thewhilst the

second part is passed through on an empty conbeyoWhen everything is put back together, we hsame
pairs that we fed in, except that the first paréeéry pair has been replaced by an equivalenubértpm .

149 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

i
{
1
|
|
1

Now the question we need to ask ourselves is thigpes. Say that the input tuples are of t(b,d) and the
input arrow is of type bc (that is, it is an arrow fromto ¢). What is the type of the output? Well, the arrow
converts albs intocs, so when everything is put back together, the tfithe output must kied)

Exercises
What is the type of thigst robot?

second

If you understand th@gst robot, thesecond robot is a piece of cake. It does the same ekaug,texcept that
feeds the second part of every input pair intogiken arrowf instead of the first part.

O ENEEC RO S
[|-
Bl sr—ws |
ke S TR | 1 [|-
o=

What makes theecond robot interesting is that it can be derived frdra previous robots! Strictly speaking,
only robots you need to for arrows are, (>>>) andfirst . The rest can be had "for free".

Exercises

1. Write a function to swap two components of a tuple.
2. Combine this helper function with the robats , (>>>) andfirst
to implement theecond robot

* k%

One of the selling points of arrows is that you aae them to express parallel computation. e robot is
just the right tool for the job. Given two arrovf andg, the(**) combines them into a new arrow using the
same bookend-machines we saw in the previous thatso

150 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

...j EEE N EEE -
FIEE S ST L

Conceptually, this isn't very much different fronetrobotsirst andsecond . As before, our new arrow accepts

pairs of inputs. It splits them up, sends them on taasae conveyor belts, and puts them back togetiner.
only difference here is that, rather than having arrow and one empty conveyor belt, we have tworit

arrows. But why not?

Exercises

1. What is the type of the*) robot?
2. Given the(>>>) , first andsecond robots, implement the*)

robot.

&&&

The final robot in the Arrow class is very simitarthe(*) robot, except that the resulting arrow accepts a
single input and not a pair. Yet, the rest of trechine is exactly the same. How can we work with &rows,

when we only have one input to give them?

- r; TI e] freere—
".E I - .

The answer is simple: we clone the input and feedpy into each machine!

151 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Exercises

1. Write a simple function to clone an input into arpa

2. Using your cloning function, as well as the rohwots, (>>>) and
=+ implement the&&s&robot

3. Similarly, rewrite the following function withoutsing &&&:

Functions are arrows

Now that we have presented the 6 arrow robots, addvike to make sure that you have a more sotidg of
them by walking through a simple implementationshef Arrow class. As in the monadic world, there lsiany
different types of arrows. What is the simplest gae can think of? Functions.

Put concretely, the type constructor for functiosgs is an instance ofrrow

:instance Arrow (->) where
yarf=f

 f>>>g =g f

' first f=\(x,y) -> (fx, y)

Now let's examine this in detz

m arr - Converting a function into an arrow is trivial.fact, the function already is an arrow.

= (>>>) - we want to feed the output of the first functiato the input of the second function. This is
nothing more than function composition.

= first - this is a little more elaborate. Given a funetio we return a function which accepts a pair of
inputs(x,y) , and runs onx, leavingy untouched.

And that, strictly speaking, is all we need to havamplete arrow, but the arrow typeclass alsmallyou to
make up your own definition of the other three nshgo let's have a go at that:

: first f=\(x,y) -> (fx, y) -- for comparison 's sake :
1 second f =\(x,y) -> (x, fy) - like first '
T g =\(x,y) -> (f x, g y) -- takes two arro ws, and not just one 1
' f&&& g =\ ->(fx, g X) -- feed the same input into both functions '

And that's it! Nothing could be simpler.

152 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Note that this is not the official instance of functions asves. You should take a look at thaskell library
(http://darcs.haskell.org/packages/base/Control/Arrow.ly®lifwant the real deal.

The arrow notation

In the introductory Arrows chapter, we introduchdgdroc and-< notation. How does this tie in with all the
arrow robots we just presented? Sadly, it's @it less straightforward than do-notation, btisleave a look.

Maybe functor

It turns out that any monad can be made into an@/ll go into that later on, but for now|XME: transition

Using arrows

At this point in the tutorial, you should have eosg enough grasp of the arrow machinery that vestart to
meaningfully tackle the question of what arrowsgwed for.

Stream processing

Avoiding leaks
Arrows were originally motivated by an efficientrpar design found by Swierstra & Duponcheel.
To describe the benefits of their design, let'sy@ra exactly how monadic parsers work.

If you want to parse a single word, you end up wihieral monadic parsers stacked end to end. T&kirgec
as an example, the parser string "word" can alsadveed as

1
word = do char 'w' >> char 'o' >> char 'r' >> char d'
' return "word"

Each character is tried in order, if "worg" is thput, then the first three parsers will succeedl the last one
will fail, making the entire string "word" parsexil.

If you want to parse one of two options, you createew parser for each and they are tried in ofdes.first
one must fail and then the next will be tried vilile same input.

To parse "c" successfully, both 'a’ and 'b' musehzeen tried.

153 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1

ione = do char '0' >> char 'n' >> char 'e’
i return "one"

1
:two =do char 't' >> char 'w' >> char '0'

1 return "two"

1

ithree = do char 't >> char 'h* >> char 'r' >> char 'e' >> char ‘e’
1 return “three"

1

1
inums = do one <|> two <|> three
1

With these three parsers, you can't know thattitegs'four” will fail the parser nums until thedaparser has
failed.

If one of the options can consume much of the ifputwill fail, you still must descend down the ohaf
parsers until the final parser fails. All of theurt that can possibly be consumed by later parsast be
retained in memory in case one of them does congufieat can lead to much more space usage than yo
would naively expect, this is often called a spaed.

The general pattern of monadic parsers is that eptthn must fail or one option must succeed.
So what's better?

Swierstra & Duponcheel (1996) noticed that a smaréeser could immediately fail upon seeing they¥est
character. For example, in the nums parser abbeehoice of first letter parsers was limited thei the letter
‘0’ for "one" or the letter 't' for both "two" afithree". This smarter parser would also be ablgattage collect
input sooner because it could look ahead to saeyifother parsers might be able to consume thd,iapd drop
input that could not be consumed. This new passarlot like the monadic parsers with the majofedénce
that it exports static information. It's like a nawh but it also tells you what it can parse.

There's one major problem. This doesn't fit int® tonadic interface. Monads are (a -> m b), théased
around functions only. There's no way to attachicsiaformation. You have only one choice, throwsimme
input, and see if it passes or fails.

The monadic interface has been touted as a ggnamabse tool in the functional programming commyrsb
finding that there was some particularly usefuletitat just couldn't fit into that interface wasmnsthing of a
setback. This is where Arrows come in. John Huglt&sheralising monads to arrowsoposed the arrows
abstraction as new, more flexible tool.

Static and dynamic parsers

Let us examine Swierstra & Duponcheel's parsereatgr detail, from the perspective of arrows. paeser has
two components: a fast, static parser which tedlg the input is worth trying to parse; and a slaynamic
parser which does the actual parsing work.

:data Parser s a b = P (StaticParser s) (DynamicPars ersab) :
(data StaticParser s = SP Bool [s] '
inewtype DynamicParser s a b = DP ((a,[s]) -> (b,[s]) 1
1 1

The static parser consists of a flag, which tedisfthe parser can accept the empty input, amst afl possible
starting characters. For example, the static parser for a single ataravould be as follows:

154 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:spCharA :: Char -> StaticParser Char
ispCharA ¢ = SP False [c]

It does not accept the empty strimgi¢e) and the list of possible starting characters sts®nly ofc.

The dynamic parser needs a little more dissectimigat we see is a function that goes fr@mg]) to (b,[s])
It is useful to think in terms of sequencing twasgas : Each parser consumes the result of theoueparser
(a), along with the remaining bits of input stregs (), it does something with to produce its own result
consumes a bit of string and retuthat Ooof. So, as an example of this in action, cagrseddynamic parser

(Int,String) -> (Int,String) , Where thent represents a count of the characters parsed.sbharable
belows shows what would happen if we sequence afeélhem together and set them loose on the string
"cake" :

result| remaining

before 0 cake
after first parser | 1 ake
after second parser 2 ke
after third parser = 3 e

So the point here is that a dynamic parser hagdb®: it does something to the output of the prasiparser
(informally,a->b), and it consumes a bit of the input string, (infally, [s] -> [s]), hence the typepr
((a[s]) -> (b,[s]) . Now, in the case of a dynamic parser for a sioperacter, the first job is trivial. We

ignore the output of the previous parser. We retiiencharacter we have parsed. And we consumel@raater
off the stream :

:deharA :: Char -> DynamicParser Char Char Char
idpCharA ¢ = DP (\(_,x:xs) -> (c,Xs))

This might lead you to ask a few questions. Fataimse, what's the point of accepting the outpuhefprevious
parser if we're just going to ignore it? The bewsveer we can give right now is "wait and see".dfiye
comfortable with monads, consider the bind operate . While bind is immensely useful by itself,

sometimes, when sequencing two monadic computatogether, we like to ignore the output of thetfirs
computation by using the anonymous bisg) . This is the same situation here. We've got aarasting little
bit of power on our hands, but we're not goingge it quite yet.

The next question, then, shouldn't the dynamicgrdye making sure that the current charcter ofstheam
matches the character to be parsed? Shouldad be checked for? No. And in fact, this is parthed point;
the work is not neccesary because the check windddy have been performed by the static parser.

Anyway, let us put this together. Here is our S+fdesparser for a single character:

:charA :: Char -> Parser Char Char Char
icharA c = P (SP False [c]) (DP \(_,x:xs) -> (c,xs))

Arrow combinators (robots)

155 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Up to this point, we have explored two somewhaep®hdent trains of thought. On the one hand, viaeken a
look at some arrow machinery, the combinators/mlraim above, although we don't exactly know whsatfor.
On the other hand, we have introduced a type agrarsing the Arrow class. We know that the go#d iavoid
space leaks and that it somehow involves separatfagt static parser from its slow dynamic paut,we don't
really understand how that ties in to all this armaachinery. In this section, we will attempt tadegkss both of
these gaps in our knowledge and merge our twindraf thought into one. We're going to implemeut Altrow
class forrParsers , and by doing so, give you a glimpse of what maktesws useful. So let's get started:

One of the simplest things we can do is to conaerarbitrary function into a parsing arrow. We'r
going to use "parse" in the loose sense of the:teumresulting arrow accepts the empty string, ¢ :
only the empty stringits set of first characters|is). Its sole job is take the output of the previou
parsing arrow and do something with it. Otherwisdpes not consume any input.

Likewise, thefirst combinator is relatively straightforward. Recaktconveyor belts fron
above. Given a parser, we want to produce a nesepérat accepts a pair of inpisl)

The first part of the input, is what we actually want to parse. The secontlipgrassed
through completely untouched:

On the other hand, the implementatior>of) requires a little more thought. We wantto o oo sl
take two parsers, and returns a combined parsergarating the static and dynamic pars: Nl
of both arguments:

1

1 (P (SP emptyl startl) (DP pl)) >>>

1 (P (SP empty2 start2) (DP p2)) =

1 P (SP (emptyl && empty?2))

' (if not empty1 then startl else startl “un ion” start2)
: (BP (p2.p1))

T
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
L

Combining the dynamic parsers is easy enough; stedp function composition. Putting the static pass
together requires a little bit of thought. Firstadif the combined parser can only accept the estpityg if both
parsers do. Fair enough, now how about the stasiyinthols? Well, the parsers are supposed to be in a
sequence, so the starting symbols of the secorsgipsinouldn't really matter. If life were simplieg tstarting
symbols of the combined parser would onlystag1 . Alas, life is NOT simple, because parsers coely v
well accept the empty input. If the first parseceguts the empty input, then we have to accourthisr
possibility by accepting the starting symbols frbath the first and the second parsers.

Exercises

1. Consider thehara parser from above. What woulbhrA ‘o' >>>
charA 'n' >>> charA ‘e’ result in?

2. Write a simplified version of that combined parsHrat is: does it
accept the empty string? What are its starting ®ystWhat is the

156 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

dynamic parser for this?

So what do arrows buy us in all this?

Monads can be arrows too

The real flexibility with arrows comes with the srthat aren't monads, otherwise it's just a clunkie
syntax-- Philippa Cowderoy

It turns out that all monads can be made into asrd¥ere's a central quote from the original arrpagers:

Just as we think of a monadic type m a as repriegeatcomputation delivering an a '; so we think
of an arrow type a b c, (that is, the applicatibthe parameterised type a to the two parameters b
and c) as representing 'a computation with inpuyé b delivering a c'; arrows make the
dependence on input explicit.

One way to look at arrows is the way the Englistglaage allows you to noun a verb, for examplead a
chat." Arrows are much like that, they turn a fumctirom a to b into a value. This value is a frktss
transformation from a to b.

Arrows in practice

Arrows are a relatively new abstraction, but thiegady found a number of uses in the Haskell world

= Hughes' arrow-style parsers were first describddsr2000 paper, but a usable implementation wasn't
available until May 2005. Einar Karttunen wroteiaplementation called PArrows that approaches the
features of standard Haskell parser combinatoahhrParsec.

» The Fudgets library for building graphical inteda&IXME: complete this paragraph

= Yampa -FIXME: talk briefly about Yampa

= The Haskell XML Toolbox (HXT (http://www.fh-wedeled~si/HXmIToolbox/index.html)) uses arrows
for processing XML. There is a Wiki page in the KasWiki with a somewhat Gentle Introduction to
HXT (http://lwww.haskell.org/haskellwiki/HXT) .

Arrows Aren't The Answer To Every Question

Arrows do have some problems. Several people o#liaskell irc channel have done nifty arrows expents,
and some of those experiments ran into problemseSwtable obstacles were typified by experimeatedy
Jeremy Shaw, Einar Karttunen, and Peter Simorysulfwould like to learn more about the limitatidrehind
arrows, follow the references at the end of thiglar

See also

= Generalising Monads to Arrows - John Hughes

157 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

= http://www.haskell.org/arrows/biblio.html
Arrow uses
Arrow limitations

= Jeremy Shaw -

= Einar Kartunnen -

= Peter Simons -

Current research

Acknowledgements

This module uses text froAn Introduction to Arrowsy Shae Erisson, originally written for The
Monad.Reader 4

Continuation passing style

Continuation passing style or CPS, is a style of programming where functioeger return values, but instead
take an extra parameter which they give their teésul—- this extra parameter representsat to do nextand is
called a continuation.

Starting simple
To begin with, we're going to explore two simplaewles which illustrate what CPS and continuatimes

squar e

Let's start with a very simple module which squaresimber, then outputs it:

L
Example: A simple module, no continuations

1
isquare :: Int -> Int
isquare x =x " 2

1

'main = do

! let x = square 4
1 print X

1

We're clearly doing two things here. First, we sguaur, then we print the result. If we were tokeahe
square function take a continuation, we'd end up with etinmg like the following:

158 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

kv
Example: A simple module, using continuations h

:square tint->(Int->a)->a
isquare xk =k (x * 2)

1

:main = square 4 print

That is,square takes an extra parameter which is the functiohrégaresentsvhat to do next— the
continuation of the computation.

guadRoot s

Consider the quadratic equation. Recall that ferethuatiorax2 + bx+c = 0, the quadratic equation states that:

—b /B —4ac

2a 2a

When considering only real numbers, we may have, zere, or two roots. The quantity under the rddica
d = b* _ Aqe is known as the determinant. Wheétw O, there are no (real) roots; whétr O we have one

real root; and finally, witld > 0, we have two real roots. We then write a Hh$laction to compute the roots
of a quadratic as follows:

o
Example: quadRoots , N0 continuations h

idata Roots = None | One Double | Two Double Double

:quadRoots :: Double -> Double -> Double -> Roots

\quadRootsab c

' | d<0=None

1 |d==0=0ne$-b/2/a

1 | d>0=Two ((-b + sgrt d)/2/a) ((-b - sqrt d)/ 2/a)
1 where d = b*b - 4*a*c

To use this function, we need to pattern matchherrésult, for instance:

ok
Example: Using the result ojuadRoots , still no continuations h

:printRoots :: Double -> Double -> Double -> 10 ()
'printRoots a b ¢ = case quadRoots a b ¢ of
None -> putStrLn "There were no roots."

I

1

' One x -> putStrLn $ showString "There was one roo t: " $ show x

1 Two x X' -> putStrLn $ showString "There were two roots found: " $

1 shows x $ showString " and " $ show x'

1

L om o o o o o oo e e e e e e e e em e em e e e e e e e 4

To write this in continuation passing style, welwiégin by modifying theuadRoots function. It will now take
three additional parameters: functions that wilchéed with the resulting number of roots.

159 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

Example: quadRoots'

iquadRoots' :: Double -> Double -> Double -- The thr

-- What to
-- What to

- a
-> (Double -> a)
-> (Double -> Double -> a)
->a -- The fin
quadRoots' a b ¢ fO f1 f2
|d<0=f0
|d==0=f1%-b/2/a
I

where d = b*b - 4*a*c

One may notice that the bodyidRoots'

-- What to

d>0=1f2((-b +sqrt d)/2/a) ((-b - sqrt d)/2

using continuations

ee coefficients
do with no roots
do with one root
do with two roots
al result

is identical taguadRoots , except that

we've substituted arbitrary functions for the coamstiors ofRoots . Indeed,
quadRoots may be rewritten to usgadRoots' , by passing the constructors for
Roots . Now we no longer need to pattern match on theltese just pass in the

expressions from the case matches.

Example: Using the result oduadRoots , with continuations

:printRoots :: Double -> Double -> Double -> 10 ()

iprintRoots a b ¢ = quadRoots' a b ¢ f0 f1 f2

1
1
1
1 Where :
+ f0 = putStrLn "There were no roots." 1
1 flx =putStrLn $ “There was one root: " ++ show x '
1 f2 x X' = putStrLn $ "There were two roots foun d:" 1
. ++ show x ++ " and " + + show x' '
L oo o o o o o o o e e e e e e e e e e e e e e e e — = = 1
Exercises

FIXME: write some exercises

Using theCont monad

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

This is how data is
often expressed in
lambda calculi:
note that
quadRoots'

doesn't us®oots

at all.

By now, you should be used to the pattern that whenwe find a pattern we like (here the pattennsisg
continuations), but it makes our code a little yghg use a monad to encapsulate the ‘plumbingethdthere is
a monad for modelling computations which use CPS.

Example: The Cont monad

Removing the newtype and record cruft, we obtaai¢hnt r a

expands tga ->r) ->r

. So how does this

fit with our idea of continuations we presentedasWell, remember that a function in CPS basidalbk an

extra parameter which represented 'what to do.rext'here, the type abntra

160 of 290

expands to be an extra

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

function (the continuation), which is a functiowrn things of type (what the result of the function would have
been, if we were returning it normally insteadhabwing it into the continuation), to things of &, which
becomes the final result type of our function.

All of that was a little vague and abstract ssletack out an example.

Example: Thesquare module, using the Cont monad

1 1
isquare :: Int -> Cont r Int !
'square x = return (x ~ 2) :
1 1
imain = runCont (square 4) print :
- Result: 16 -} 1
1 1

If we expand the type afuare , we obtain thagquare :: Int -> (Int ->r) > r , Which is precisely what
we had before we introduced Cont into the pictG@we can see that typentra expands into a type which
fits our notion of a continuation, as defined abhdweery function that returns a Cont-value actutdkes an
extra parameter, which is the continuation. Useagn simply throws its argument into the continuation.

How does the Cont implementation(ef=) work, then? It's easiest to see it at work:

Example: The(>>=) function for the Cont monad

1
isquare :: Int -> Cont r Int
'square x = return (x ~ 2)

1

:addThree = Int-> Contr Int

addThree x = return (x + 3)

1

imain = runCont (square 4 >>= addThree) print
{- Result: 19 -}

1

:instance Monad (Cont r) where
1 return n = Cont (\k -> k n)
1 m>>=f =Cont (\k -> runCont m (\a -> runCont (fa) k)

Soreturnn is Cont-value that throwsstraight away into whatever continuation it is lgghto.m >>=f is a
Cont-value that runswith the continuationa -> f a k , Which receives the result of then applies it to to
get another Cont-value. This is then called with ¢bntinuation we got at the top level; in essemce=f is a
Cont-value that takes the result fregrapplies it ta, then throws that into the continuation.

Exercises
To come.

cal | CC

161 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

By now you should be fairly confident using theibastions of continuations and Cont, so we're gamskip
ahead to the next big concept in continuation-larnds is a function callechlicc , which is short for 'call with

current continuation'. We'll start with an easyrapée.

L
Example: square usingcallcC

- Without callCC

isquare :: Int -> Cont r Int

square n =return (n * 2)

1

- With callCC

isquare :: Int -> Cont r Int

'square n = callCC $\k -> k (n* 2)

We pass dunctionto callcC that accepts one parameter that is in turn a fmcThis function K in our
example) is our tangible continuation: we can e lwe're throwing a value (in this case2) into our
continuation. We can see that #a@cc version is equivalent to theturn version stated above because we
stated thateturnn is just a Cont-value that throwsnto whatever continuation that it is given. Hese, use
callcC to bring the continuation ‘into scope’, and imraégly throw a value into it, just like usimgurn

However, these versions look remarkably similarwbg should we bother usirglicc at all? The power lies

in that we now have precise control of exactly wixencall our continuation, and with what valuest's e
explore some of the surprising power that gives us.

Deciding when to use
We mentioned above that the point of usiagcC in the first place was that it gave us extra poowar what

we threw into our continuation, and when. The failog example shows how we might want to use thisaex
flexibility.

Example: Our first propekallcC function

oo :: Int -> Cont r String

foon=

1 callCC $\k ->do

' letn'=n”"2+3

when (n' > 20) $ k "over twenty"
return (show $ n' - 4)

foo IS a slightly pathological function that computlee square of its input and adds three; if thelt@suhis
computation is greater than 20, then we return frlmenfunction immediately, throwing the String vataver
twenty" into the continuation that is passedo®. If not, then we subtract four from our previowsnputation,
show it, and throw it into the computation. If you'read to imperative languages, you can think lke the

return’ statement that immediately exits the fiomctOf course, the advantages of an expressigubage like
Haskell are thait is just an ordinary first-class function, so yangass it to other functions likéen, or store
it in aReader , etc.

Naturally, you can embed callscallcc within do-blocks:

162 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Example: More developedallcc example involving a do-block

:bar :: Char -> String -> Cont r Int
barcs=do

1 msg <- callCC $ \k -> do

' lets'=c:s

. when (s' == "hello") $ k "They say hello."
t lets" =shows'

1 return ("They appear to be saying " ++ s")
1 return (length msg)

1

When you calk with a value, the entirealicCc call takes that value. In other wordds a bit like a 'goto’
statement in other languages: when weicall our example, it pops the execution out to whyene first called
callCC , themsg <- callCC $... line. No more of the argumentdalicc (the inner do-block) is executed.
Hence the following example contains a useless line

L
Example: Popping out a function, introducing a useless line

1 1
bar :: Contr Int 1
\bar = callCC $ \k -> do '
1letn=5 1
tkn :
1 return 25 1

1

bar will always returrs, and nevees, because we pop out iefr before getting to thesturn 25 line.

A note on typing

Why do we exit usingeturn rather than the second time within tifeo example? It's to do with types. Firs
we need to think about the typekofWe mentioned that we can throw something intand nothing after that
call will get run (unless is run conditionally, like when wrapped irwaen). So the return type afdoesn't
matter; we can never do anything with the resutuohingk. We say, therefore, that the typexas:

We universally quantify the return typekofThis is possible for the aforementioned reasand,the reason it's
advantageous is that we can do whatever we wahtthat result ok. In our above code, we use it as part of a
when construct:

As soon as the compiler saebeing used in thighen, it infers that we want @ result type fok [17] 5o the
final expression in that inner do-block has tgpetr() too. This is the crux of our problem. There are tw
possible execution routes: either the conditiortlemwhen succeeds, in which case the do-block returns
something of typ€ontr String . (The call tok makes the entire do-block have a typeaftrt , wheret is
the type of the argument givenkoNote that this is different from the return tygfex itself, which is just the

163 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

return type of the expression involving the calktmot the entire do-block.) If the condition faiéecution
pases on and the do-block returns something ofdygpe () . This is a type mismatch.

If you didn't follow any of that, just make sureuwyosereturn at the end of a do-block inside a caltéocc
notk.

The type ofcal I cC

We've deliberately broken a trend here: normallgmive've introduced a function, we've given itetgfraight
away, but in this case we haven't. The reasomriplsi the type is rather horrendously complex, iaddesn't
immediately give insight into what the function dper how it works. Nevertheless, you should bellfamwith
it, so now you've hopefully understood the functitself, here's it's type:

You pass dunctionto callcC . This in turn takes a parameterwhich is another functiom, as we remarked
above, has the type:

The entire argument t@licC , then, is a function that takes something of theva type and returrsntrt
wheret is whatever the type of the argumenk twas. SocgallCC 's argument has type:

The implementation ofcal | cC

So far we have looked at the use@icc and its type. This just leaves its implementatighich is:

This code is far from obvious. However, the amaZagj is that the implementations f@ticCf , returnn
andm >>=f can all be produced automatically from their tgpgnatures - Lennart Augustsson's Djinn [1]
(http://lambda-the-ultimate.org/node/1178) is agoaon that will do this for you. See Phil Gossdasogle tech
talk: [2] (http://video.google.com/videoplay?docid851250372422374791) for background on the theory
behind Djinn; and Dan Piponi's article: [3] (htfpaivw.haskell.org/sitewiki/images/1/14/TMR-Issue@)pd
which uses Djinn in deriving Continuation Passitge

164 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

Example: a complicated control structure

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

This example was originally taken from the 'The @amation monad' section of the All about monadsrial

(http://www.haskell.org/all_about_monads/html/inderl) , used with permission.

Example: Using Cont for a complicated control structure

- We use the continuation monad to perform "escape
This function implements a complicated control s
numbers:

Input (n) Output Lis

0-9 n non

10-199 number of digits in (n/2) dig
200-19999 n dig
20000-1999999 (n/2) backwards non
>= 2000000 sum of digits of (n/2) dig

E R
-

'fun Int -> String
fun n = CrunCont' id) $ do
1 str <- callCC $ \exitl -> do
when (n < 10) (exitl $ show n)
let ns = map digitTolnt (show $ n “div" 2
n' <- callCC $ \exit2 -> do
when (length ns < 3) (exit2 $ length ns
when (length ns < 5) (exit2 n)
when (length ns < 7) $ do
let ns' = map intToDigit (reverse ns)
exitl (dropWhile (=='0") ns')
return $ sum ns
return $ "(ns =" ++ show ns ++ ") " ++ s
return $ "Answer: " ++ str

s" from code blocks.
tructure to process

t Shown

e
its of (n/2)
its of (n/2)

e
its of (n/2)

-- define "exit1"

-- define "exit2"

-- escape 2 levels

Because it isn't initially clear what's going ogpecially regarding the usagecaficc , we will explore this
somewhat.

Analysis of the example

Firstly, we can see thain is a function that takes an integeMWe basically implement a control structure
using Cont andallcc that does different things based on the rangentfedts in, as explained with the

comment at the top of the function. Let's dive itite analysis of how it works.

165 of 290

1. Firstly, the(CrunCont id) at the top just means that we run the Cont blbek follows with a final
continuation ofd . This is necessary as the result typaofdoesn't mention Cont.
2. We bindstr to the result of the followingalicc do-block:
1. If nis less than 10, we exit straight away, just singwi
2. If not, we proceed. We construct a list, of digits ofn “div' 2

3. n' (an Int) gets bound to the result of the followingercallcc do-block.

1. Iflengthns<3 ,i.e.ifndivv2 has less than 3 digits, we pop out of this inreeblbck

with the number of digits as the result.

2. If ndivv2 has less than 5 digits, we pop out of the innebldak returning the original.
3. If ndivv2 has less than 7 digits, we pop ouboththe inner and outer do-blocks, with the

result of the digits of 'div':2 in reverse order (a String).

4. Otherwise, we end the inner do-block, returningghm of the digits of “div’ 2

4. We end this do-block, returning the Stritg = X) Y"

and Y is the result from the inner do-bloak,

, Where X iss, the digits oh div 2

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

3. Finally, we return out of the entire function, wihir result being the string "Answer: Z", whereshe
string we got from theallcc do-block.

Example: exceptions

One use of continuations is to model exceptionsdd this, we hold on to two continuations: one thles us
out to the handler in case of an exception, andtloaietakes us to the post-handler code in casesatcess.

Here's a simple function that takes two numbersdaas integer division on them, failing when the

denominator is zero.

Example: An exception-throwingiv

1

rdivExcpt :: Int -> Int -> (String -> Cont r Int) - > Contr Int
1 divExcpt x y handler =

1 callCC $\ok -> do

1 err<-callCC $ \notOk -> do

1 when (y == 0) $ notOk "Denominator 0"

! ok $x 'div'y

. handler err

1

1{- For example,

rrunCont (divExcpt 10 2 error) id --> 5

1 runCont (divExcpt 10 0 error) id --> *** Excepti on: Denominator O
1-}

How does it work? We use two nested callsat@C . The first labels a continuation that will be usegten
there's no problem. The second labels a continutiat will be used when we wish to throw an exiceptlf

the denominator isn't @,div' y

is thrown into thek continuation, so the execution pops right backtout

the top level oflivexcpt . If, however, we were passed a zero denominatithwow an error message into the
notOk continuation, which pops us out to the inner dock] and that string gets assigne@rto and given to

handler

A more general approach to handling exceptionsheaseen with the following function. Pass a comjarieas
the first parameter (which should be a functionrtgla continuation to the error handler) and aordmandler as
the second parameter. This example takes advaotdige generic MonadCont class which covers looth

andcontT by default, plus any other continuation classesuer has defined.

Example: Generalry using continuations.

1 1
1tryCont :: MonadCont m => ((err -> m a) -> m a) -> (err->ma)->ma 1
1tryContc h = '
1 callCC $\ok -> do 1
1 err<-callCC $ \notOk -> do x <- ¢ notOk; ok X :
v herr 1
1 1

For an example using/ , see the following program.

166 of 290

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Example: Usingtry

data SqrtException = LessThanZero deriving (Show, E q)

1

:sqrtIO i1 (SqrtException -> ContT r 10 ()) -> ContT rio ()
1sqrtlO throw = do

! In <- lift (putStr "Enter a number to sqrt: " >> readLn)

1 when (In < 0) (throw LessThanZero)
- "

1 lift $ print (sqrt In)

1

:main = runContT (tryCont sqrtlO (lift . print)) ret urn

Example: coroutines

Notes

1.
2.

a b~ w

~N o

10.
11.
12.
13.
14.

15.

16.

167 of 290

1 At least as far as types are concerned, but Wwglrey to avoid that word :)

1 More technicallyfst andsnd have types which limit them to pairs. It wouldib®ossible to define
projection functions on tuples in general, becabsg'd have to be able to accept tuples of diffesezes,
so the type of the function would vary.

. 1 In fact, these are one and the same concept ikeas
. 1 This isn't quite whathr andord do, but that description fits our purposes weilj &'s close enough.
. 1 To make things even more confusing, there's dgtaaén more than one type for integers! Don't worr

we'll come on to this in due course.

. 1 This has been somewhat simplified to fit our pgg® Don't worry, the essence of the functioneseth
. 1 Some of the newer type system extensions to @élreak this, however, so you're better off just

always putting down types anyway.

. 1 This is a slight lie. That type signature wouldaméhat you can compare two values of any type

whatsoever, but this clearly isn't true: how can gee if two functions are equal? Haskell inclual&nd
of 'restricted polymorphism' that allows type vatés to range over some, but not all types. Haskell
implements this usintype classeswvhich we'll learn about later. In this case, tberect type of==) iSEq
a=>a->a->Bool

. T In mathematicsy! normally means the factorial af but that syntax is impossible in Haskell, so we

don't use it here.

1 Actually, defining the factorial of O to be 1 istrjust arbitrary; it's because the factorial sepresents
an empty product.

1 This is no coincidence; without mutable variablesursion is the only way to implement control
structures. This might sound like a limitation ligbu get used to it (it isn't, really).

1 Actually, it's using a function callgdldi , which actually does the recursion.

1 Moggi, Eugenio (1991). "Notions of Computation aidnads".Information and Computatio83 (1).

1 w:Philip Wadler. Comprehending Monads (http://sder.ist.psu.edu/wadler92comprehending.html) .
Proceedings of the 1990 ACM Conference on LISPRantttional Programming, Nice. 1990.

1 w:Philip Wadler. The Essence of Functional Prograng
(http://citeseer.ist.psu.edu/wadler92essence.ht@dnference Record of the Nineteenth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of ProgramgiLanguages. 1992.

1 Simon Peyton Jones, Philip Wadler (1993). "Impeeafunctional programming"

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

(http://lhomepages.inf.ed.ac.uk/wadler/topics/mortadg#imperative) 20'th Symposium on Principles
Programming Languages

17. 1 It infers a monomorphic type becausis bound by a lambda expression, and things boyridmbdas
always have monomorphic types. See Polymorphism.

Mutable objects

As one of the key strengths of Haskell isptsity: all side-effects are encapsulated in a monads iftakes
reasoning about programs much easier, but manyigabprogramming tasks require manipulating state
using imperative structures. This chapter will dssadvanced programming techniques for using iaiper
constructs, such as references and mutable awédpsut compromising (too much) purity.

The ST and IO monads

Recall the The State Monad and The 10 monad frachapter on Monads. These are two methods of
structuring imperative effects. Both references ameys can live in state monads or the 10 monaaytgch
one is more appropriate for what, and how doesuseg¢hem?

State references: STRef and IORef
Mutable arrays

Examples

Zippers

Theseus and the Zipper

The Labyrinth

"Theseus, we have to do something" said Homerf aleketing officer of Ancient Geeks Inc.. Thesgus the
Minotaur action figure™ back onto the shelf ands1d@oday's children are no longer interested eahcient
myths, they prefer modern heroes like SpidermaBpamnge Bob.Heroes Theseus knew well how much he has

been a hero in the labyrinth back then on ¢HleBut those "modern heroes” did not even try toeapp
realistic. What made them so successful? Anywapefpending sales problems could not be resothed,
shareholders would certainly arrange a passagetiwestyx for Ancient Geeks Inc.

"Heureka! Theseus, | have an idea: we implement gtary with the Minotaur as a computer game! Wit
you say?" Homer was right. There had been severdtd) epic (and chart breaking) songs, a mandatorye
trilogy and uncountable Theseus & the Minotaur™mioks, but a computer game was missing. "Perfhef).t

168 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Now, Theseus, your task is to implement the gz

A true hero, Theseus chose Haskell as the langoagglement the company's redeeming product in. Of
course, exploring the labyrinth of the Minotaur ie®ecome one of the game's highlights. He pornldévie
have a two-dimensional labyrinth whose corridons paint in many directions. Of course, we can aus$tirom
the detailed lengths and angles: for the purposmaing the way out, we only need to know how gagh
forks. To keep things easy, we model the labyragla tree. This way, the two branches of a forkiogjoin
again when walking deeper and the player cannobgod in circles. But | think there is enough ogpaoity to
get lost; and this way, if the player is patienbegh, he can explore the entire labyrinth withlgfehand rule.

:data Node a = DeadEnd a
! | Passage a (Node a)
1 | Fork a (Node a) (Node a)

Passage

Fork

DeadEnd

An example labyrinth and its representation as tree

Theseus made the nodes of the labyrinth carry tta parameter of typ& Later on, it may hold game relevant
information like the coordinates of the spot a nddsignates, the ambience around it, a list of géengs that
lie on the floor, or a list of monsters wanderinghat section of the labyrinth. We assume thatheiper
functions

:get :»Node a->a :
jput :: @ -> Node a -> Node a '

retrieve and change the value of typstored in the first argument of every constructatode a .

Exercises

1. Implementget andput . One case faget is
get (Passage x _) =X

2. To get a concrete example, write down the labyrgitbwn in the
picture as a value of typ@de (Int,Int) . The extra parameter
(Int,Int) holds the cartesian coordinates of a node.

"Mh, how to represent the player's current positiothe labyrinth? The player can explore deeperhnosing
left or right branches, like in"

169 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:turnRight :: Node a -> Maybe (Node a)
| turnRight (Fork _ I r) = Justr
1turnRight _ = Nothing

1

"But replacing the current top of the labyrinth vihe corresponding sub-labyrinth this way is nobation,
because he cannot go back then." He pondered viAltan applyAriadne's trick with the threafbr going
back. We simply represent the player's positiothieyist of branches his thread takes, the labyrahvays
remains the same."

data Branch = KeepStraightOn
' | TurnLeft

1 | TurnRight
:type Thread = [Branch]

Representation of the player's position by
Ariadne's thread.

"For example, a threguurnRight,KeepStraightOn] means that the player took the right branch at the
entrance and then went straight dowrassage to reach its current position. With the threae, pfayer can
now explore the labyrinth by extending or shortgninFor instance, the functiamnRight extends the thread
by appending th&urnRight to it."

:turnRight :: Thread -> Thread
jurnRight t = t ++ [TurnRight]

1
rretrieve :: Thread -> Node a -> a

1

1
retrieve [] n =getn '
retrieve (KeepStraightOn:bs) (Passage _ n) = retrie ve bsn 1
retrieve (TurnLeft :bs) (Fork _1r) = retrie ve bs | '
retrieve (TurnRight :bs) (Fork _Ir) =retrie ve bsr 1
1 1

Exercises

Write a functiorupdate that applies a function of tyge>a to the extra
data at the player's position.

Theseus' satisfaction over this solution did nst lang. "Unfortunately, if we want to extend thelpor go
back a step, we have to change the last elemehéedist. We could store the list in reverse, brdrethen, we
have to follow the thread again and again to acttesdata in the labyrinth at the player's positBoth actions
take time proportional to the length of the thread for large labyrinths, this will be too longn'isthere

170 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

another way?"

Ariadne's Zipper

While Theseus was a skillful warrior, he did natitrmuch in the art of programming and could niod fa
satisfying solution. After intense but fruitlesggdation, he decided to call his former love Ariadio ask her f
advice. After all, it was she who had the idea wiité& thread.

"Ariadne Consulting. What can | do for ydu?

Our hero immediately recognized the voice.

"Hello Ariadne, it's Theseus."

An uneasy silence paused the conversation. Thesmwesmbered well that he had abandoned her onldralis
of Naxos and knew that she would not appreciatedlis But Ancient Geeks Inc. was on the road toétaand
he had no choice.

"Uhm, darling, ... how are you?"

Ariadne retorted an icy respons®|r! Theseus, the times dérling are long over. What do you waht?
"Well, I uhm ... I need some help with a programgngmoblem. I'm programming a new Theseus & the
Minotaur™ computer game."

She jeered,Yet another artifact to glorify your 'heroic beidgnd you want me of all people to help ybu?
"Ariadne, please, | beg of you, Ancient Geeks Ia@n the brink of insolvency. The game is our tasort!"
After a pause, she came to a decision.

"Fine, | will help you. But only if you transfer alsstantial part of Ancient Geeks Inc. to me. Lsdlg thirty
percent.

Theseus turned pale. But what could he do? Thatgituwas desperate enough, so he agreed but ey a
negotiating Ariadne's share to a tenth.

After Theseus told Ariadne of the labyrinth repréaéion he had in mind, she could immediately gidgice,
"You need &ipper."
"Huh? What does the problem have to do with my'fly?

"Nothing, it's a data structure first published r&d Hudf9 »

llAh.ll

"More precisely, it's a purely functional way to enemt tree-like data structures like lists or bin@egs with a
singlefocusor finger that points to a subtree inside the data stru@odeallows constant time updates and

lookups at the spot it points[%g]. In our case, we want a focus on the player'siposi
"I know for myself that | want fast updates, butshdo | code it?"
"Don't get impatient, you cannot solve problems direg, you can only solve them by thinking. Theyoplace

where we can get constant time updates in a ptuebttional data structure is the topmost o2, So, the
focus necessarily has to be at the top. Currethtéyfopmost node in your labyrinth is always thearce, but
your previous idea of replacing the labyrinth by af its sub-labyrinths ensures that the playertion is at
the topmost nodé.

"But then, the problem is how to go back, becaligha@se sub-labyrinths get lost that the playet mot choose
to branch into.”

"Well, you can use my thread in order not to loseghb-labyrinths.

Ariadne savored Theseus' puzzlement but quicklyicoad before he could complain that he alreadguse
Ariadne's thread,

"The key is taylue the lost sub-labyrinths to the thresal that they actually don't get lost at all. Tingntion is
that the thread and the current sub-labyrinth cempeht one another to the whole labyrinth. Withreat
sub-labyrinth, | mean the one that the player stadtop of. The zipper simply consists of the ddrand the
current sub-labyrinth.

171 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

The zipper is a pair of Ariadne's thread and
the current sub-labyrinth that the player
stands on top. The main thread is colored red
and has sub-labyrinths attached to it, such
that the whole labyrinth can be reconstructed

from the pair.

Theseus didn't say anything.

"You can also view the thread asantextin which the current sub-labyrinth resides. Nost'sl find out how to
defineThread a . By the way;Thread has to take the extra parametdrecause it now stores sub-labyrinths. The
thread is still a simple list of branches, but bthanches are different from befdre.

data Branch a = KeepStraightOn a
' | TurnLeft a (Node a)

| | TurnRight a (Node a)
ttype Thread a = [Branch a]

"Most importantly,TumLeft andTumRight have a sub-labyrinth glued to them. When the plalieoses say

to turn right, we extend the thread witmanRight and now attach the untaken left branch to ithso it

doesn't get lost.

Theseus interrupts, "Wait, how would | implemens thehavior as a functiaaornRight ? And what about the
first argument of typa for TumRight ? Ah, | see. We not only need to glue the branahwould get lost, but
also the extra data of timerk because it would otherwise get lost as well. Socan generate a new branch by
a preliminary"

"Now, we have to somehow extend the existing threidial it."

"Indeed. The second point about the thread is tlimstoredbackwards To extend it, you put a new branch in
front of the list. To go back, you delete the togtrelement.

"Aha, this makes extending and going back take oahstant time, not time proportional to the lengghn my

previous version. So the final versiont@fiRight IS

:turnRight :: Zipper a -> Maybe (Zipper a)

turnRight (t, Fork x | r) = Just (TurnRight x | : t)
iturnRight _ = Nothing

1

172 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Taking the right subtree from the entrance. Of seuthe thread is initially empty. Note that theetd
runs backwards, i.e. the topmost segment is the raoent.

"That was not too difficult. So let's continue wikdepstraighton for going down a passage. This is even easier
than choosing a branch as we only need to keeextna data:"

:keepStraightOn :: Zipper a -> Maybe (Zipper a)

keepStraightOn (t, Passage x n) = Just (KeepStraigh tOnx:t, n)
keepStraightOn _ = Nothing

1

TurnRight KeepStraightOn

)FreepS!rathIGn (TumRight

Now going down a passage.

Exercises
Write the functionurnLeft

Pleased, he continued, "But the interesting paud g back, of course. Let's see..."

:back :: Zipper a -> Maybe (Zipper a)

1

1
iback ([, _) = Nothing '
back (KeepStraightOn x : t, n) = Just (t, Passage X n) 1
back (TurnLeft xr :t,I)=Just(t, Fork x| r) '
back (TurnRight x| :t, r) = Just (t, Fork x | r 1
1 1

"If the thread is empty, we're already at the erdesof the labyrinth and cannot go back. In aleottases, we
have to wind up the thread. And thanks to the httants to the thread, we can actually reconsthect t
sub-labyrinth we came from."

Ariadne remarked,Note that a partial test for correctness is to klbat each bound variable likel andr on
the left hand side appears exactly once at thé highds side as well. So, when walking up and dawipper,
we only redistribute data between the thread aadtirent sub-labyrinth.

173 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Exercises

1. Now that we can navigate the zipper, code the fanstet , put
andupdate that operate on the extra data at the playerisigos

2. Zippers are by no means limited to the concreteng@Node a ,
they can be constructed for all tree-like data $yf§& on and
construct a zipper for binary trees

Start by thinking about the possible branchesch a that a thread

can take. What do you have to glue to the threaghvexploring the
tree?

3. Simple lists have a zipper as well.

What does it look like?

4. Write a complete game based on Theseus' labyrinth.

Heureka! That was the solution Theseus sought armuieAt Geeks Inc. should prevail, even if partiaiyd to
Ariadne Consulting. But one question remained:

"Why is it called zipper?"

"Well, would have called it 'Ariadne's pearl nextd’. But most likely, it's called zipper becausethread is i
analogy to the open part and the sub-labyrintikesthe closed part of a zipper. Moving aroundhie tlata
structure is analogous to zipping or unzippingzipper:'

"Ariadne's pearl necklace',” he articulated disfidly. "As if your thread was any help back thean®@rete."”
"As if the idea with the thread was yourshe replied.

"Bah, | need no thread," he defied the fact thaadteally did need the thread to program the game.

Much to his surprise, she agreed/éll, indeed you don't need a thread. Another vVt literally grab the tree
at the focus with your finger and lift it up in the. The focus will be at the top and all otheairiwhes of the tre
hang down. You only have to assign the resultiag & suitable algebraic data type, most likely dtidhe
Zipper

174 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Grab the focus with your finger, lift it in the and the
hanging branches will form new tree with your fingé the
top, ready to be structured by an algebraic daga.ty

"Ah." He didn't need Ariadne's thread but he neefiealdne to tell him? That was too much.
"Thank you, Ariadne, good bye."
She did not hide her smirk as he could not seeyvay through the phone.

Exercises

Take a list, fix one element in the middle with ydager and lift the list
into the air. What type can you give to the resgltiree?

Half a year later, Theseus stopped in front of@shkindow, defying the cold rain that tried to ggaender his
buttoned up anorak. Blinking letters announced

"Spider-Man: lost in the Web"

- find your way through the labyrinth of threads -
the great computer game by Ancient Geeks Inc.

He cursed the day when he called Ariadne and said Ipart of the company. Was it she who contrired
unfriendly takeover by WineOS Corp., led by Ariagnieusband Dionysus? Theseus watched the raindrops
finding their way down the glass window. After fiduction line was changed, nobody would produce
Theseus and the Minotaur™ merchandise anymoreigHed His time, the time of heroes, was over. Now
came the super-heroes.

Differentiation of data types

The previous section has presented the zipperydoaugment a tree-like data structdegle a with a finger
that can focus on the different subtrees. Whilecargstructed a zipper for a particular data strotiate a , the
construction can be easily adapted to differerd tfata structures by hand.

Exercises

Start with a ternary tree

175 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

and derive the correspondimgread a andzipper a

Mechanical Differentiation

But there is also an entirely mechanical way tovdethe zipper of any (suitably regular) data type.
Surprisinigly, 'derive’ is to be taken literallprfthe zipper can obtained by ttlerivative of the data type, a

discovery first described by Conor McBrgd. The subsequent section is going to explicatetthlg
wonderful mathematical gem.

For a systematic construction, we need to calcwlétetypes. The basics of structural calculatianth types
are outlined in a separate chapter Generic Prognagnamd we will heavily rely on this material.

Let's look at some examples to see what their zgppave in common and how they hint differentiatidhe
type of binary tree is the fixed point of the resiue equation

Tree? =1+ Tree? x Tree2.

When walking down the tree, we iteratively choasenter the left or the right subtree and then thae
not-entered subtree to Ariadne's thread. Thushtheches of our thread have the type

Branch2 = Tree2 4 Tree2 = 2 x TreeZ.
Similarly, the thread for a ternary tree
Treef = 1+ Treef x Tree8 x Treef
has branches of type
Branchd =3 x Tree3 x TreeS

because at every step, we can choose betweerstivrees and have to store the two subtrees weetual.

Isn't this strikingly similar to the derivativcf:;i;,p2 — 2% andcgi;ﬁ =3 x r’?
NE Tz

The key to the mystery is the notion of tree-hole contexiof a data structure. Imagine a data structure
parameterised over a typelike the type of tree Tree X . If we were to remove one of the items of thisetyp
X from the structure and somehow mark the now emp$ytion, we obtain a structure with a marked hdle
result is called "one-hole context" and insertingtam of typeX into the hole gives back a completely filled
Tree X - The hole acts as a distinguished position, ado€he figures illustrate this.

176 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

= Treg X

Removing a value of typ¥ from a Tiree X A more abstract illustration of plugginginto a one-hole
leaves a hole at that position. context.

Of course, we are interested in the type to give tme-hole context, i.e. how to represent it iskddl. The
problem is how to efficiently mark the focus. Bstwe will see, finding a representation for oneehmntexts
by induction on the structure of the type we wantake the one-hole context of automatically |etadsn

efficient data typ@“]. So, given a data structL ' X~ with a functorF and an argument typé we want to
calculate the typ 5§ F X~ of one-hole contexts from the structureg=ofAs our choice of notatios) F* already
reveals, the rules for constructing one-hole casteksums, products and compositions are exaeilyriiz'
rules for differentiation.

One-hole context lllustration

. . . 1 F 1 -
(Ei()’ami‘-,q) X — o0 There is nXin A = (onsty X, so the type of its one-hole
contexts must be empty.

There is only one position for iteXsin X' = J4 X.
Removing oneX leaves ndX in the result. And as there is only

(0Id) X -1 one position we can remove it from, there is eyamtie
one-hole context fc J{ X . Thus, the type of one-hole
contexts is the singleton type.

p - o Py As an element of typE + G is either of typd- or of typeG, a
E}(F | G) = 0F +0G one-hole context is also eitr@ F* or (.

HFxG) = +
NFxG) |=Fx0G+0F x@G

The hole in a one-hole context of a pair is eitheahe first or
in the second component.

177 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

HFoG) |=(0Fo@)xdG

Chain rule. The hole in a composition arises by making a
hole in the enclosing structure and fitting thelesed
structure in.

Of course, the functioplug that fills a hole has the ty F X') x X — X.

So far, the syntag denotes the differentiation of functors, i.e. ddilad of type functions with one argument.
But there is also a handy expression oriented 0ot slightly more suitable for calculation. The sulystcr
indicates the variable with respect to which we Wardifferentiate. In general, we have

(OF) X = 0x(F X)
An example is
OIdx [d) X =0x(X x X)=1x X+ X x1=2xX

Of course ¢y is just point-wise whereé is point-free style.

Exercises

1. Rewrite some rules in point-wise style. For examitie left hand
side of the product rule becomdy (F' X x G X) = ...

2. To get familiar with one-hole contexts, differetéighe product
X=X w« X x ... % X ofexactlyn factors formally and
convince yourself that the result is indeed theesponding
one-hole context.

3. Of course, one-hole contexts are useless if weatgsing values of
type X back into them. Write thegug functions corresponding to the
five rules.

4. Formulate thehain rule for two variables and prove that it yields
one-hole contexts. You can do this by viewing atctor ' X' YV
as an normal functor in the pakY). Of course, you may need a
handy notation for partial derivatives of bifuncan point-free
style.

Zippers via Differentiation

178 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

The above rules enable us to constaipers for recursive data typyt F' := puX. F' X whereF is a
polynomial functor. A zipper is a focus on a partar subtree, i.e. substructure of tygeinside a large tree of
the same type. As in the previous chapter, it @represented by the subtree we want to focusdathen
thread, that is the context in which the subtregles

Zippery = uF x Context .

Now, the context is a series of steps each of whlicioses a particular subtiuF among those i F’ [uF.
Thus, the unchosen subtrees are collected togeytite one-hole conte 5 F (i F'). The hole of this context
comes from removing the subtree we've chosen &r.dpttting things together, we have

Contert p = List (OF (pF)).

Ea

or equivalently
Contertp =1 4 0F (uF) x Contert p.

To illustrate how a concrete calculation proceéets systematically construct the zipper for @byrinth data
type

:data Node a = DeadEnd a \
! | Passage a (Node a) '
1 | Fork a (Node a) (Node a) 1

1

This recursive type is the fixed point
Node A = pX. NodeF 4 X
of the functor
NodeFa X =A+Ax X+ Ax X xX.
In other words, we have
Node A = NodeF 4 (Node A) = A+ A x Node A + A x Node A x Node A.
The derivative reads
Ox(Nodel'y X)=A+2xAxX
and we get
dNodeF 5 (Node A) = A +2 x A x Node A.
Thus, the context reads

Context yogor = List (0 NodeF 4 (Node A)) = List (A+ 2 x A x (Node A)).

Eary

Comparing with

179 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:data Branch a = KeepStraightOn a
' | TurnLeft a (Node a)

| | TurnRight a (Node a)
:data Thread a = [Branch a]

we see that both are exactly the same as expected!

Exercises

1. Redo the zipper for a ternary tree, but with déferation this time.

2. Construct the zipper for a list.

3. Rhetorical question concerning the previous exeraidat's the
difference between a list and a stack?

Differentation of Fixed Point

There is more to data types than sums and produetalso have a fixed point operator with no direct
correspondence in calculus. Consequently, the taltessing a rule of differentiation, namely haw t
differentiate fixed pointu ' X = uY. F X Y~

As its formulation involves the chain rule in twanables, we delegate it to the exercises. Instsadyill
calculate it for our concrete example tNode A:

Jda{ Node A) Ja(A+ A x Node A+ A x Node A x Node A)
1 + Node A + Node A x Node A
Fda(Node A) x (A4 2 x A x Node A).

li2

Of course, expandindl 4 (Nade A) further is of no use, but we can see this asedfpoint equation and arri
at

Ja(Node A) = uX. TA+SAx X
with the abbreviations
TA=1+ Node A+ Node A x Node A
and
SA=A+42x Ax Node A

The recursive type is like a list with element ty§' 4, only that the empty list is replaced by a base e
typeT" A. But given that the list is finite, we can repldbe base case with 1 and 7" 4 out of the list:

Oa(Node A) =T Ax (uX.1+SAx X)=TAx List (S A)
Comparing with the zipper we derived in the lasgeaph, we see that the list type is our context

List (Sr A) = (jﬂﬂtﬂItﬁ-‘mﬁfF

180 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

and that

A xT A= Node A-

In the end, we have
Zipper yoger = Oa{ Node A) x A.

Thus, differentiating our concrete examNgde A with respect tdA yields the zipper up to all

Exercises

1. Use the chain rule in two variables to formulatela for the
differentiation of a fixed point.

2. Maybe you know that there are inductiy@ &nd coinductive fixed
points ¢). What's the rule for coinductive fixed points?

Zippers vs Contexts

In general however, zippers and one-hole context®®é different things. The zipper is a focus dnteary
subtrees whereas a one-hole context can only fottise argument of a type constructor. Take fongxa the
data type

which is the fixed point
Tree A = pX. A4+ X x X.

The zipper can focus on subtrees whose t@mnior Leaf but the hole of one-hole contextTree A4 may only
focus aLeaf s because this is where the items of #eside. The derivative (Node A only turned out to be
the zipper because every top of a subtree is aldegsrated with aA.

Exercises

1. Surprisingly,EiA(Tree fl) ¥ A and the zipper fcTree A again
turn out to be the same type. Doing the calculagamot difficult
but can you give a reason why this has to be teea

2. Prove that the zipper construction fd¥ can be obtained by
introducing an auxiliary variabMg, differentiatinguX. Y x F' X
with respect to it and re-substitutiNg= 1. Why does this work?

3. Find a typ&(; A whose zipper is different from the one-hole
context.

Conclusion

181 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

We close this section by asking how it may happam tules from calculus appear in a discrete ggttin
Currently, nobody knows. But at least, there issar@éte notion ofinear, namely in the sense of "exactly onc
The key feature of the function that plugs an itdrtype X into the hole of a one-hole context is the faet the
item is used exactly once, i.e. linearly. We magklof the plugging map as having type

OxF X — (X — FX)

where 4 —» 3 denotes a linear function, one that does not daior ignore its argument like in linear logic.
In a sense, the one-hole context is a representatithe function spacX” —s F' X, which can be thought of
being a linear approximation X — F' X.

Notes

1. 1 At least as far as types are concerned, but Wwglrey to avoid that word :)

2. 1 More technicallyfst andsnd have types which limit them to pairs. It wouldibgossible to define
projection functions on tuples in general, becabsg'd have to be able to accept tuples of diffesezes,
so the type of the function would vary.

3. 1 In fact, these are one and the same concept ikelas

4. 1 This isn't quite whathr andord do, but that description fits our purposes weil] &'s close enough.

5. 1 To make things even more confusing, there's dgtaaén more than one type for integers! Don't worr
we'll come on to this in due course.

6. 1 This has been somewhat simplified to fit our pgg® Don't worry, the essence of the functionaseth

7. 1 Some of the newer type system extensions to @élkreak this, however, so you're better off just
always putting down types anyway.

8. 1 This is a slight lie. That type signature wouldamehat you can compare two values of any type
whatsoever, but this clearly isn't true: how can gee if two functions are equal? Haskell inclual&nd
of 'restricted polymorphism' that allows type vatés to range over some, but not all types. Haskell
implements this usintype classeswvhich we'll learn about later. In this case, tbherect type of==) iSEq
a=>a->a->Bool

9. 1 In mathematicsy! normally means the factorial af but that syntax is impossible in Haskell, so we
don't use it here.

10. 1 Actually, defining the factorial of O to be 1 istrjust arbitrary; it's because the factorial aepresents
an empty product.

11. 1 This is no coincidence; without mutable variablesursion is the only way to implement control
structures. This might sound like a limitation ligbu get used to it (it isn't, really).

12. 1 Actually, it's using a function callgeldi , which actually does the recursion.

13. 1 Moggi, Eugenio (1991). "Notions of Computation aidnads".Information and Computatio®3 (1).

14. 1 w:Philip Wadler. Comprehending Monads (http://eger.ist.psu.edu/wadler92comprehending.html) .
Proceedings of the 1990 ACM Conference on LISPRantttional Programming, Nice. 1990.

15. 1 w:Philip Wadler. The Essence of Functional Progreing
(http://citeseer.ist.psu.edu/wadler92essence.ht@dnference Record of the Nineteenth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of ProgramgiLanguages. 1992.

16. 1 Simon Peyton Jones, Philip Wadler (1993). "Impeeafunctional programming”
(http://lhomepages.inf.ed.ac.uk/wadler/topics/mortadg#imperative) 20'th Symposium on Principles
Programming Languages

17. 1 It infers a monomorphic type becausis bound by a lambda expression, and things boyridmbdas
always have monomorphic types. See Polymorphism.

18. 1 lan StewartThe true story of how Theseus found his way otlteoflabyrinth Scientific American,
February 1991, page 137.

19. 1 Gérard HuetThe Zipper Journal of Functional Programming, 7 (5), Se@7,%p. 549--554. PDF
(http://www.st.cs.uni-sb.de/edu/seminare/2005/adedrp/docs/huet-zipper.pdf)

182 of 290 11/5/2007 9:02 P

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

20. 1 Note the notion otipperas coined by Gérard Huet also allows to replacelevbubtrees even if there is
no extra data associated with them. In the caseiofabyrinth, this is irrelevant. We will come ato
this in the section Differentiation of data types.

21. 1 Of course, the second topmost node or any oth# abmost a constant number of links away from the
top will do as well.

22. 1 Note that changing the whole data structure agsggbto updating the data at a node can be achieved
amortized constant time even if more nodes thantigstop node is affected. An example is incremngnt
a number in binary representation. While incremmgngiay111..11 must touch all digits to yield
1000..00 , the increment function nevertheless runs in @risamortized time (but not in constant worst
case time).

23. 1 Conor Mc BrideThe Derivative of a Regular Type is its Type of -Bioée ContextsAvailable online.
PDF (http://www.cs.nott.ac.uk/~ctm/diff.pdf)

24. 1 This phenomenon already shows up with generis.trie

See Also

» Zipper (http://www.haskell.org/haskellwiki/Zippeoh the haskell.org wiki
= Generic Zipper and its applications (http://okmigitp/Computation/Continuations.html#zipper)
m Zipper-based file server/OS (http://okmij.org/ftpi@putation/Continuations.html#zipper-fs)

Fun with Types

Existentially quantified types

Existential types, or 'existentials’ for short, ar@ay of 'squashing’ a group of types into oneglsitype.

Firstly, a note to those of you following alongh@ime: existentials are part of GH@/pe system extensions
They aren't part of Haskell98, and as such yoalehto either compile any code that contains thetm an
extra command-line parameter-fafasgow-exts , Or put{-# LANGUAGE ExistentialQuantification #-} at

the top of your sources that use existentials.

Theforal | keyword

Theforall keyword is used to explicitly bring type variablato scope. For example, consider something
you've innocuously seen written a hundred timefaso

. . L
Example: A polymorphic function

183 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

But what are these andb? Well, they're type variables, you answer. Themitansees that they begin with a

lowercase letter and as such allows any typeltthflk role. Another way of putting this is thabte variables
are 'universally quantified'. If you've studiedrf@l logic, you will have undoubtedly come across th
quantifiers: 'for all' (0'%) and 'exists’ (0J). They 'quantify’ whatever comes after them: faaraple, 3 P
(whereP is any assertion. For exampRecould bex > 5) means that there is at least &rseich thaP. Wy P
means that for everyyou could imaginep.

Theforall keyword quantifiesypesin a similar way. We would rewriteaps type as follows:

Example: Explicitly quantifying the type variables

Theforall can be seen to be 'bringing the type variablasdb into scope'. In Haskell, any use of a lowercase
type implicitly begins with @rall keyword, so the two type declarations @ are equivalent, as are the
declarations below:

L
Example: Two equivalent type statements

L
id ;a->a
:id v foralla.a->a

What makes life really interesting is that you caerride this default behaviour by explicitly tellj Haskell
where theorall keyword goes. One use of this is for buildexgstentially quantified types also known as
existential types, or simply existentials.

But wait... isn'torall theuniversalquantifier? How do you get an existential type oiuthat? We look at this
in a later section. However, first, let's see aanagle of the power of existential types in action.

Example: heterogeneous lists

Haskell's typeclass system is powerful becaudéiva extensible groupings of types. So if you knatype
instantiates some classyou know certain things about that type. For egleémnt instantiate€q, so we know
thatint s can be compared for equality.

Suppose we have a group of values. We don't kntiveyf are all the same type, but we do know thky al
instantiate some class, i.e. we know we can datainghing with all the values (like compare th&mequality
were the claskg). It might be useful to throw all these value®iatlist. We can't do this normally because lists
are homogeneous with respect to types: they canocomitain a single type. However, existential typksw us

to loosen this requirement by defining a 'type Hide'type box':

184 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

L
Example: Constructing a heterogeneous list

:data ShowBox = forall s. Show s =>SB s
1

 hetroList :: [ShowBox]

:hetroList =[SB (), SB 5, SB True]

Now we know something about all the elements o list: they can be converted to a stringshow. In fact,
that's pretty much the only thing we know aboutithe

L
Example: Using our heterogeneous list

1 1
tinstance Show ShowBox where 1
1 show (SB s) = show s '
1 1
ymain :: 10 () '
1 main = mapM_ print hetroList 1
1 1

How does this work? In the definition gifow for showBox, we don't know the type af when we originally
wrapped the value, it didn't matter what its typeswas long as it was an instance of Show), dgptshas been
forgotten. Wedo know that the type is an instance of Show dué¢ocbnstraint on thgs constructor.
Therefore, it's legal to use the functiwew ons, as seen in the right-hand side of the functidmdm®n.

As for main , recall the type of print:

Example: Types of the functions involved

: print :: Show s =>s -> |O () -- print x = putStrL n (show x)
1mapM_:: (@a->mb) ->[a] ->m ()

rmapM_ print :: Show s =>[s] -> 10 ()

1

As we just declaredhowBox an instance afhow, we can print the values in the list.

True existential types

Let's get back to the question we asked ourseleesiple of sections back. Why

are we calling these existential typesiéll is the universal quantifier? _
Since you can get

Firstly, forall really does mean 'for all'. One way of thinkingabtypes is as sets existential types
of values with that type, for example, Bool is gt {True, False | } (remember ~ Withforall

that bottom (often writte |) is a member of every type!), Integer is the det o ;E;SES(! Lcirgges
integers (and bottom), String the set of all pdssdirings (and bottom), and so on. exists _keyword
forall ~ serves as an intersection over those sets. For@&gorall a. a is the which would jus’t
intersection over all types | }, that is, the type (i.e. set) whose only value.(i

element) is bottom. Why? Think about it: how mahyhe elements of Bool

185 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

appear in String? Bottom is the only value comnmalk types. be redundant.

A few more examples:

1. [forall a. a] is the type of a list whose elements all havetypeforall a. a , 1.e. a list of bottoms.
2. [forall a. Show a => a] is the type of a list whose elements all havetypeforall a. Show a =>
a. The Show class constraint limits the sets yoerg#ct over (here we're only intersect over ingarmé
Show), but | is still the only value common to all these typ@sthis too is a list of bottoms.
3. [forall a. Num a => a] . Again, the list where each element is a membaitldfpes that instantiate
Num. This could involve numeric literals, which leathe typéorall a. Num a => a , as well as bottom.
4. forall a. [a] is the type of the list whose elements have sdheegame) type a, which can be assumed
to be any type at all by a callee (and therefoiettho is a list of bottoms).

In the last section, we developed a heterogenestussing a 'type hider'. Conceptually, the typa of
heterogeneous list jsxists a. a] , I.e. the list where all elements have tygiets a. a . This exists

keyword (which isn't present in Haskell) is, as yoay guess, anionof types. Therefore the aforementioned
type is that of a list where all elements couldetaky type at all (and the types of different eletae@eedn't be
the same).

We can't get the same behaviour usingl s except by using the approach we showed abovatygat. Let's
declare one.

- . 1
Example: An existential datatype

This means that:

L
Example: The type of our existential constructor

So we can pass any type we wantkd and it'll convert it into a T. So what happens wiee deconstruct iakT
value?

L
Example: Pattern matching on our existential constructor

As we've just stated, could be of any type. That means it's a membspofe arbitrary type, so has the type
X . exists a. a . In other words, our declaration for T is isomagaio the following one:

186 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

L
Example: An equivalent version of our existential datatypseudo-Haskell)

And suddenly we have existential types. Now wercake a heterogeneous list:

L
Example: Constructing the hetereogeneous list
:heteroList = [MKT 5, MKT (), MKT True, MKT map] :
1 1

Of course, when we pattern matchrereroList we can't do anything with its eleme[ﬁ@, as all we know is
that they have some arbitrary type. However, ifareto introduce class constraints:

L
Example: A new existential datatype, with a class constrain
E data T' = forall a. Show a => MKT' a E

Which is isomorphic to:

L
Example: The new datatype, translated into 'true' exiséémgpes
Edata T' = MKT' (exists a. Show a => a) E

Again the class constraint serves to limit the sype're unioning over, so that now we know the eslnside a
MKT' are elements of some arbitrary typleich instantiates Shawhe implication of this is that we can apply

show to a value of typexists a. Show a=>a . It doesn't matter exactly which type it turns twbe.
i L
Example: Using our new heterogenous setup ﬁ

:heteroList' = [MKT' 5, MKT" (), MKT" True]

1 main = mapM_ (\(MKT" x) -> print x) heteroList'
1

:{— prints:

10

1 True

187 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

To summarise, the interaction of the universal gtianwith datatypes produces existential types.most
interesting applications adrall -involving types use this interaction, we labellstypes 'existential’.

Example: runST

One monad that you haven't come across so faeiSThmonad. This is essentially tttaete monad on
steroids: it has a much more complicated struauackinvolves some more advanced topics. It wasnalig
written to provide Haskell with 10. As we mentioniedthe Understanding monadkapter, 1O is basically jus
State monad with an environment of all the infolioraabout the real world. In fact, inside GHC adg ST is
used, and the environment is a type cailealworld .

To get out of the State monad, you canrusgtate . The analogous function for ST is calledsT, and it has
rather particular type:

L
Example: TherunsT function

This is actually an example of a more complicatejliage feature called rank-2 polymorphism, whietdan't
go into detail here. It's important to notice ttiegre is no parameter for the initial state. Indé&duses a
different notion of state to State; while Stat®@ak you toget andput the current state, ST provides an
interface tareferencesYou create references, which have tgpgef, with newSTRef :: a -> ST s (STRef s

a) , providing an initial value, then you can us&iSTRef :: STRefsa->STsa andwriteSTRef ::
STRefsa->a->STs() to manipulate them. As such, the internal envirennof a ST computation is not
one specific value, but a mapping from referenoestues. Therefore, you don't need to providenitial state
to runST, as the initial state is just the emptyppiag containing no references.

However, things aren't quite as simple as this. M8taps you creating a reference in one ST comipatahen
using it in another? We don't want to allow thisdnese (for reasons of thread-safety) no ST compuatahould
be allowed to assume that the initial internal emvnent contains any specific references. More i@aly, we
want the following code to be invalid:

Example: Bad ST code

: let v =runST (newSTRef True)
1in runST (readSTRef v)

What would prevent this? The effect of the rankeB/morphism inrunST 's type is taconstrain the scope of the
type variables to be within the first parameter. In other wordishe type variable appears in the first

parameter it cannot also appear in the second tad a look at how exactly this is done. Say axelsome
code like the following:

188 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

L
Example: Briefer bad ST code

The compiler tries to fit the types together:

Example: The compiler's typechecking stage

1

newSTRef True :: forall s. ST s (STRef s Bool)

runST :: forall a. (forall s. STs a) ->a

itogether, forall a. (forall s. ST s (STRef s Bool)) -> STRef s Bool
1

The importance of thierall in the first bracket is that we can change theeafithes. That is, we could
write:

Example: A type mismatch!

This makes sense: in mathematics, sa%yr.r = 5H Is precisely the same as say‘?’y_y = 5; you're just
giving the variable a different label. However, agve a problem with our above code. Notice thahas
forall doesnotscope over the return typerofsT , we don't rename thethere as well. But suddenly, we've

got a type mismatch! The result type of the ST cataimon in the first parameter must match the tegpke of
runST , but now it doesn't!

The key feature of the existential is that it aléotne compiler to generalise the type of the statke first

parameter, and so the result type cannot depeiitd Bims neatly sidesteps our dependence problant,
‘compartmentalises’' each callritesT into its own little heap, with references not lgeable to be shared
between different calls.

Further reading

» GHC's user guide contains useful information
(http://haskell.org/ghc/docs/latest/html/users_gltgpe-extensions.html#existential-quantification)
existentials, including the various limitations g¢a on them (which you should know about).

» Lazy Functional State Threads (http://citeseepmi.edu/launchbury94lazy.html) , by Simon
Peyton-Jones and John Launchbury, is a paper wéxgains more fully the ideas behind ST.

Polymorphism

189 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Terms depending on types
Ad-hoc and parametric polymorphism
Polymorphism in Haskell

Higher-rank polymorphism

Advanced type classes

Type classes may seem innocuous, but researcle@uliject has resulted in several advancements and
generalisations which make them a very powerful. too

Multi-parameter type classes

Multi-parameter type classes are a generalisatidimeosingle parameter type classes, and are sigabby some
Haskell implementations.

Suppose we wanted to create a 'Collection’ typesdlaat could be used with a variety of concreta tiges,
and supports two operations -- ‘insert’ for addilegnents, and 'member’ for testing membershiprsA dittempt
might look like this:

:class Collection ¢ where

: insert::c->e->c

\ member :: c ->e -> Bool
1

I~ Make lists an instance of Collection:
instance Collection [a] where

1 insert xs x = x:xs

1 member = flip elem
1
1

This won't compile, however. The problem is tha&t ‘&l type variable in the Collection operationsies from
nowhere -- there is nothing in the type of an ins&of Collection that will tell us what the 'etwally is, so we
can never define implementations of these methdd#i-parameter type classes solve this by allowisgo
put ‘e’ into the type of the class. Here is an g@arthat compiles and can be used:

class Eq e => Collection ¢ e where

' insert::c->e->c

1

1 member :: ¢ ->e -> Bool

1

iinstance Eq a => Collection [a] a where
1+ insert = flip (:)

1 member = flip elem

Functional dependencies

190 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

A problem with the above example is that, in tlases we have extra information that the compilesdd
know, which can lead to false ambiguities and ayameralised function signatures. In this case, aresee
intuitively that the type of the collection willahys determine the type of the element it contaswifc is[a] ,
thene will be a. If ¢ isHashmap a, thene will be a. (The reverse is not true: many different collectiypes can
hold the same element type, so knowing the eletyprtwas e.gnt , would not tell you the collection type).

In order to tell the compiler this information, wdd afunctional dependency changing the class declaration to

A functional dependency is a constraint that wemane on type class parameters. Here, the pxtree

should be read 'uniquely identifiee', meaning for a given, there will only be one. You can have more than
one functional dependency in a class -- for examplecould have ->e, e ->c in the above case. And you
can have more than two parameters in multi-parancédsses.

Examples

Matrices and vectors

Suppose you want to implement some code to perfimple linear algebra:

:data Vector = Vector Int Int deriving (Eq, Show)
\data Matrix = Matrix Vector Vector deriving (Eq, Sh ow)

You want these to behave as much like numbers ssilge. So you might start by overloading Haskéllsn
class:

instance Num Vector where

' Vector al b1l + Vector a2 b2 = Vector (al+a2) (b1+ b2)
1 Vector al bl - Vector a2 b2 = Vector (al-a2) (b1- b2)
! {-...andsoon.. -}

:instance Num Matrix where

1 Matrix al bl + Matrix a2 b2 = Matrix (al+a2) (b1+ b2)
1 Matrix al bl - Matrix a2 b2 = Matrix (al-a2) (b1- b2)
' {-...andsoon.. -}

The problem comes when you want to start multigyguantities. You really need a multiplication ftino
which overloads to different types:

1
I(*) :: Matrix -> Matrix -> Matrix 1
i(*) = Matrix -> Vector -> Vector '
i(*) 2 Matrix -> Int -> Matrix 1
i(*) 2 Int -> Matrix -> Matrix '
{-..andsoon...-} 1

1

How do we specify a type class which allows alktheossibilities?

We could try this:

191 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1

iclass Mult a b ¢ where

1 Mra->b->c

1

:instance Mult Matrix Matrix Matrix where
:

iinstance Mult Matrix Vector Vector where

R

That, however, isn't really what we want. As itngts, even a simple expression like this has anguobs type
unless you supply an additional type declaratiothenintermediate expression:

Eml, m2, m3 :: Matrix _ _ :
(ml*m2)*m3 -- type error; type of (m1*m2) is ambiguous '
i(m1* m2) :: Matrix *m3 -- this is ok 1
1 1

:instance Mult Matrix Matrix (Maybe Char) where
1 {- whatever -}

The problem is that shouldn't really be a free type variable. When konaw the types of the things that you're
multiplying, the result type should be determineahf that information alone.

You can express this by specifying a functionaletefency:

class Multa b ¢ | ab->cwhere
i (Mra->b->c

This tells Haskell that is uniquely determined fromandb.

At least part of this page was imported from thelkédl wiki article Functional
depedencies (http://www.haskell.org/haskellwiki/Etional _dependencies) , in
accordance to its Simple Permissive License. Ifwah to modify this page

1 and if your changes will also be useful on thatiywku might consider

“ modifying that source page instead of this onehasiges from that page may
propagate here, but not the other way around. Adtety, you can explicitly
dual license your contributions under the Simpleni?&sive License.

Phantom types

Phantom types are a way to embed a language wsitlorager type system than HaskeF5XME: that's about

192 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

all I know, and it's probably wrong. :) I'm yet @ convinced of PT's usefulness, I'm not sureghewuld have
such a prominent positioavidHouse 17:42, 1 July 2006 (UTC)

Phantom types
An ordinary type

data T = Tl Int | TS String
1

:plus ST->T->T
:concat ST>T->T

:plus STInt->TInt->T Int
iconcat :: T String -> T String -> T String

Now we can enforce a little bit mo

This is useful if you want to increase the typesbadf your code, but not impose additional runtioverhead:

- Peano numbers at the type level.

:data Zero = Zero

data Succ a = Succ a

- Example: 3 can be modeled as the type

I~ Succ (Succ (Succ Zero)))

1

data Vector n a = Vector [a] deriving (Eq, Show)

1

:vectoer :: Vector (Succ (Succ Zero)) Int
wector2d = Vector [1,2]

1

\vector3d :: Vector (Succ (Succ (Succ Zero))) Int
wector3d = Vector [1,2,3]

1

- vector2d == vector3d raises a type error
- at compile-time, while vector2d == Vector [2,3] works.

GADT

Introduction

Explain what a GADT (Generalised Algebraic Datatyise and what it's for

193 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

GADT-style syntax

Before getting into GADT-proper, let's start outdstting used to the new syntax. Here is a reptasen for
the familiarList type in both normal Haskell style and the new GAGIE:

normal style |GADT style

1 LNt}
idata List x = 1 idata List x where

1
1
TNil | VPNl List x '
1Cons x (List x) 11 Cons :: x -> List x -> List x 1
1 i 1

Up to this point, we have not introduced any nepatxlities, just a little new syntax. Strictly sfxaag, we are
not working with GADTSs yet, but GADT syntax. Thewmsyntax should be very familiar to you in thatldsely
resembles typeclass declarations. It should alssabg to remember if you like to think of constoustas just
being functions. Each constructor is just definkd & type signature for any old function.

What GADTSs give us

Given a data typeoo a , a constructor forFoo is merely a function that takes some number airaents and
gives you back &oo a . So what do GADTs add for us? The ability to cohéixactly what kind oFoo you
return. With GADTSs, a constructor feso a is not obliged to returAoco a ; it can return anyoo ??? that you
can think of. In the code sample below, for ins&gribeGadtedFoo constructor returns @adtedrFoo Int ~ even
though it is for the typeadtedFoo x .

Example: GADT gives you more control

1 1
data BoringFoo x where !
1 MkBoringFoo :: x -> BoringFoo x :
1 1
\data GadtedFoo x where :
1 MkGadtedFoo :: x -> GadtedFoo Int 1
1 1

But note that you can only push the idea so fiigaur datatype is &oo, youmustreturn some kind cfoo or
another. Returning anything else simply wouldn'tkvo

. L
Example: Try this out. It doesn't work

1
idata Bar where
| MKBar :: Bar -- This is ok

\data Foo where
1 MKkFoo :: Bar -- This is bad
1

Safe Lists

194 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Prerequisite: We assume in this section that you know how aéists to be represented in functional
languages

We've now gotten a glimpse of the extra controégito us by the GADT syntax. The only thing newhist you
can control exactly what kind of data structure yewrn. Now, what can we use it for? Considerithmble

Haskell list. What happens when you invoked [? Haskell blows up. Have you ever wished you chade
a magical version afead that only accepts lists with at least one elemiestg on which it will never blow up?

To begin with, let's define a new tymafeListxy . The idea is to have something similar to normasiell
lists[x] , but with a little extra information in the typEhis extra information (the type variabletells us
whether or not the list is empty. Empty lists a¥presented asafeList x Empty ~ , whereas non-empty lists are
represented aafeList x NonEmpty

- we have to define these types
:data Empty

data NonEmpty

1

I-- the idea is that you can have either
- SafeList x Empty

- or SafeList x NonEmpty

data SafeList x y where

-- to be implemented

Since we have this extra information, we can nofindea functionsafeHead on only the non-empty lists!
CallingsafeHead on an empty list would simply refuse to type-check

So now that we know what we wasidfeHead , how do we actually go about getting it? The answ&ADT.
The key is that we take advantage of the GADT featiol return two different kinds of listSafeList x Empty
for theNil constructor, andafeList x NonEmpty for thecons constructors respectively:

:data SafeList x y where
1 Nil :: SafeList x Empty

1 Cons :: x -> SafeList x y -> SafeList x NonEmpty
1

This wouldn't have been possible without GADT, heseaall of our constructors would have been reduive
return the same type of list; whereas with GADTaae now return different types of lists with ditet
constructors. Anyway, let's put this altogetheongl with the actual definition &fafeList

. . L
Example: safe lists via GADT

data Empty
:data NonEmpty

1

data SafeList x y where
' Nil :: SafeList x Empty

1 Cons:: x -> SafeList x y -> SafeList x NonEmp ty
1

isafeHead :: SafeList x NonEmpty -> x

:safeHead (Cons x) =x

195 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Copy this listing into a file and load gnci -fglasgow-exts . You should notice the following difference,
callingsafeHead on an non-empty and an empty-list respectively:

L
Example: safeHead is... safe

1

:Prelude Main> safeHead (Cons "hi" Nil)

mhi

:Prelude Main> safeHead Nil

1

:<interactive>:l:9:

! Couldn't match "NonEmpty' against "Empty"
Expected type: SafeList a NonEmpty
Inferred type: SafeList a Empty

In the first argument of “safeHead', namely "Ni

In the definition of "it": it = safeHead Nil

This complaint is a good thing: it means that we aw ensure during compile-time if we're calldageHead
on an appropriate list. However, this is a potémtidiall that you'll want to look out for.

Consider the following function. What do you thiitk type is?

i L
Example: Trouble with GADTs

| S 1
silly 0 = Nil ' |
isilly 1 = Cons 1 Nil '
l e e e cmmcc e e ccccccccccc-cccmccmccscsm-me-emssm-mesemssmmsmmsmememmsm=m=—=a]

Now try loading the example up in GHCi. You'll retithe following complain

Example: Trouble with GADTSs - the complaint

1
1
| Expected type: SafeList a Empty '
1 Inferred type: SafeList a NonEmpty 1
1 In the application "Cons 1 Nil '
1 In the definition of “silly": silly 1 = Cons 1 N il 1
1 1

FIXME: insert discussion

Exercises

1. Could you implement safeTail function?

A simple expression evaluator

Insert the example used in Wobbly Types papahaught that was quite pedagogical

196 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Discussion

More examples, thoughts

From FOSDEM 2006, | vaguely recall that there isngorelationship between GADT and the below...
what?

Phantom types

Existential types

If you like Existentially quantified types, you'dgtably want to notice that they are now subsuniye@ADTS.
As the GHC manual says, the following two type deaions give you the same thing.

1 data TE a = forall b. MKTE b (b->a) :
| data TG a where { MKTG :: b -> (b->a) -> TG a } '

\ data TE2 = forall b. Show b => MKTE2 [b] :
| data TG2 where '
| MKTG2 :: Show b => [b] -> TG2 .
1 1

Witness types

References

At least part of this page was imported from thalkédl wiki article Generalised
algebraic datatype
(http:/vww.haskell.org/haskellwiki/Generalised_elbgaic_datatype) , in

.. accordance to its Simple Permissive License. Ifwah to modify this page

=4 and if your changes will also be useful on thatiywwku might consider

modifying that source page instead of this onehanges from that page may
propagate here, but not the other way around. Adtety, you can explicitly
dual license your contributions under the Simplenissive License.

Wider Theory

197 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Denotational semantics

New readers: Please report stumbling blocksWhile the material on this page
is intended to explain clearly, there are alwaystaeraps that innocent readers
new to the subject fall in but that the authorsreveaware of. Please report any
— tricky passages to the Talk page or the #haskélldRannel so that the style of
exposition can be improved.

Introduction

This chapter explains how to formalize the meamihigaskell programs, thgenotational semanticsIt may
seem to be nit-picking to formally specify that r@gramsquare x = x*x means the same as the
mathematical square function that maps each nutobty square, but what about the meaning of arpradike
fx=f(x+1) that loops forever? In the following, we will explifiy the approach first taken by Scott and
Strachey to this question and obtain a foundatioredson about the correctness of functional progra
general and recursive definitions in particular.cofirse, we will concentrate on those topics ne¢ded

understand Haskell progra%@.

Another aim of this chapter is to illustrate thdionsstrict andlazy that capture the idea that a function needs
or needs not to evaluate its argument. This issechagredient to predict the course of evaluabbrlaskell
programs and hence of primary interest to the piogner. Interestingly, these notions can be forredlat
consisely with denotational semantics alone, neregice to an execution model is necessary. Thépaiput

to good use in Graph Reduction, but it is this ¢biathat will familiarize the reader with the deatbnal
definition and involved notions such ag"Bottom"). The reader only interested in stricaenay wish to poke
around in section Bottom and Partial Functions @umdkly head over to Strict and Non-Strict Semastic

What are Denotational Semantics and what are theyof?

What does a Haskell program mean? This questianss/iered by thdenotational semanticsof Haskell. In
general, the denotational semantics of a prograghaimguage map each of its programs to a matheahatic
object, themeaningof the program in question. As an example, theherattical object for the Haskell
programslo, 9+1, 2*5 andsum [1..4] s likely to be the integet0. We say that all those prograshsnotethe
integerl0. The collection of mathematical objects is calieelsemantic domain

The mapping from program codes to a semantic dormaiammonly written down with double square braske
(Wikibooks doesn't seem to support \librackets ithrffamulas.). as

[[2%5]] = 10

It is compositionali.e. the meaning of a program likes only depends on the meaning of its constituents:

[a+b]] = [[a]] +[[b]

The same notation is used for types, i.e.

198 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

[Integer|] = Z

For simplicity however, we will silently identifyx@ressions with their semantic objects in subseqciespters
and use this notation only when clarification igded.

It is one of the key properties pérely functionalanguages like Haskell that a direct mathematical
interpretation like I+9 denotesl0" carries over to functions, too: in essence, taeotiation of a program of

type Integer -> Integer is a mathematical functicZ, — 7, between integers. While we will see that this
needs refinement to include non-termination, thgasion forimperative languagess clearly worse: a
procedure with that type denotes something thatgésthe state of a machine in possibly unintemaed.
Imperative languages are tied tightly tocgerational semanticswhich describes how they are executed on a
machine. It is possible to define a denotationala#ics for imperative programs and to use it &soe about
such programs, but the semantics often has antapehnature and sometimes must extend on thetdeooal

semantics for functional Ianguad@g]. In contrast, the meaning of purely functional laages iy default
completely independent from their execution. Thekd#l98 standard even goes as far as to only gpecif
Haskell's non-strict denotational semantics andifggopen how to implement them.

In the end, denotational semantics enables usvelale formal proofs that programs indeed do whatwaat
them to do mathematically. Ironically, for provipgpogram properties in day-to-day Haskell, one csa u
Equational reasoning which transform programs @goivalent ones without seeing much of the undaglyi
mathematical objects we are concentrating on s¢hapter. But the denotational semantics actsalbyv up
whenever we have to reason about non-terminatiograms, for instance in Infinite Lists.

Of course, because they only state what a proggadenotational semantics cannot answer questlong aow
long a program takes or how much memory it eatss iBhgoverned by thevaluation strategwhich dictates
how the computer calculates the normal form ofgression. But on the other hand, the implemenidigs to
respect the semantics and to a certain extend disteymine how Haskell programs must to be evaduatea
machine. We will elaborate this in Strict and Nan<$ Semantics.

What to choose as Semantic Domain?

We are now looking for suitable mathematical olgehat we can attribute to every Haskell prograntdse of
the exampleao, 2*5 andsum[1..4] , itis clear that all expressions should denogeinitegerl0. Generalizing,

every valuex of typeinteger is likely to be an element of the (7t The same can be done with values of type
Bool . For functions liké :: Integer -> Integer , we can appeal to the mathematical definitionfofhttion”
as a set of (argument,value)-pairs gitaph

But interpreting functions as their graph was toak, because it does not work well with recursiedinitions.
Consider the definition

! 1
ishaves :: Integer -> Integer -> Bool 1
i1 “shaves’ 1 = True '
12 “shaves’ 2 = False 1
10 “shaves’ x = not (x “shaves’ x) '
. shaves’ _ = False 1
! 1

We can think 0b,1 and2 as being male persons with long beards and th&tignes who shaves whom. Person
1 shaves himself, bzt gets shaved by the barliebecause evaluating the third equation yieldsaves 2
==True . In general, the third line says that the barbghaves all persons that do not shave themselves.

What about the barber himself,oisshaves’0 true or not? If it is, then the third equationséyat it is not. If

199 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

it is not, then the third equation says that iPgzzled, we see that we just cannot attrilsute or False t00
‘shaves’ 0, the graph we use as interpretation for the fomcthaves must have a empty spot. We realize that

our semantic objects must be able to incorpgratéal functions, functions that are undefined for some
arguments.

It is well known that this famous example gave tsegerious foundational problems in set theoly.dh
example of ammpredicative definition, a definition which uses itself, a logl circle. Unfortunately for
recursive definitions, the circle is not the praoblbut the feature.

Bottom and Partial Functions

1 Bottom

To handle partial functions, we introdu | , namedbottom and commonly written|_ in typewriter font. We
say that | is the completelyundefined" value or function. Every data type liketeger , () Or Integer ->
Integer contains ont | besides their usual elements. So the possiblesaltitypanteger are

1,0,41, 42 43, ...

Adding | to the set of values is also calléting . This is often depicted by a subscript likeZ, | . While this
is the correct notation for the mathematical séed integers”, we prefer to talk about "valuegygfe

Integer . We do this becausZ, | suggests that there are "real" inte(Zysut inside Haskell, the "integers"
Integer

As another example, the type with only one element actually has two inhabitants
1,0)

For now, we will stick to programming withteger S. Arbitrary algebraic data types will be treatedgeéction
Algebraic Data Types as strict and non-strict laaggs diverge on how these inclt | .

In Haskell, the expressiamdefined denotes | . With its help, one can indeed verify some sencgmtbperties
of actual Haskell programsndefined has the polymorphic tygerall a . a which of course can be
specialized tandefined :: Integer , undefined :: () , undefined :: Integer -> Integer and so on. In
the Haskell Prelude, it is defined as

undefined = error "Prelude: undefined"

As a side note, it follows from the Curry-Howardnsorphism that any value of the polymorphic typel a
.a must denotr | .

Partial Functions and the Semantic Approximation Oder

Now, | gives us the possibility to denote partial funesp

1 ifnis0
fln)=¢-2 ifnisl
1 else

200 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Here,f(n) yields well defined values for= 0 andn = 1 but gives | for all othemn. Note that the notatic |
is overloaded: the functic | :: Integer -> Integer is given by

1 (n)=Lforalln
where the | on the right hand side denotes a value of tyeger

To formalize partial functions say of typ@anteger -> Integer are at least mathematical mappings from the
lifted integersZ | = {L,0,+1,+2,43,... } tothe lifted integers. But this is not enoughjdes not
merit the special role ¢ | . For example, the definition

1 ifrnis L

g(n) =
else

intuitively does not make sense. Why d g{J_j yield a defined value whereg§l) is undefined? The

intuition is that every partial functiogmshould yield more defined answers for more defiagpiments. To
formalize, we can say that every concrete numberoise definedthan | :

lcl,lcz2,...

Here,q [— b denotes thab is more defined thaa. Likewise,g C b will denote that eithelp is more defined
thana or both are equal (and so have the same defingd[& also called theemantic approximation
order because we can approximate defined values bylkfgsed ones thus interpreting "more defined" as
"approximating better". Of cours | is designed to be the least element of a data typalways have

| [x for all otherx.
As no number isnore definedhan another, the mathematical relafmloes not relate different numbers:
neither] — 2 nor2 — 1 hold.

This is contrasted to the ordinary or=_between integers which can compare any two numibeet's also
why we use the different symbL_. A quick way to remember this is the sentencearid 2 are different in
information contenbut the same imformation quantity.

One says thel_ specifies gartial order and that the values of typeeger form apartially ordered set
(posetfor short). A partial order is characterized bg fbllowing three laws

= Reflexivity everything is just as defined as itsiy [1 for all x
= Transitivity. if = g andy C z, thenz C =z
= Antisymmetryif botha L y andy L 2 hold, therx andy must be equak =y.

Exercises
Do the integers form a poset with respect to thierk<?

We can depict the ord_ on the values of typeteger by the following graph

201 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

where every link between two nodes specifies thabine above is more defined than the one belocale
there is only one level (excludir |), one says thaiiteger is aflat domain The picture also explains the
name ol | :it's calledbottombecause it always sits at the bottom.

Monotonicity

Our intuition about partial functions now can benfalated as following: every partial functibis amonotone
mapping between partially ordered sets. More ddfemguments will yield more defined values:

rCy= flr) C fly)

In particular, a functiom with h,u_:] = 1 must be constaniin) = 1 for alln. Note that here it is crucial that
1 C 2 etc. don't hold.

Translated to Haskell, monotonicity means that euenot pattern match ¢ | or its equivalentindefined
Otherwise, the exampltefrom above could be expressed as a Haskell progkawe shall see late | also
denotes non-terminating programs, so that the litabo observe | inside Haskell is related to the halting
problem.

Of course, the notion ahore defined thanan be extended to partial functions by saying dhfanction is more
defined than another if it is so at every possasigument:

fCgif Va.f(z) C g(x)

Thus, the partial functions also form a poset i undefined functio | (I} =_ being the least element.

Recursive Definitions as Fixed Point lterations

Approximations of the Factorial Function

Now that we have a means to describe partial fanstiwe can give an interpretation to recursivendefns.
Lets take the prominent example of the factoriacfionf(n) = n! whose recursive definition is

fin)= ifn==0thenlelsen: f(n—1)

Although we saw that interpreting this directlyaaset description leads to problems, we intuitikeigw how

to calculatd(n) for every givem by iterating the right hand side. This iterati@nde formalized as follows: we
calculate a sequence of functidpsvith the property that each one arises from tgketiand side applied to the
previous one, that is

202 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

fig1(n)= ifn==0then lelse n- fr(in — 1)

Starting with the undefined functi(f,:,{;g:] =_ , the resulting sequence of partial functions reads

o (1 ifnis0
) s 0 1 if nis 0 1 s 1
if n is if n is
n)= : n)=+<1 fnisl, faln)=
fl() 1 else fg() f%() <2 if nis 2
1 else
1 else

and so on. Clearly,
I=HREAHAEHLLE...
and we expect that the sequence converges todtoifd function.

The iteration follows the well known scheme ofxefl point iteration
0, 9(20), 9(g(x0)), 9(g(g(z0))), ...
In our casexo is a function ang is afunctional a mapping between functions. We have
Ty =L and
g{r) =nr if n==0then 1 else n % z(n —1)
Now, sinceg is monotone, ang, =_L, the iteration sequence is monotone:

zo C g(zo) T g(g(zo)) T g(g(g(zo))) T ...

(The proof is roughly as follows: sina, =_L, and_| [anything,zy C g(x,). Sinceg is monotone, we can

successively apply to both sides of this relation, yieldiig(xq) £ g(g(xo)). g{g(z0)) C g(g(g(xs))).
and so on.)

So each successive applicatiorgpstarting withxp, transforms a less defined function to a morengefione.

It is very illustrative to formulate this iterati@ctheme in Haskell. As functionals are just ordirragher order
functions, we have

:g .. (Integer -> Integer) -> (Integer -> Integer)
gx= \n->ifn==0then 1 else n* x (n-1)

1
1X0 :: Integer -> Integer
X0 = undefined

1
(fO:f1:f2:13:f4:fs) = iterate g X0

We can now evaluate the functiongi,... at sample arguments and see whether they yhetgined or
not:

203 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1>35

1 *** Exception: Prelude.undefined

1> map f310..]

1 [1,1,2,** Exception: Prelude.undefined
1> map f4 [0..]

1[1,1,2,6,* Exception: Prelude.undefined
1>map f1[0..]

1 [1,*** Exception: Prelude.undefined

Of course, we cannot use this to check whethes féally undefined for all arguments.

Convergence

To the mathematician, the question whether thisisece of approximations converges is still to benaamed.
For that, we say that a poset idieected complete partial order (dcpo) iff every monotone sequence
Ty Ly T ... (also callecchain) has a least upper bound (supremum)

supfro Caxy C ...} =2
c :
If that's the case for the semantic approximati@® we clearly can be sure that monotone sequence

functions approximating the factorial function irdeehas a limit. For our denotational semanticsywileonly
meet dcpos which have a least elen | twhich are calle@domplete partial orders (cpo).

Theinteger s clearly form a (d)cpo, because the monotone segseconsisting of more than one element must
be of the form

lC---C1lCnCnC---Cn
wheren is an ordinary number. Thusjs already the least upper bound.

For functiongnteger -> Integer , this argument fails because monotone sequencgbenaf infinite length.
But becauseteger is a (d)cpo, we know that for every pomtthere is a least upper bound

S}ZIP{JF foln) E filn) E foln) E ...} =: f(n),

As the semantic approximation order is defined puwiise, the functiori is the supremum we looked for.

These have been the last touches for our aim msfoan the impredicative definition of the factdrfianction
into a well defined construction. Of course, it eens to be shown th&in) actually yields a defined value for
everyn, but this is not hard and far more reasonable ¢gheompletely ill-formed definition.

Bottom includes Non-Termination

It is instructive to try our newly gained insighto recursive definitions on an example that daegerminate:
f(n) =f(n+ 1)

The approximating sequence reads

204 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

f{} =J_,f1 :J—:l

and consists only ¢ | . Clearly, the resulting limiti | again. From an operational point of view, a maehin
executing this program will loop indefinitely. Weus see the | may also denoter@on-terminating function
or value. Hence, given the halting problem, patteatching or | in Haskell is impossible.

Interpretation as Least Fixed Point

Earlier, we called the approximating sequence amgse of the well known "fixed point iteration" sghe.
And of course, the definition of the factorial faion f can also be thought as the specification of adfpeint o
the functionaly:

f=g(f)=n+— ifn==0then lelsen-f(n—1)

However, there might be multiple fixed points. kwstance, there are sevefrabhich fulfill the specification
f=nw+— ifn==0thenlelse f(n+1),

Of course, when executing such a program, the machill loop forever ori(1) orf(2) and thus not produce
any valuable information about the valud(@). This corresponds to choosing thast definedixed point as
semantic objedtand this is indeed a canonical choice. Thus, welss

f=g(),
defines thdeast fixed pointf of g. Clearly,leastis with respect to our semantic approximation oL_e

The existence of a least fixed point is guarant®sedur iterative construction if we add the coratitthatg
must becontinuous (sometimes also called "chain continuous”). Tiaps/ means thag respects suprema of
monotone sequences:

S}:lp{g(ﬂfu) Cg(z)C...} =g (Slclp{fru Cz E... })

We can then argue that with

f= SIEIP{-T{} C g(xo) C g(g(xo)) C ... }

, we have

g(f) = g(supc{mo C g(=o) T g(g(x0)) C ... })
supc{g{(zo) T g(g(x0)) C ... }
sup-{zo C g(zo) C g(g(x0)) E ... }
= f
and the iteration limit is indeed a fixed pointgofYou may also want to convince yourself that ilked point
iteration yields théeastfixed point possible.

Exercises

205 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Prove that the fixed point obtained by fixed poiatation starting with
T =_L is also the least one, that it is smaller thanathgr fixed point.
(Hint: | is the least element of our cpo a;$ monotone)

By the way, how do we know that each Haskell fusrctive write down indeed is continuous? Just as with
monotonicity, this has to be enforced by the progreng language. Admittedly, these properties canesohat
be enforced or broken at will, so the questions@ebit void. But intuitively, monotonicity is guarteed by not
allowing pattern matches ¢ | . For continuity, we note that for an arbitraryeyp every simple functioa ->
Integer IS automatically continuous because the monotegeences dhteger 's are of finite length. Any
infinite chain of values of type gets mapped to a finite chainieiger s and respect for suprema becomes a

consequence of monotonicity. Thus, all functionghefspecial caseteger -> Integer must be continuous.
For functionals likeg:(Integer -> Integer) -> (Integer -> Integer) , the continuity then materializes
due to currying, as the type is isomorphic.@@teger -> Integer), Integer) -> Integer and we can

takea=((Integer -> Integer), Integer)

In Haskell, the fixed interpretation of the factriunction can be coded as

factorial = fix g
with the help of the fixed point combinator
fix::(a->a)->a

We can define it by

fixf=letx=fxinx

which leaves us somewhat puzzled because when @ixygdactorial, the result is not anything different from
how we would have defined the factorial functiorHaskell in the first place. But of course, the stonction
this whole section was about is not at all presédrén running a real Haskell program. It's just @anseto put
the mathematical interpretation a Haskell progréomes firm ground. Yet it is very nice that we camplere these
semantics in Haskell itself with the helpupbiefined

Strict and Non-Strict Semantics

After having elaborated on the denotational semartdf Haskell programs, we will drop the mathenadtic
function notatiorf(n) for semantic objects in favor of their now equ@rda Haskell notatiofin .

Strict Functions

A functionf with one argument is callesdrict, if and only if
f 1= L.

Here are some examples of strict functions

206 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:id X=X

isucc x=x+1

power2 0 =1

:power2 n =2 *power2 (n-1)

and there is nothing unexpected about them. Butaveyhey strict? It is instructive to prove thHatde
functions are indeed strict. Fiar, this follows from the definition. Fawucc , we have to ponder whether 1
is L or not. If it was not, then we should for examipéee1 +1=2 or more general + 1=k for some
concrete numbet. We remember that every functiommnotoneso we should have for example

2= 1+1 [[4+1=5

asL [4.Butneitherok [C5,2=5 nor2 _J5 is valid so thak cannot be 2. In general, we obtain the
contradiction

k= 1+1 [k+1= k+1.
and thus the only possible choice is
succ 1= 1+1= L

andsucc is strict.

Exercises
Prove thapower2 is strict. While one can base the proof on thevials"

fact thatoower2 n is 2, the latter is preferably proven using fixed point
iteration.

Non-Strict and Strict Languages

Searching fonon-strict functions, it happens that there is only one gyg® of a non-strict function of type
Integer -> Integer

Its variants areonstk x= k for every concrete number Why are these the only ones possible? Remember
thatone n has to be more defined thate L. Asinteger is a flat domain, both must be equal.

Why isone non-strict? To see that it is, we use a Haskéfirpreter and try

which is notL. This is reasonable ase completely ignores its argument. When interpreting an operational
sense as "non-termination”, one may say that thestrictness oéne means that it does not force its argument

to be evaluated and therefore avoids the infimitplwhen evaluating the argumentBut one might as well
say that every function must evaluate its argumieetsre computing the result which means that . should

be L, too. That is, if the program computing the argotr@oes not halgne should not halt as welff8] It shows

207 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

up that one canhoose freelyhis or the other design for a functional prograngdanguage. One says that the
language istrict or non-strictdepending on whether functions are strict or ninictdy default. The choice for
Haskell is non-strict. In contrast, the functiolmiguages ML and LISP choose strict semantics.

Functions with several Arguments

The notion of strictness extends to functions wgkieral variables. For example, a functioof two arguments
is strict in the second argumetftand only of

fx 1= 1L

for everyx. But for multiple arguments, mixed forms where sféctness depends on the given value of the
other arguments, are much more common. An exaraglesiconditional

:cond True ly= L1
cond False Ly=y

and likewise fo. Apparentlycond is certainlyL if bothx andy are, but not necessarily when at least one of
them is defined. This behavior is call@it strictness.

Clearly,cond behaves like the if-then-else statement wheedtucial not to evaluate both tthen and the
else branches:

:if null xs then ‘a’ else head xs
:if n==0 then 1 else5/n

Here, the else part is when the condition is met. Thus, in a non-staciguage, we have the possibility to wrap
primitive control statements such as if-then-etge functions likecond . This way, we can define our own
control operators. In a strict language, this ispassible as both branches will be evaluated vda#iing cond
which makes it rather useless. This is a glimpsh®ieneral observation that non-strictness offerse

flexibility for code reuse than strictness. Seedhapter Lazine&&? for more on this subject.

Not all Functions in Strict Languages are Strict

It is important to note that even in a strict laage, not all functions are strict. The choice whetb have
strictness and non-strictness by default only &spib certain argument data types. Argument typegssolely
contain data likenteger , (Bool,Integer) Or Either String [Integer] impose strictness, but functions are

not necessarily strict ifunction typedike Integer -> Bool . Thus, in a hypothetical strict language with
Haskell-like syntax, we would have the interpresession

208 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1> let constl _=1
1

I> constl (undefined :: Integer)
:!!! Exception: Prelude.undefined

1
iI> constl (undefined :: Integer -> Bool)

Why are strict languages not strict in argumentiinétion type? If they were, fixed point iteratiamould
crumble to dust! Remember the fixed point iteration

L Cg(Ll)Cg(g(L)...

for a functionalg::(Integer -> Integer) -> (Integer -> Integer) . If g would be strict, the sequence
would read

lclCclcC...

which obviously converges to a usel | . Itis crucial thag makes the argument function more defined. This
means thag) must not be strict in its argument to yield a ukéked point.

As a side note, the fact that things must be ndot$h function types can be used to recover sopmestrict
behavior in strict languages. One simply replacdata type likenteger ~ with () -> Integer where()

denotes the well known singleton type. It is clidmat every such function has the only possible raent()

(besidesl) and therefore corresponds to a single integeroparations may be non-strict in arguments of type
() -> Integer

Exercises

It's tedious to lift everynteger to a() -> Integer for using non-strict
behavior in strict languages. Can you write a fiomct

lift :: Integer -> (() -> Integer)
that does this for us? Where is the trap?

Algebraic Data Types

After treating the motivation case of partial funos betweemteger s, we now want to extend the scope of
denotational semantics to arbitrary algebraic tgtas in Haskell.

A word about nomenclature: the collection of sentaolbjects for a particular type is usually caleedomain.
This term is more a generic name than a partiaéénition and we decide that our domains are ¢pomplete
partial orders), that is sets of values togethéhn wirelatiormore definedhat obeys some conditions to allow
fixed point iteration. Usually, one adds additionahditions to the cpos that ensure that the vadfiesir
domains can be represented in some finite way@mguter and thereby avoiding to ponder the twistags
of uncountable infinite sets. But as we are nohgdo prove general domain theoretic theoremscdimelitions
will just happen to hold by construction.

Constructors

209 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Let's take the example types

:data Bool =True | False :
,data Maybe a = Just a | Nothing '

Here,True , False andNothing are nullary constructors wheremst is an unary constructor. The inhabitant
Bool form the following domain:

True False

%

\

L

Remember that is added as least element to the set of valuesandFalse , we say that the type listed [30],

A domain whose poset diagram consists of only emellis called dlat domain. We already know thdhteger
is a flat domain as well, it's just that the leabbvel has an infinite number of elements.

What are the possible inhabitantsvalbe Bool ? They are

So the general rule is to insert all possible vainéo the unary (binary, ternary, ...) construstas usual but
without forgettingL. Concerning the partial order, we remember thelitmm that the constructors should be
monotone just as any other functions. Hence, thiggparder looks as follows

Just True Just False

-
-

yd
Nothing Just L

.

-

1

But there is something to ponder: why isn&t 1= 1? | mean "Just undefined" is as undefined as
"undefined"! The answer is that this depends ontldrethe language is strict or non-strict. In &stanguage,
all constructors are strict by default, best 1= 1 and the diagram would reduce to

210 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Nothing Just True Just False
I r

As a consequence, all domains of a strict langaagdat.

But in a non-strict language like Haskell, constous are non-strict by default angst 1 is a new element
different from_L, because we can write a function that reactsreifity to them:

if (Just) = 4
{f Nothing =7

Asf ignores the contents of thest constructorf Just 1) is4 butf 1 is 1 (intuitively, if f is passed., it
will not be possible to tell whether to take thetdoranch or the Nothing branch, andlswill be returned).

This gives rise tmon-flat domains as depicted in the former graph. What should thesef use for? In the
context of Graph Reduction, we may also think ais an unevaluated expression. Thus, a vafest L

may tell us that a computation (say a lookup) seded and is notothing , but that the true value has not been
evaluated yet. If we are only interested in whethgucceeded or not, this actually saves us from the
unnecessary work to calculate whethes Just True orJustFalse as would be the case in a flat domain. The
full impact of non-flat domains will be exploredtine chapter Laziness, but one prominent examplénéinite
lists treated in section Recursive Data Types afidile Lists.

Pattern Matching

In the section Strict Functions, we proved thatsdamctions are strict by inspecting their resahsdifferent
inputs and insisting on monotonicity. However, he tight of algebraic data types, there can onlgte source
of strictness in real life Haskell: pattern matahine.case expressions. The general rule is that pattern
matching on a constructor otiata -type will force the function to be strict, i.e. tohing L against a constructor
always giveslL. For illustration, consider

:constl' True =1
:constl' False = 1

The first functionconst1 is non-strict whereas thenstl® is strict because it decides whether the arguisent
True Of False although its result doesn't depend on that. Rattextching in function arguments is equivalent to
case -expressions

1
iconstl' x = case x of

1 True ->1
1 False ->1

which similarly impose strictness anif the argument to thease expression denotesthe whilecase will

211 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

denotel, too. However, the argument for case expressiansba more involved as in

1

foo k table = case lookup ("Foo." ++ k) table of
1 Nothing -> ...

v Justx > ...

and it can be difficult to track what this meanstfte strictness dbo .

An example for multiple pattern matches in the ¢igual style is the logicalr :

1

ior True _ = True
jor _True = True
or __ =False

Note that equations are matched from top to botidme. first equation foor matches the first argument against
True , SOor is strict in its first argument. The same equaatso tells us thair True x IS non-strict inx. If the
first argument igalse , then the second will be matched agaimst andor False x IS strict inx. Note that
while wildcards are a general sign of non-stricthéisis depends on their position with respecheopattern
matches against constructors.

Exercises

1. Give an equivalent discussion for the logiaad
2. Can the logical "excluded orkdr) be non-strict in one of its
arguments if we know the other?

There is another form of pattern matching, nanregfutable patterns marked with a tilde. Their use is
demonstrated by

:f ~@ustx) =1
{FNothing =2

off to

:f ~(Justx)=x+1

fNothing =2 --this line may as well be le ft away

| o o o o o o o o o o o o e o o o o e o e e e — e m e m e ———— - |
we have

[T TS S ST S S ST S S S S S S S S S S EEEE S S S S S 1
1= 1+1= 1

If the argument matches the patternyill be bound to the corresponding value. Otheeweny variable like
will be bound tal.

By default,let andwhere bindings are non-strict, too:

212 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Exercises

1. The Haskell language definition
(http://www.haskell.org/onlinereport/) gives thea@iked semantics
of pattern matching
(http://www.haskell.org/onlinereport/exps.html#casenantics) and
you should now be able to understand it. So gonahheave a look!

2. Consider a functioar of twoBool ean arguments with the following

properties:

1
or L L= 1

:orTrue 1 =True

or L1 True =True

1
1
orFalsey =y
ior X False =x
1

This function is another example of joint stricteigsut a much
sharper one: the result is onlyif both arguments are (at least when
we restrict the arguments tewe and.l). Can such a function be

implemented in Haskell?

Recursive Data Types and Infinite Lists

The case of recursive data structures is not viéigreint from the base case. Consider a list of vaiues

Though this seems like a simple type, there isrprsingly complicated number of ways you car | in here
and there, and therefore the corresponding grapbnplicated. The bottom of this graph is showrowelAn
ellipsis indicates that the graph continues aldngydirection. A red ellipse behind an elementaatis that thi
is the end of a chain; the element is in normahfor

213 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

and so on. But now, there are also chains of itgileingth like

Lo L Lo R

This causes us some trouble as we noted in seCbomergence that every monotone sequence musihave
least upper bound. This is only possible if wewlfor infinite lists. Infinite lists (sometimes also called
stream$ turn out to be very useful and their manifold aases are treated in full detail in chapter Lasgne
Here, we will show what their denotational semanshould be and how to reason about them. Notentises
the following discussion is restricted to listsynt easily generalizes to arbitrary recursiveadsttuctures like
trees.

In the following, we will switch back to the stamddist type

to close the syntactic gap to practical programmith infinite lists in Haskell.

Exercises

1. Draw the non-flat domain correspondigol]
2. How is the graphic to be changed fiateger] ?

Calculating with infinite lists is best shown byaemple. For that, we need an infinite list

1
ones :: [Integer]
jones =1: ones

When applying the fixed point iteration to thisuesive definition, we see thates ought to be the supremum
of
Lt t e L,

that is an infinite list of.. Let's try to understand whiake 2 ones should be. With the definition adke

214 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:take o_ =] :
ttake n (x:xs) = x : take (n-1) xs :
taken[] =[] !

take2 | ==> L :
ftake 2 (1: 1) ==> 1:takel 1L == 1: 1 '
itake 2 (1:1: 1)==> 1:take 1 (1: 1) ==> 1:1:takeO L 1
: => 1:1: |] :
l o e e e e e e e e e e e e e e e m e e e m e e e e e e e e m e m o m e m e e e e e e e e e e = e e e e e = e e = e = e = = = e = e e = e e = e e = = = = 1
We see thatke 2 (1:1:1: 1) and so on must be the sameags 2 (1:1: 1) =1:1:]] becausea:1:] is

fully defined. Taking the supremum on both the sempe of input lists and the resulting sequenceutgut lists,
we can conclude

Thus, taking the first two elementswks behaves exactly as expected.

Generalizing from the example, we see that reagaaiout infinite lists involves considering the eppmating
sequence and passing to the supremum, the trumytenfist. Still, we did not give it a firm groundhe solution
is to identify the infinite list with the whole cimaitself and to formally add it as a new elemenbur domain:
the infinite listis the sequence of its approximations. Of coursejraimjite list like ones can compactly

depicted as

Exercises

1. Of course, there are more interesting infinitesligtanones . Can you
write recursive definition in Haskell for
1. the natural numbetsats = 1:2:3:4:...
2. acycle likecylce123 =1:2:3: 1:2:3 : ...
2. Look at the Prelude functiomepeat anditerate and try to solve
the previous exercise with their help.
3. Use the example from the text to find the valuedkpressiomnirop
3nats denotes.
4. Assume that the work in a strict setting, i.e. tiha domain of
[Integer] s flat. What does the domain look like? What a&bou
infinite lists? What value doeses denote?

What about the puzzle of how a computer can calewléth infinite lists? It takes an infinite amouwsfttime,
after all? Well, this is true. But the trick is thhe computer may well finish in a finite amoumtime if it only

215 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

considers a finite part of the infinite list. Sofinite lists should be thought of pstentiallyinfinite lists. In
general, intermediate results take the form ohitdilists whereas the final value is finite. loise of the
benefits of denotational semantics that one treatritermediate infinite data structures as trafinite when
reasoning about program correctness.

Exercises

1. To demonstrate the use of infinite lists as intatia@e results, show
that

by first calculating the infinite sequence corrasgiag tomap (+1)
nats .

2. Of course, we should give an example where thé fesult indeed
takes an infinite time. So, what does

3. Sometimes, one can replater with takewhile in the previous
exercise. Why only sometimes and what happensafdoes?

As a last note, the construction of a recursive @aman be done by a fixed point iteration simitarecursive
definition for functions. Yet, the problem of infiea chains has to be tackled explicitly. See thexditure in
External Links for a formal construction.

Haskell specialities: Strictness Annotations and Netypes

Haskell offers a way to change the default noresbeéhavior of data type constructorsdbgctness
annotationsIn a data declaration like

an exclamation point before an argument of the constructor specifiastile should be strict in this argument.
Hence we haveust 1L = 1 in our example. Further information may be founahapter Strictness.

In some cases, one wants to rename a data typenlik

216 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

we can arrange thabuldbe a is semantically equal taaybe a , but different during type checking. In
particular, the constructaouldoe is strict. Yet, this definition is subtly differefrom

if (Couldbe m) =42
' (Couldbe’' m) = 42

Here,i 1 will cause the pattern match on the constructordbe' fail with the effectthat 1= 1. But for
the newtype, the match @auldbe will never fail, we get 1 =42 . In a sense, the difference can be stated as:

» for the strict casegouldbe’ 1 is a synonym for
» for the newtype,l is a synonym foCouldbe L

with the agreement that a pattern matchLdails and that a match @onstructor L does not.

Newtypes may also be used to define recursive typegxample is the alternate definition of the tige[a]

Again, the point is that the constructerdoes not introduce an additional lifting with

Other Selected Topics

Abstract Interpretation and Strictness Analysis

As lazy evaluation means a constant computatiovedhead, a Haskell compiler may want to discoveeneh
inherent non-strictness is not needed at all whlldws it to drop the overhead at these particplaces. To
that extend, the compiler perforssictness analysigust like we proved in some functions to be stsiettion
Strict Functions. Of course, details of strictndspending on the exact values of arguments lileimexample
cond are out of scope (this is in general undecidalda).the compiler may try to find approximate diness
information and this works in many common casesddwer?2 .

Now, abstract interpretation is a formidable idea to reason about strictness: .

For more about strictness analysis, see the rdspapers about strictness analysis on the Haskall w
(http://haskell.org/haskellwiki/Research_papers/@ibation#Strictness) .

Interpretation as Powersets

So far, we have introducedand the semantic approximation or[_abstractly by specifying their properties.
However, both as well as any inhabitants of a tigta likeJust 1 can be interpreted as ordinary sets. This is

called thepowerset construction NOTE:i'm not sure whether this is really true. Someooe knows, please

217 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

correct this.

The idea is to think aof as theset of all possible valuemnd that a computation retrieves more informatios
by choosing a subset. In a sense, the denotatiarvalue starts its life as the set of all valuésciv will be
reduced by computations until there remains a gbtawsingle element only.

As an example, considebol where the domain looks like

{True} {False}
\

\
1 ={True, False}

The valuesrue andralse are encoded as the singleton gei®} and{Failse} and.l is the set of all possible
values.

Another example istaybe Bool :

1
' {Just True} {Just False}
\

1
.
1
1 \ / 1
:{No\thln?} {Just True, Just False} '
v .
P L= {Nothing, Just True, Just False} '
1 1

We see that the semantic approximation order isvatgnt to set inclusion, but with arguments swadh

rLy < z2Y
This approach can be used to give a semanticsceEp&rns in HaskdffL.

Naive Sets are unsuited for Recursive Data Types

In section Naive Sets are unsuited for Recursivilmiens, we argued that taking simple sets asotktion for
types doesn't work well with partial functions.the light of recursive data types, things beconenenvorse as

John C. Reynolds showed in his papetymorphism is not set-theordfic..

Reynolds actually considers the recursive type

InterpretingBool as the sefrrue,False} and the function type ->B as the set of functions fromto B, the
typeu cannot denote a set. This is becaase Bool) is the set of subsets (powersetpathich, due to a

diagonal argument analogous to Cantor's argumanttiere are "more” real numbers than natural calesys
has a bigger cardinality than Thus,U -> Bool) -> Bool has an even bigger cardinality thaand there is
no way for it to be isomorphic ta Hence, the set must not exist, a contradiction.

In our world of partial functions, this argumenitdaHere, an element afis given by a sequence of
approximations taken from the sequence of domains

1, (L ->Bool) ->Bool, (((1 -> Bool) -> Bool) -> Bool) -> Bool and so on

218 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

whereL denotes the domain with the single inhabitanWhile the author of this text admittedly has hoecon
what such a thing should mean, the constructorsgaveerfectly well defined object for We see that the type

(U -> Bool) -> Bool merely consists of shifted approximating sequemdash means that it is isomorphic to
U.

As a last note, Reynolds actually constructs amvatgnt ofu in the second order polymorphic lambda calcus.

There, it happens that all terms have a normal faenthere are only total functions when we dbinolude a
primitive recursion operatdix :: (a->a) -> a . Thus, there is no true need for partial functiand_L, yet

a naive set theoretic semantics fails. We can gpdgulate that this has to do with the fact thatewery
mathematical function is computable. In particuthe set of computable functioas> Bool should not have a

bigger cardinality thaa.

Footnotes

H

. 1 At least as far as types are concerned, but welregy to avoid that word :)

2. 1 More technicallyfst andsnd have types which limit them to pairs. It wouldibgossible to define
projection functions on tuples in general, becabsg'd have to be able to accept tuples of diffesezes,
so the type of the function would vary.

3. 1 In fact, these are one and the same concept ikeHas

4. 1 This isn't quite whathr andord do, but that description fits our purposes weil] &'s close enough.

5. 1 To make things even more confusing, there's dgtaaén more than one type for integers! Don't worr

we'll come on to this in due course.

. 1 This has been somewhat simplified to fit our pgg® Don't worry, the essence of the functioneseth

. 1 Some of the newer type system extensions to @élreak this, however, so you're better off just

always putting down types anyway.

8. 1 This is a slight lie. That type signature wouldaméhat you can compare two values of any type
whatsoever, but this clearly isn't true: how can gee if two functions are equal? Haskell inclual&nd
of 'restricted polymorphism' that allows type vatés to range over some, but not all types. Haskell
implements this usintype classeswvhich we'll learn about later. In this case, tberect type of==) iSEq
a=>a->a->Bool

9. 1 In mathematics)! normally means the factorial of but that syntax is impossible in Haskell, so we
don't use it here.

10. 1 Actually, defining the factorial of O to be 1 istrjust arbitrary; it's because the factorial aepresents
an empty product.

11. 1 This is no coincidence; without mutable variabkesursion is the only way to implement control
structures. This might sound like a limitation ligbu get used to it (it isn't, really).

12. 1 Actually, it's using a function callgeldi , which actually does the recursion.

13. 1 Moggi, Eugenio (1991). "Notions of Computation didnads".Information and Computatio83 (1).

14. 1 w:Philip Wadler. Comprehending Monads (http://eger.ist.psu.edu/wadler92comprehending.html) .
Proceedings of the 1990 ACM Conference on LISPRantttional Programming, Nice. 1990.

15. 1 w:Philip Wadler. The Essence of Functional Progreing
(http://citeseer.ist.psu.edu/wadler92essence.ht@®bnference Record of the Nineteenth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of ProgramgiLanguages. 1992.

16. 1 Simon Peyton Jones, Philip Wadler (1993). "Impeeafunctional programming”
(http://lhomepages.inf.ed.ac.uk/wadler/topics/mortadg#imperative) 20'th Symposium on Principles
Programming Languages

17. 1 It infers a monomorphic type becausis bound by a lambda expression, and things boyridmbdas

always have monomorphic types. See Polymorphism.

219 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

18

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.
31.

32.

1 lan StewartThe true story of how Theseus found his way othteofabyrinth Scientific American,
February 1991, page 137.

1 Gérard HuetThe Zipper Journal of Functional Programming, 7 (5), Sef@7,9p. 549--554. PDF
(http://www.st.cs.uni-sb.de/edu/seminare/2005/adedrp/docs/huet-zipper.pdf)

1 Note the notion otipperas coined by Gérard Huet also allows to replacelevbubtrees even if there is
no extra data associated with them. In the caseiolabyrinth, this is irrelevant. We will come lato

this in the section Differentiation of data types.

1 Of course, the second topmost node or any othid# abmost a constant number of links away from the
top will do as well.

1 Note that changing the whole data structure ag®gbto updating the data at a node can be achieved
amortized constant time even if more nodes thartléastop node is affected. An example is increment

a number in binary representation. While increnmgnsiay111..11 must touch all digits to yield

1000..00 , the increment function nevertheless runs in @risamortized time (but not in constant worst
case time).

1 Conor Mc BrideThe Derivative of a Regular Type is its Type of -Glioée ContextsAvailable online.
PDF (http://www.cs.nott.ac.uk/~ctm/diff.pdf)

1 This phenomenon already shows up with generis.trie

1 Actually, we can apply them to functions whoseetygpforall a. a -> R, for some arbitrary R, assthe
accept values of any type as a parameter. Exaroplgh functions: id, const k for any k. So teciaty,

we can't do anything _useful_ with its elements.

1 In fact, there are no written down and completeod&tional semantics of Haskell. This would be a
tedious task void of additional insight and we hppmbrace the folklore and common sense semantics
1 Monads are one of the most successful ways todgwetational semantics to imperative programs. See
also Haskell/Advanced monads.

1 Strictness as premature evaluation of functiomments is elaborated in the chapter Graph Reduction
1 The termLazinesscomes from the fact that the prevalent implemématechnique for non-strict
languages is callddzy evaluation

T The termlifted is somewhat overloaded, see also Unboxed Types.

1 S. Peyton Jones, A. Reid, T. Hoare, S. Marlow, Rndenderson. A semantics for imprecise exceptions
(http://research.microsoft.com/~simonpj/Papers/en@e-exn.htm) In Programming Languages Design
and Implementation. ACM press, May 1999.

1 John C. Reynold$2olymorphism is not set-theoretidlRIA Rapports de Recherche No. 296. May
1984.

External Links

Online books about Denotational Semantics

= Schmidt, David A. (1986)Denotational Semantics. A Methodology for Languageelopment

(http://www.cis.ksu.edu/~schmidt/text/densem.htdllyn and Bacon.

Equational reasoning

Haskell/Equational reasoning

220 of 290

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Program derivation

Haskell/Program derivation

Category theory

This article attempts to give an overview of catggbeory, insofar as it applies to Haskell. Testend, Haskell
code will be given alongside the mathematical dedins. Absolute rigour is not followed; in its gk, we seek
to give the reader an intuitive feel for what tlimcepts of category theory are and how they rétakéaskell.

Introduction to categories

A simple category, with three
objectsA, B andC, three
identity morphismsda, idp
andidc, and two other
morphismsf : (' — B
andg : A — . The third
element (the specification of
how to compose the
morphisms) is not shown.

A category is, in essence, a simple collectiohak three components:

A collection ofobjects

A collection ofmorphisms, each of which ties two objectsgaurce object
and atarget objec) together. (These are sometimes cafladws, but we
avoid that term here as it has other denotatiomtaskell.) Iff is a morphism
with source objech and target obje®, we writef : A — .

A notion ofcomposition of these morphisms. Iifis the composition of
morphisms andg, we writeh = f o g.

Lots of things form categories. For exam@etis the category of all sets w
morphisms as standard functions and compositiomgb&teandard function
composition. (Category names are often typeseoid tace.)Grp is the
category of all groups with morphisms as functitivegt preserve group
operations (the group homomorphisms), i.e. fortargygroupsG with
operation* andH with operation, a functionf : G — H is a morphism in
Grp iff:

fluxv) = f(u)- f(v)

It may seem that morphisms are always functionsttisi needn't be the case. For example, any partier @,

<) defines a category where the objects are theeglesfP, and there is a morphism between any two objects
AandBiff 4 < B. Moreover, there are allowed to be multiple mospis with the same source and target
objects; using th&etexample, sin and cos are both functions with soolgeci and target object [— 1,1],

but they're most certainly not the same morphism!

Category laws

There are three laws that categories need to fokomstly, and most simply, the composition of ntugms
needs to be associative. Symbolically,

fol(goh)=(fog)oh

Secondly, the category needs to be closed undeotheosition operation. Sof : 4 — [and
g : B — (), then there must be some morphf, : 4 — (' in the category such thh = f o g. We can

221 of 290

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

see how this works using the following category:

f

idp
/—\ idg

g

f andg are both morphisms so we must be able to compese &nd get another morphism in the category. So
which is the morphisrf o g? The only option iga. Similarly, we see theg o f = idg.

Lastly, given a categor@ there needs to be for every objeanidentity morphismid 4 : A — A thatis an
identity of composition with other morphisms. Puggisely, for every morphisif : A — B:

foidys=idgof=Ff
Hask, the Haskell category

The main category we'll be concerning ourselveb witthis article iHask, the category of Haskell types and
Haskell functions as morphisms, usiryg for composition: a function:: A ->B for typesa andB is a
morphism inHask. We can check the first and last laws easily: wavk() is an associative function, and
clearly, for anyt andg, f.g is another function. Iklask, the identity morphism i@ , and we have trivially:

id.f=f.id=f

[33] This isn't an exact translation of the law abdlieugh; we're missing subscripts. The funciiwonn Haskell

is polymorphic- it can take many different types for its domaimd range, or, in category-speak, can have many
different source and target objects. But morphisntategory theory are by definitisnonomorphic each
morphism has one specific source object and onafgptrget object. A polymorphic Haskell functi@an be
made monomorphic by specifying its typestantiatingwith a monomorphic type), so it would be more [Bec

if we said that the identity morphism frarask on a typeais (id :: A -> A) . With this in mind, the above

law would be rewritten as:

(id::B->B).f=f.(d::A->A)=f

However, for simplicity, we will ignore this disttion when the meaning is clear.

Exercises

= As was mentioned, any partial order <) is a category with
objects as the elementsffind a morphism between elemea&nd
b iff a << b. Which of the above laws guarantees the traitgitf <
o

m (Harder.) If we add another morphism to the abow®le, it fails
to be a category. Why? Hint: think about assodigtiof the
composition operation.

222 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

idg,

Functors

So we have some categories which
have objects and morphisms that rel
our objects together. The next Big
Topic in category theory is tHanctor,

C D

ide Flidc) = idp(c)

which relates categories together. A f
functor is essenti_ally a tra_nsformatiow Fif)
between categories, so given categc Flidg) = Flida)
C andD, a functorff" - (7 — [? = idg(p) = IdFy
= Maps any objecf in C to F(A), f FA)
in D. da idg
= Maps morphismf : 4 — B (g}

inCto
F(f) : F(A) — F(B)inD. | | |
A functor between two categorigg,andD. Of note is that the objects
andB both get mapped to the same objedDjrand that thereforg

One of the canonical examples of a becomes a morphism with the same source and w@ipgeit (but isn't

functor is the forgetful functor necessarily an identity), andia andidg become the same morphism. The
Grp — Set which maps groups tc arrows showing the mapping of objects are shovandotted, pale olive.
their underlying sets and group The arrows showing the mapping of morphisms arevatin a dotted, pale
morphisms to the functions which blue.

behave the same but are defined on
instead of groups. Another example is
the power set funct§et — Set which maps sets to their power sets and mapsit‘lmx_jlr - X —wYto

functions’P(X') — P(Y") which take input{/ < X and returrf(U), the image ot underf, defined by
f(U) = { f(u) : uw € U }. For any categorg, we can define a functor known as the identiticfononC,
or 1~ : C — (', that just maps objects to themselves and morghisrthemselves. This will turn out to be
useful in the monad laws section later on.

Once again there are a few axioms that functors kawbey. Firstly, given an identity morphigip on an
objectA, F(ida) must be the identity morphism &igA), i.e.:

F(ida) = idF(a)

Secondly functors must distribute over morphism position, i.e.

F(fog)=F(f)oF(g)

Exercises
For the diagram given on the right, check thesetfuraws.

223 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Functors on Hask

The Functor typeclass you will probably have seeHaskell does in fact tie in with the categorication of a
functor. Remember that a functor has two partstaps objects in one category to objects in anahdr
morphisms in the first category to morphisms ingkeond. Functors in Haskell are frétask to func where
funcis the subcategory é¢fask defined on just that functor's types. E.g. thefliactor goes froniHask to Lst,
whereLst is the category containing orligt types that is[T] for any typer. The morphisms ihst are
functions defined on list types, that is, functigns> [U] for typesrT, U. How does this tie into the Haskell
typeclass Functor? Recall its definition:

:class Functor (f :: * -> *) where
; fmap 1 (@->b) ->(fa->fb)

:instance Functor Maybe where
1 fmap f (Just x) = Just (f x)

1 fmap _ Nothing = Nothing

1

Here's the key part: thigpe constructoMaybe takes any typeto a new typemMaybe T . Also,fmap restricted to
Maybe types takes a functian>b to a functiormaybe a -> Maybe b . But that's it! We've defined two parts,
something that takes objectsHiask to objects in another category (that of Maybe $yped functions defined
on Maybe types), and something that takes morphisridask to morphisms in this category. So Maybe is a
functor.

A useful intuition regarding Haskell functors isthhey represent types that can be mapped ovex cobld be
a list or a Maybe, but also more complicated st like trees. A function that does some mappmgdd be
written usingmap, then any functor structure could be passed mftinction. E.g. you could write a generic
function that covers all of Data.List.map, Data.Magp, Data.Array.lArray.amap, and so on.

What about the functor axioms? The polymorphic fiomcd takes the place adia for anyA, so the first law
states:

With our above intuition in mind, this states thapping over a structure doing nothing to each elens
equivalent to doing nothing overall. Secondly, nfesm composition is jugt) , so

This second law is very useful in practice. Pictgrihe functor as a list or similar container, tight-hand side
is a two-pass algorithm: we map over the structoeeformingg, then map over it again, performingThe
functor axioms guarantee we can transform thisansmgle-pass algorthim that performg . This is a
process known dsision

Exercises
Check the laws for the Maybe and list functors.

224 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Translating categorical concepts into Haskell

Functors provide a good example of how categorgrihgets translated into Haskell. The key points to
remember are that:

= We work in the categomask and its subcategories.

m Objects are types.

= Morphisms are functions.

= Things that take a type and return another typéyge constructors.

= Things that take a function and return anothertioncare higher-order functions.

= Typeclasses, along with the polymorphism they mteymake a nice way of capturing the fact that in
category theory things are often defined over almemof objects at once.

Monads

Monads are obviously an extremely important coneeptaskell, -
and in fact they originally came from category tlye@d monadis unit

1

! 1

a special type of functor, one that supports sodditianal . : r. !
|

! |

I 1

structure. Additionally, every monad is a functammh a category
to that same category. So, down to definitions. gnad is a

functorAf - (' — (U, along with two morphism&?! for every

objectXin C: | | m—————— 3
b} 3 ioin 1
. DM v NIV ly] y ein g .
i MM s M(X @@ |
" joiny M(M({X)) — M{X) : : : ! i
I: e o | S — -

| P —— |

When the monad under discgssion is pbvious, vm@té out the unit andjoin, the two morphisms that must
M superscript for these functions and just talk albmitx and exist for every object for a given monad.

joiny for someX.

Let's see how this translates to the Haskell tygsscMonad, then.

1
iclass Functor m => Monad m where

yreturnza->ma

1 (>>=) “ma->(@->mb)->mb
1

The class constraint efinctor m ensures that we already have the functor strucéuneapping of objects and
of morphismsreturn is the (polymorphic) analogue tmitx for anyX. But we have a problem. Although
return 'S type looks quite similar to that ohit, (>>=) bears no resemblancejton. The monad function
join::Monad m=>m(ma)->ma does however look quite similar. Indeed, we caoverjoin and

(>>=) from each other:

1 1
join::Monad m=>m (ma)->ma 1
Join x = x >>=id '
1 1
(>>=) :Monad m=>ma->(a->mb)->mb '
X >>=f = join (fmap f x) 1
1 1

So specifying a monad'eturn andjoin is equivalent to specifying itsturn and(>>=) . It just turns out that
the normal way of defining a monad in category tii@® to giveunit andjoin, whereas Haskell programmers

225 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

like to givereturn and(>>=) [35] Often, the categorical way makes more sense.tifmyyou have some kind

of structureM and a natural way of taking any obj&cinto M(X), as well as a way of takifg(M(X)) into M(X),
you probably have a monad. We can see this indll@aing example section.

Example: the powerset functor is also a monad

The power set funct(P : Set — Set described above forms a monad. For anyssetu have ainitgx) =
{x}, mapping elements to their singleton set. Not #ach of these singleton sets are trivially ssubfS, so
unitsreturns elements of the powersetpés is required. Also, you can define a funcjmns as follows: we
receive an inpul, € P(P(S)). This is:

= A member of the powerset of the powerses.of

= S0 a member of the set of all subsets of the sail stibsets o&.

= S0 a set of subsets 8f

We then return the union of these subsets, giviragreer subset d. Symbolically,
joing(L) = |J L-
HenceP is a monad3®!.

In fact, P is almost equivalent to the list monad; with tlxeeption that we're talking lists instead of s#isy're
almost the same. Compare:

Power set functor on Set List monad from Haskell
Function type Definition Function type Definition
Given a seBand a morphisrf : A — B: Ei\B/en a typer and a function:: A
(P(N)(S) = {f(a):ac S} e

P(f) : P(A) — P(B) s b <
units : § — P(S) unitg(x) = {x} return :: T -> [T] [)‘f]t”m X=
.. v .. join = [[T]] -> join xs =
Jotng - P(P(*S)) - ‘P(S) JGIRS[L) = UL J['I'I] a J<:c|)n(;(atxs

The monad laws and their importance

Just as functors had to obey certain axioms inrdadbe called functors, monads have a few of them. We'll
first list them, then translate to Haskell, thea sdy they're important.

Given amonai)\f : (! — ('and amorphisrf : A — Bfor A, B € (,
1. join o M(join) = join o join

2. join o M(unit) = join o unit = id
3. unito f = M(f)ounit

226 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

4. joino M(M(f)) = M(f) o join
By now, the Haskell translations should be hopgfsdlif-explanatory:

1. join . fmap join = join . join

2. join . fmap return = join . return = id
3. return . f=fmap f. return

4. join . fmap (fmap f) = fmap f . join

(Remember thatap is the part of a functor that acts on morphismbgse laws seem a bit inpenetrable at first,
though. What on earth do these laws mean, and @ they be true for monads? Let's explore tiws la

The first law

In order to understand this law, we'll first -

use the example of lists. The first law _inm

mentions two functiongein . fmap join -

(the left-hand side) arjdin . join (the [[[1 25

right-hand side). What will the types of th 4, A |

functions be? Remembering theait 's type][; [[1,2:33

iS [[a]] -> [a] (we're talking just about [' [4],

lists for now), the types are bdtfa] ->] Eﬁ 61 H

[a] (the fact that they're the same is hanc ! (5, 6]

after all, we're trying to show they're fmap join 5 [7.8,9, 10]] [7. 8, .9. 101
completely the same function!). So we hz {’] %

a list of list of lists. The left-hand side, the] .
performsfmap join on this 3-layered list, y e
then usepin on the resultimap is just the [|
familiar map for lists, so we first map acros [1.2.3.4], Y
each of the list of lists inside the top-level [s.6], [1.2.3,4.5,6,7.8.9, 10]
list, concatenating them down into a list [7.8.9.10],

each. So afterward, we have a list of lists][1 \—/
which we then run throughin . In

summary, we 'enter’ the top level, collaps join

the second and third levels down, then A demonstration of the first law for lists. Rememb®atjoin is
collapse this new level with the top level. concat andfmap ismapin the list monad.

What about the right-hand side? We first run

join on our list of list of lists. Although this is @ layers, and you normally apply a two-layerettigin |,

this will still work, because ga]]] is just[[b]] ,whereb=[a] , SO in a sense, a three-layered list is just a
two layered list, but rather than the last layangéflat’, it is composed of another list. So é&wapply our list of
lists (of lists) tojoin , it will flatten those outer two layers into orfes the second layer wasn't flat but instead
contained a third layer, we will still end up waHist of lists, which the othgsin flattens. Summing up, the
left-hand side will flatten the inner two layersara new layer, then flatten this with the outertriager. The
right-hand side will flatten the outer two layettsen flatten this with the innermost layer. These bperations
should be equivalent. It's sort of like a law cs@gativity forjoin .

We can see this at work more if we recall the d&din of join for Maybe:

227 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:join :: Maybe (Maybe a) -> Maybe a
join Nothing = Nothing

join (Just Nothing) = Nothing

:join (Just (Just x)) = Just x

So if we had d@hreelayered Maybe (i.e., it could béthing , Just Nothing , Just (Just Nothing) or Just
(Just (Just x))), the first law says that collapsing the inner taxers first, then that with the outer layer is
exactly the same as collapsing the outer layess finen that with the innermost layer.

Exercises

Verify that the list and Maybe monads do in facépkhis law with some
examples to see precisely how the layer flattemiagks.

The second law

What about the second law, then? Again, we'll stétt the example of lists. Both functions mentidne the
second law are functiorns -> [a] . The left-hand side expresses a function that roapsthe list, turning
each element into its singleton listx] , so that at the end we're left with a list of $&tgn lists. This
two-layered list is flattened down into a singlgdalist again using thiein . The right hand side, however,
takes the entire ligt, y, z, ...] , turns it into the singleton list of lisg, vy, z, ...]] , then flattens the
two layers down into one again. This law is lesgiobs to state quickly, but it essentially says tyaplying
return t0 @ monadic value, thesin ing the result should have the same effect whetbemperform theeturn
from inside the top layer or from outside it.

Exercises
Prove this second law for the Maybe monad.

The third and fourth laws

The last two laws express more self evident faouabhow we expect monads to behave. The easiestorsee
how they are true is to expand them to use theredgzhform:

1. \x -> return (f x) = \x -> fmap f (return x)
2. \x ->join (fmap (fmap f) x) = \x -> fmap f (join x)

Exercises

Convince yourself that these laws should hold foneny monad by
exploring what they mean, in a similar style to how/ explained the first
and second laws.

Application to do-blocks
Well, we have intuitive statements about the ldveg & monad must support, but why is that impo®tdifte

answer becomes obvious when we consider do-blétsall that a do-block is just syntactic sugarafor
combination of statements involvirgg=) as witnessed by the usual translation:

228 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

do {x}

-—-> X
do{let{y=v}x} --> lety=vindo{x}
do{v<-y;x} -> y>>=\W->do{x}
:do{y;x} --> y>>=_->do{x}

Also notice that we can prove what are normallytgdas the monad laws usiiegirn

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

above laws (the proofs are a little heavy in soas®es, feel free to skip them if you want to):

1.

These new monad laws, usirgin

return x >>=f=f x . Proof:

: return x >>=f
1 =Jjoin (fmap f (return x)) -- By the definition of

y=join (return (fx)) --Bylaw 3
1= (join . return) (f x)

1= id (fx) -- By law 2
1=fx

1

m >>= return = m Proof

and(>>=) from our

1

1 m >>=return

1= join (fmap return m) -- By the definition of (
i= (join . fmap return) m

=idm -- By law 2

=m

: (m>>=f)>>=g

= (join (fmap f m)) >>=g

= join (fmap g (join (fmap f m)))

= (join . fmap g) (join (fmap f m))

= (join . fmap g . join) (fmap f m)

= (join .jo!n . fmap (fmap g)) (fmap f m)

= (join . join . fmap (fmap g) . fmap f) m

= (join . join . fmap (fmap g . f)) m

= (join . join . fmap (\x -> fmap g (f x))) m
= (join . fmap join . fmap (\x -> fmap g (f x))) m
= (join . fmap (join . (\x -> fmap g (f x)))) m
= (join . fmap (\x -> join (fmap g (f x)))) m
1= (join . fmap (\x -> f x >>=g))

1= join (fmap (\x -> f x >>= g) m)

=m>>= (\x -> fx >>= @)

1

Points-free style
return x >>=f=1fx

m >>=return = m

(m>>=f)>>=g=m>>= (\x ->fx >>=Q)

do{v<-

By the definition of (>>=)
By the definition of (>>=)

- By law 4
- By the distributive law of functors

- By law 1
- By the distributive law of functors

- By the definition of (>>=)

- By the definition of (>>=)

and(>>=) , can be translated into do-block notation.

Do-block style

return x; fv } = do {fx}

do{v<-m;returnv}=do{m}

gy}

The monad laws are now common-sense statements ladbowlo-blocks should function. If one of theserda

229 of 290

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

were invalidated, users would become confusedpasguldn't be able to manipulate things within the
do-blocks as would be expected. The monad lawsraessence, usability guidelines.

Exercises

In fact, the two versions of the laws we gave:

1

1-- Categorical:

join . fmap join = join . join

join . fmap return = join . return = id
return . f=fmap f . return

join . fmap (fmap f) = fmap f . join

1

i~ Functional:

m>>=return =m

returnm >>=f=fm

(m>>=f) >>=g=m>>=(\x ->fx >>=Q)
1

Are entirely equivalent. We showed that we can vecthe functional
laws from the categorical ones. Go the other wagwsthat starting from
the functional laws, the categorical laws holdn#ty be useful to
remember the following definitions:

:join m=m>>=id
fmap f m = m >>=return . f

Thanks to Yitzchak Gale for suggesting this exexcis

Summary

We've come a long way in this chapter. We've loakiedthat categories are and how they apply to Haske
We've introduced the basic concepts of categomyrihi@cluding functors, as well as some more adednc
topics like monads, and seen how they're crucialitonatic Haskell. We haven't covered some ofithsic
category theory that wasn't needed for our airke,diatural transformations, but have instead pexvian
intuitive feel for the categorical grounding behiddskell's structures.

Notes

1. 1 At least as far as types are concerned, but Wwglrey to avoid that word :)

2. 1 More technicallyfst andsnd have types which limit them to pairs. It wouldibgossible to define
projection functions on tuples in general, becabsg'd have to be able to accept tuples of diffesezes,
so the type of the function would vary.

3. 1 In fact, these are one and the same concept ikelas

4. 1 This isn't quite whathr andord do, but that description fits our purposes weil] &'s close enough.

5. 1 To make things even more confusing, there's dgtaaén more than one type for integers! Don't worr
we'll come on to this in due course.

6. 1 This has been somewhat simplified to fit our pgg® Don't worry, the essence of the functionaseth

7. 1 Some of the newer type system extensions to @éllreak this, however, so you're better off just
always putting down types anyway.

8. 1 This is a slight lie. That type signature wouldamehat you can compare two values of any type
whatsoever, but this clearly isn't true: how can gee if two functions are equal? Haskell inclual&nd

230 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

10.
11.
12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.
31.

231 of 290

of 'restricted polymorphism' that allows type vatés to range over some, but not all types. Haskell
implements this usintype classeswvhich we'll learn about later. In this case, tberect type of==) iSEq
a=>a->a->Bool

. 1 In mathematicsy! normally means the factorial af but that syntax is impossible in Haskell, so we

don't use it here.

1 Actually, defining the factorial of O to be 1 istrjust arbitrary; it's because the factorial sepresents

an empty product.

1 This is no coincidence; without mutable variablesursion is the only way to implement control
structures. This might sound like a limitation ligbu get used to it (it isn't, really).

1 Actually, it's using a function callgdldi , which actually does the recursion.

1 Moggi, Eugenio (1991). "Notions of Computation aidnads".Information and Computatio83 (1).

1 w:Philip Wadler. Comprehending Monads (http://séer.ist.psu.edu/wadler92comprehending.html) .
Proceedings of the 1990 ACM Conference on LISPRantttional Programming, Nice. 1990.

T w:Philip Wadler. The Essence of Functional Prograng
(http://citeseer.ist.psu.edu/wadler92essence.ht@®bnference Record of the Nineteenth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of ProgramgiLanguages. 1992.

1 Simon Peyton Jones, Philip Wadler (1993). "Impeeafunctional programming"
(http://lhomepages.inf.ed.ac.uk/wadler/topics/mortadg#imperative) 20'th Symposium on Principles
Programming Languages

1 It infers a monomorphic type becawses bound by a lambda expression, and things boyridmbdas
always have monomorphic types. See Polymorphism.

1 lan StewartThe true story of how Theseus found his way otiteofabyrinth Scientific American,
February 1991, page 137.

1 Gérard HuetThe Zipper Journal of Functional Programming, 7 (5), Se@7,9p. 549--554. PDF
(http://www.st.cs.uni-sb.de/edu/seminare/2005/adedrp/docs/huet-zipper.pdf)

1 Note the notion ofipperas coined by Gérard Huet also allows to replacelevbubtrees even if there is
no extra data associated with them. In the caseiolabyrinth, this is irrelevant. We will come lato

this in the section Differentiation of data types.

1 Of course, the second topmost node or any othd® abmost a constant number of links away from the
top will do as well.

1 Note that changing the whole data structure ag®gbto updating the data at a node can be achieved
amortized constant time even if more nodes tharntigstop node is affected. An example is incremngnt

a number in binary representation. While incremmgngiay111..11 must touch all digits to yield

1000..00 , the increment function nevertheless runs in @risamortized time (but not in constant worst
case time).

1 Conor Mc BrideThe Derivative of a Regular Type is its Type of -Gloée ContextsAvailable online.
PDF (http://www.cs.nott.ac.uk/~ctm/diff.pdf)

1 This phenomenon already shows up with generis.trie

1 Actually, we can apply them to functions whoseetygpforall a. a -> R, for some arbitrary R, assthe
accept values of any type as a parameter. Exaroplasgch functions: id, const k for any k. So teciatly,

we can't do anything _useful_ with its elements.

1 In fact, there are no written down and completeodigional semantics of Haskell. This would be a
tedious task void of additional insight and we hppmbrace the folklore and common sense semantics
1 Monads are one of the most successful ways todgwetational semantics to imperative programs. See
also Haskell/Advanced monads.

1 Strictness as premature evaluation of functiomm@ents is elaborated in the chapter Graph Reduction
1 The termLazinesscomes from the fact that the prevalent implemématechnique for non-strict
languages is callddzy evaluation

1 The termlifted is somewhat overloaded, see also Unboxed Types.

1 S. Peyton Jones, A. Reid, T. Hoare, S. Marlow, Rndenderson. A semantics for imprecise exceptions
(http://research.microsoft.com/~simonpj/Papers/en@e-exn.htm) In Programming Languages Design

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

32.

33.

34.

35.

36.

and Implementation. ACM press, May 1999.

1 John C. Reynold$2olymorphism is not set-theoretidlRIA Rapports de Recherche No. 296. May
1984.

1 Actually, there is a subtlety here: becauseis a lazy function, if isundefined , we have thati . f
=_->_|_ . Now, while this may seem equivalent o for all extents and purposes, you can actually
tell them apart using the strictifying functieeg, meaning that the last category law is broken.céfe
define a new strict composition functidn,g = (() $! f) $! g , that makeslask a category. We
proceed by using the normg@l , though, and attribute any discrepancies to tbetfatseq breaks an
awful lot of the nice language properties anyway.

1 Experienced category theorists will notice thargveimplifying things a bit here; instead of pretseg
unit andjoin as natural transformations, we treat them expflies morphisms, and require naturality as
extra axioms alongside the the standard monad (laws 3 and 4). The reasoning is simplicity; we are
not trying to teach category theory as a wholepgrgive a categorical background to some of the
structures in Haskell. You may also notice thatangegiving these morphisms names suggestive af thei
Haskell analogues, because the namasdp don't provide much intuition.

T This is perhaps due to the fact that Haskell mogners like to think of monads as a way of sequmgnci
computations with a common feature, whereas ingcayetheory the container aspect of the various
structures is emphasisgaln pertains naturally to containers (squashing twers of a container down
into one), but>>=) is the natural sequencing operation (do sometl@agling its results into something
else).

1 If you can prove that certain laws hold, whichlixeXplore in the next section.

Haskell Performance

Graph reduction

Notes and TODOs

= TODO: Pour lazy evaluation explanation from Lazme#o this mold.
m TODO: better section names.
= TODO: ponder the graphical representation of graphs

= No grapical representation, do it witdt .. in . Pro: Reduction are easiest to perform in that
way anyway. Cons: no graphic.

= ASCII art / line art similar to the one in Bird&Whka? Pro: displays only the relevant parts truly
as graph, easy to perform on paper. Cons: Uglylange graphs with that.

= Full blown graphs with @-nodes? Pro: look graphyrS: nobody needs to know @-nodes in
order to understand graph reduction. Can be ex@dim the implementation section.

= Graphs without @-nodes. Pro: easy to understanchsCwhat about currying?

m | Keep this chapter short. The sooner the reasews how to evaluate Haskell programs by hand, the

better.

» First sections closely follow Bird&Wadler

Introduction

232 of 290

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Programming is not only about writing correct pags, answered by denotational semantics, but alsata
writing fast ones that require little memory. Foat, we need to know how they're executed on a mech
commonly given by operational semantics. This olagxplains how Haskell programs are commonly etestu
on a real computer and thus serves as foundatiaamflyzing time and space usage. Note that th&dHlas
standard deliberately doast give operational semantics, implementations ae fo choose their own. But so
far, every implementation of Haskell more or lelsely follows the execution model laizy evaluation

In the following, we will detail lazy evaluation drsubsequently use this execution model to exg@ladth
exemplify the reasoning about time and memory cemipt of Haskell programs.

Evaluating Expressions by Lazy Evaluation

Reductions

Executing a functional program, i.e. evaluatingeapression, means to repeatedly apply functiomdefns
until all function applications have been expandeake for example the expressighagoras 34 together
with the definitions

: square X = X * X
ipythagoras x y = square x + square y

1
pythagoras 3 4 !
= square 3 + square 4 (pythagoras) '
= (3*3) +square 4 (square) 1
9 +square 4 (*) '

9+ (4*4) (square) 1
9+16 @) '
25 1

1

Every reduction replaces a subexpression, caflddcible expressionor redex for short, with an equivalent
one, either by appealing to a function definititke Ifor square or by using a built-in function like) . An
expression without redexes is said to baommal form. Of course, execution stops once reaching a normal
form which thus is the result of the computation.

Clearly, the fewer reductions that have to be peréal, the faster the program runs. We cannot e)qaatt
reduction step to take the same amount of timeusecds implementation on real hardware looks défgrent,
but in terms of asymptotic complexity, this numbé&reductions is an accurate measure.

Reduction Strategies

There are many possible reduction sequences amtuthber of reductions may depend on the order iciwh
reductions are performed. Take for example theesgionist (square 3, square 4) . One systematic
possibilty is to evaluate all function argumentfobe applying the function definition

ifst (square 3, square 4)

1 = fst (3*3, square 4) (square)
1 = fst (9, square 4) (*)

V= fst (9, 4*4) (square)

1 = fst(9,16) *

1=9 (fst)

233 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

This is called amnnermost reduction strategy and amnermost redexis a redex that has no other redex as
subexpression inside.

Another systematic possibility is to apply all faea definitions first and only then evaluate argnts:

fst (square 3, square 4)

1
1
, = square 3 (fst) '
1 = 3*3 (square) 1
=9 © !

which is nameautermost reduction and always reducesitermost redeses that are not inside another redex.
Here, the outermost reduction uses less reducteps shan the innermost reduction. Why? Because the
functionfst doesn't need the second component of the paith@nekduction ogquare 4 was superflous.

Termination

For some expressions like

no reduction sequence may terminate and prograsuéga enters a neverending loop, those expressions
not have a normal form. But there are also expoessivhere some reduction sequences terminate amel do
not, an example being

:fst (42, loop)
P> 42 (fst)

= fst (42,1+loop) (loop)
= fst (42,1+(1+loop)) (loop)

=

1
:
1
1 1
fst (42, loop) '
1
1
1
1
1

The first reduction sequence is outermost reduaimhthe second is innermost reduction which tne&in to
evaluate th@op even though it is ignored lst anyway. The ability to evaluate function argumeoriky
when needed is what makes outermost optimal whemmiies to termination:

Theorem (Church Rosser II)
If there is one terminating reduction, then outestreduction will terminate, too.

Graph Reduction

Despite the ability to discard arguments, outermedtiction doesn't always take fewer reductionsstean
innermost reduction:

square (1+2)

L= (12)%(1+2) (square) :
1 = (1+2)*3 (+) 1
L33) :
<0 © :

Here, the argument+2) is duplicated and subsequently reduced twice bBatause it is one and the same
argument, the solution is to share the reduatiez) = 3 with all other incarnations of this argument. Toén
be achieved by representing expressiorgraghs For example,

234 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

represents the expressiam2)*1+2) . Now, theoutermost graph reductionof square (1+2) proceeds as
follows

—
=z

and the work has been shared. In other words, morgraph reduction now reduces every argumenbat
once. For this reason, it always takes fewer redoateps than the innermost reduction, a fact igovove
when reasoning about time.

Sharing of expressions is also introduced weith andwhere constructs. For instance, consider Heron's formula
for the area of a triangle with side® andc:

:area abc=lets=(ath+c)/2in
' sqrt (s*(s-a)*(s-b)*(s-c))

arealll
= (area)
sqrtl(| | <>L(O-a)*(0-b)*(0-c)) ((1l+1+1)/2)
= (1).(5).(N

sqrtl(I | <>L(O-a)*(0-b)*(0-c)) 1.51

which |s\/3/_l Put differentlyjet -bindings simply give names to nodes in the gréplfact, one can dispense

entirely with a graphical notation and soley retyie@ to mark sharing and express a graph struéiffe.
Any implementation of Haskell is in some form basedoutermost graph reduction which thus providgead
model for reasoning about the asympotic complexityme and memory allocation. The number of retunct

steps to reach normal form corresponds to the ¢xectime and the size of the terms in the grapiesponds
to the memory used.

Exercises
1. Reducesquare (square 3) to normal form with innermost,

outermost and outermost graph reduction.
2. Consider the fast exponentiation algorithm

235 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1

power x0=1

jpower x n =x' *x' * (if n ‘mod” 2 ==0then 1 els ex)
1 where x' = power x (n “div’ 2)

1

that takex to the power ofi. Reducepower25 with innermost
and outermost graph reduction. How many reductasas
performed? What is the asymptotic time complexiythe general
power 2n ? What happens to the algorithm if we use "gragiles
outermost reduction?

Pattern Matching

So far, our description of outermost graph redurcisostill underspecified when it comes to patteatching
and data constructors. Explaining these pointsemidble the reader to trace most cases of thetredwstrategy
that is commonly the base for implementing noresfrinctional languages like Haskell. It is called
call-by-needor lazy evaluationin allusion to the fact that it "lazily" postponéee reduction of function
arguments to the last possible moment. Of coungerdmaining details are covered in subsequentiersap

To see how pattern matching needs specificatiomsider for example the boolean disjunction

:or True y =True
jor Falsey =y

with a non-terminatingpop = not loop . The following reduction sequence

or (1==1) loop
1 = or (1==1) (not loop) (loop)
1 = or (1==1) (not (not loop)) (loop)

:or (1==1) loop

1
1
i =orTrue loop (or) '
1
1

1 = True

makes much more sense. Of course, we just waply ghe definition obr and are only reducing arguments

to decide which equation to choose. This intentsocaptured by the following rules for pattern nidtg in
Haskell:

» Left hand sides are matched from top to bottom

= When matching a left hand side, arguments are redtfriom left to right
= Evaluate arguments only as much as needed to debieiner they match or not.

236 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Thus, for our exampler (1==1) loop , we have to reduce the first argument to eitlwes or False , then
evaluate the second to match a varighpattern and then expand the matching functiomdefn. As the
match against a variable always succeeds, the dezgament will not be reduced at all. It is thesw
reduction section above that reproduces this behavi

With these preparations, the reader should novbleta evaluate most Haskell expressions he enecaint
Here are some random encounters to test thisyabilit

Exercises

Reduce the following expressions with lazy evalwato normal form.
Assume the standard function definitions from thelurle.

length [42,42+1,42-1]

head (map (2*) [1,2,3])

head $ [1,2,3] ++ (let loop = tail loop in loop)
zip [1..3] (iterate (+1) 0)

head $ concatMap (\x -> [x,x+1]) [1,2,3]
take (42-6*7) $ map square [2718..3146]

Higher Order Functions

The remaining point to clarify is the reductionhagher order functions and currying. For instarcmsider the
definitions

itwice f=f . f
b = twice (+1) (13*3)

where bothd andtwice are only defined with one argument. The solutetoisee multiple arguments as
subsequent applications to one argument, thisllisdoaurrying

@a=(d (+1) 41
b = (twice (+1)) (13*3)

To reduce an arbitrary applicatiexpression 1 expression 2, call-by-need first reduoexpression until this
becomes a function whose definition can be unfoldid the argumendxpression 2. Hence, the reduction
sequences are

237 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

a
= (id (+1)) 41 (a)
= (+1) 41 (id)
=42 (+)

b

= (twice (+1)) (13*3) (b)
= ((+1).(+1)) (13*3) (twice)
= (+1) ((+1) (13*3)) ()

= (+1)((+1) 39) (M

= (+1) 40 (+)
=41 (+)

Admittedly, the description is a bit vague and et section will detail a way to state it clearly.

While it may seem that pattern matching is the Wworke of time intensive computations and higheeord
functions are only for capturing the essence ddlgorithm, functions are indeed useful as datectires. One
example are difference listg](-> [a]) that permit concatenation @(1) time, another is the representation
of a stream by a fold. In fact, all data structuaes represented as functions in the pure lambdalaa, the roc
of all functional programming languages.

Exercises! Or not? Diff-Lists Best done wfoldl (++) but this requires knowledge of the fold example. O
where do we introduce the foldl VS. foldr examplall® Hm, Bird&Wadler sneak in an extra sectione€ét
again with fold" for the (++) example at the end"@ontrolling reduction order and space requirensgnt/
The complexity of (++) is explained when arguingatreverse

Weak Head Normal Form
To formulate precisely how lazy evaluation choaseseduction sequence, it is best to abandon emadt
function definitions and replace them with an esgren-oriented approach. In other words, our go#d i

translate function definitions likigx:xs) = ... into the formf= expression . This can be done with two
primitives, namely case-expressions and lambdaaisins.

In their primitive form, case-expressions only allthe discrimination of the outermost construckot
instance, the primitive case-expression for lists the form

icase expression of
1

izip :: [a] -> [a] -> [(a,a)] :
zipll ys =[] I
zipxs [=] |
:zip (x:xs") (y:ys') = (x,y):zip xs'ys' '

to case-expressions and lambda-abstractions:

238 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:zip =\xs ->\ys ->
| case xs of
0 ->10

1 Xixs'->

' case ys of
1 >]

' yiys' > (X,y):zip xs' ys'

Assuming that all definitions have been translatethose primitives, every redex now has the fofraithher

= a function application\ variable ->expression 1) expression 2
m Or a case-expressiease expression of {...}

lazy evaluation

Weak Head Normal Form
An expression is in weak head normal form, ifieither

= a constructor (eventually applied to arguments tikie , Just (square 42) or (}) 1 (42+1)
= a built-in function applied to too few argumentsiipaps none) liker) 2 orsagrt .
m or a lambda abstraction-> expression

functions types cannot be pattern matched anywatythie devious seq can evaluate them to Wi
nonetheless. "weak" = no reduction under lambdasad" = first the function application, then thegaments.

Strict and Non-strict Functions

A non-strict function doesn't need its argumendtrict function needs its argument in WHNF, as lasgve dc
not distinguish between different forms of non-teation { x = loop doesn't need its argument, for
example).

Controlling Space

NOTE: The chapteHaskell/Strictness is intended to elaborate onstif here.
NOTE: The notion of strict function is to be intumeéd before this sectic

Now's the time for the space-eating fold exan

Introduceseq and$! that can force an expression to WHNF. &l

Tricky space leak example:

:(\xs -> head xs + last xs) [1..n]
i(\xs -> last xs + head xs) [1..n]

The first version runs on O(1) space. The secor@(i).

239 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Sharing and CSE

NOTE: overlaps with section about time. Hm, makexna memoization sectio

How to shar

:foo Xy =-- s is not shared
foox=\ly->s+y

| Where s = expensive X -- s is shared

"Lambda-lifting", "Full laziness". The compiler shid not do full laziness.

A classic and important example for the trade betwspace and tim

1

isublists [] =[]

sublists (x:xs) = sublists xs ++ map (x:) sublists XS
isublists' (x:xs) = let ys = sublists’ xs in ys ++ m ap (x:) ys

That's why the compiler should not do common suleszpn elimination as optimization. (Does GHC?).

Tail recursion

NOTE: Does this belong to the space section? ktbo it's about stack spa

Tail recursion in Haskell looks different.

Reasoning about Time
Note: introducing strictness before the upper timoeind saves some hassle with explana

Lazy eval < Eager eval

When reasoning about execution time, naively parilog graph reduction by hand to get a clue on vghat'
going is most often infeasible. In fact, the ordeevaluation taken by lazy evaluation is diffidolfpredict by
humans, it is much easier to trace the path of eagaluation where arguments are reduced to norioah
before being supplied to a function. But knowiragf tazy evaluation always performs less reducti@ps than
eager evaluation (present the proof!), we can gagpdt an upper bound for the number of reductions b
pretending that our function is evaluated eag:

ior = foldr (|[) False
iisPrime n = not $ or $ map (\k ->n “mod” k ==0) [2..n-1]

=> eager evaluation always takes n steps, lazy twake more than that. But it will actually takevkr.

Throwing away arguments

240 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Time bound exact for functions that examine theguenent to normal form anyway. The property that a
function needs its argument can concisely be captby denotational semanti

Argument in WHNF only, though. Operationally: n@mrbination -> non-termination. (this is an approxtion
only, though because f anything/~doesn't "need" its argument). Non-strict functiclo1't need their
argument and eager time bound is not sharp. Butrtftgmation whether a function is strict or notrcalready
be used to great benefit in the analysis.

It's enough to knowr True £ =True
Other examples:

= foldr () [] vs.foldl (flip (:)) [I with L.
m Canhead . mergesort be analyzed only witld? In any case, this example is too involed andrgsdo
Haskell/Laziness.

Persistence & Amortisation

NOTE: this section is better left to a data struesichapter because the subsections above covérofibe
cases a programmer not focussing on data structbagsortization will encounter.

Persistence = no updates in place, older versiamssdill there. Amortisation = distribute unequalining
times across a sequence of operations. Both donkadl together in a strict setting. Lazy evaluatman
reconcile them. Debit invariants. Example: incremmgg numbers in binary representation.

Implementation of Graph reduction

Smalltalk about G-machines and such. Main definitio

closure = thunk = code/data pair on the heap. Wihathey do? ConsideiX.ly.x + y)2. This is a function that
returns a function, namelyy.2 + y in this case. But when you want to compalde, it's prohibitive to actually
perform the substitution in memory and replaceoatturences cx by 2. So, you return a closure that consists
of the function codgy.x + y and an environment {x = 2} that assignsied to the free variables appearing in
there.

GHC (?, most Haskell implementations?) avoid fraeables completely and use supercombinators. ot
words, they're supplied as extra-parameters andtieervation that lambda-expressions with too few
parameters don't need to be reduced since their Widhot very differen

Note that these terms are technical terms for imgletation stuff, lazy evaluation happily lives withthem
Don't use them in any of the sections ak

References

241 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

'_\

g b~ w

~N O

10.
11.
12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24

242 of 290

. 1 At least as far as types are concerned, but welrgy to avoid that word :)
. 1 More technicallyfst andsnd have types which limit them to pairs. It wouldibgossible to define

projection functions on tuples in general, becahbsg'd have to be able to accept tuples of diffesezes,
so the type of the function would vary.

. 1 In fact, these are one and the same concept ikeHas
. 1T This isn't quite whathr andord do, but that description fits our purposes weil] &'s close enough.
. 1 To make things even more confusing, there's dgtaaén more than one type for integers! Don't worr

we'll come on to this in due course.

. 1 This has been somewhat simplified to fit our pggm Don't worry, the essence of the functioneseth
. 1 Some of the newer type system extensions to @élreak this, however, so you're better off just

always putting down types anyway.

. 1 This is a slight lie. That type signature wouldaméhat you can compare two values of any type

whatsoever, but this clearly isn't true: how can gee if two functions are equal? Haskell inclual&nd
of 'restricted polymorphism' that allows type vates to range over some, but not all types. Haskell
implements this usintype classeswvhich we'll learn about later. In this case, tbherect type of==) iSEq
a=>a->a->Bool

. 1 In mathematics)! normally means the factorial of but that syntax is impossible in Haskell, so we

don't use it here.

1 Actually, defining the factorial of O to be 1 istrjust arbitrary; it's because the factorial sepresents
an empty product.

1 This is no coincidence; without mutable variablesursion is the only way to implement control
structures. This might sound like a limitation ligbu get used to it (it isn't, really).

1 Actually, it's using a function callgdldi , which actually does the recursion.

1 Moggi, Eugenio (1991). "Notions of Computation aidnads".Information and Computatio3 (1).

T w:Philip Wadler. Comprehending Monads (http://eger.ist.psu.edu/wadler92comprehending.html) .
Proceedings of the 1990 ACM Conference on LISPRutttional Programming, Nice. 1990.

1 w:Philip Wadler. The Essence of Functional Prograng
(http://citeseer.ist.psu.edu/wadler92essence.ht@dnference Record of the Nineteenth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of ProgramgiLanguages. 1992.

1 Simon Peyton Jones, Philip Wadler (1993). "Impeeafunctional programming"
(http://homepages.inf.ed.ac.uk/wadler/topics/mortadg#imperative) 20'th Symposium on Principles
Programming Languages

1 It infers a monomorphic type becauses bound by a lambda expression, and things bboyridmbdas
always have monomorphic types. See Polymorphism.

1 lan StewartThe true story of how Theseus found his way otiteofabyrinth Scientific American,
February 1991, page 137.

1 Gérard HuetThe Zipper Journal of Functional Programming, 7 (5), Sef@7,9p. 549--554. PDF
(http://www.st.cs.uni-sb.de/edu/seminare/2005/adedrp/docs/huet-zipper.pdf)

1 Note the notion ofipperas coined by Gérard Huet also allows to replacelevbubtrees even if there is
no extra data associated with them. In the caseiofabyrinth, this is irrelevant. We will come lato

this in the section Differentiation of data types.

1 Of course, the second topmost node or any othid# abmost a constant number of links away from the
top will do as well.

1 Note that changing the whole data structure agsghto updating the data at a node can be achieved
amortized constant time even if more nodes thartléastop node is affected. An example is increment
a number in binary representation. While incremrmgnsiay111..11 must touch all digits to yield

1000..00 , the increment function nevertheless runs in @risamortized time (but not in constant worst
case time).

1 Conor Mc BrideThe Derivative of a Regular Type is its Type of -Glioée ContextsAvailable online.
PDF (http://www.cs.nott.ac.uk/~ctm/diff.pdf)

1 This phenomenon already shows up with generis.trie

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

25.

26.

27.

28.
29.

30.
31.

32.

33.

34.

35.

36.
37.

1 Actually, we can apply them to functions whoseetygpforall a. a -> R, for some arbitrary R, assthe
accept values of any type as a parameter. Exaroplasgch functions: id, const k for any k. So teciatly,
we can't do anything _useful_ with its elements.

1 In fact, there are no written down and completeod&tional semantics of Haskell. This would be a
tedious task void of additional insight and we hppmbrace the folklore and common sense semantics
T Monads are one of the most successful ways todgwetational semantics to imperative programs. See
also Haskell/Advanced monads.

1 Strictness as premature evaluation of functiomments is elaborated in the chapter Graph Reduction
1 The termLazinesscomes from the fact that the prevalent implemématechnique for non-strict
languages is callddzy evaluation

1 The termlifted is somewhat overloaded, see also Unboxed Types.

1 S. Peyton Jones, A. Reid, T. Hoare, S. Marlow, Rndenderson. A semantics for imprecise exceptions
(http://research.microsoft.com/~simonpj/Papers/en@e-exn.htm) In Programming Languages Design
and Implementation. ACM press, May 1999.

1 John C. Reynold$®2olymorphism is not set-theoretidlRIA Rapports de Recherche No. 296. May
1984.

1 Actually, there is a subtlety here: becayuseis a lazy function, if isundefined , we have thait . f
=_->_|_ . Now, while this may seem equivalent o for all extents and purposes, you can actually
tell them apart using the strictifying functieeg, meaning that the last category law is broken.céfe
define a new strict composition functian,g = (() $!f) $! g , that makeslask a category. We
proceed by using the normgl , though, and attribute any discrepancies to tbetfatseq breaks an
awful lot of the nice language properties anyway.

1 Experienced category theorists will notice thargveimplifying things a bit here; instead of pretseg
unit andjoin as natural transformations, we treat them expfie morphisms, and require naturality as
extra axioms alongside the the standard monad(laws 3 and 4). The reasoning is simplicity; we are
not trying to teach category theory as a wholepgigive a categorical background to some of the
structures in Haskell. You may also notice thataneegiving these morphisms names suggestive af thei
Haskell analogues, because the namasdu don't provide much intuition.

T This is perhaps due to the fact that Haskell @ogners like to think of monads as a way of sequrgnci
computations with a common feature, whereas ingcayetheory the container aspect of the various
structures is emphasisgaln pertains naturally to containers (squashing twers of a container down
into one), but>>=) is the natural sequencing operation (do sometli@agling its results into something
else).

1 If you can prove that certain laws hold, whichliwXplore in the next section.

1 John Maraist, Martin Odersky, and Philip Wadlea§ML998). "The call-by-need lambda calculus”
(http://homepages.inf.ed.ac.uk/wadler/topics/cgtheed.html#need-journal)YJournal of Functional
Programming8 (3): 257-317.

Bird, Richard (1998)Introduction to Functional Programming using Hask&rentice Hall. ISBN
0-13-484346-0.

Peyton-Jones, Simon (198The Implementation of Functional Programming Langes
(http://research.microsoft.com/~simonpj/papersi4lppk-1987/) Prentice Hall.

Laziness

243 of 290

M3 Hard work pays off later. Laziness pays off nowsteven Wright kbl

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Introduction

By now you are aware that Haskell uses lazy evalnan the sense that nothing is evaluated untiessary.
The problem is what exactly does "until necessargan? In this chapter, we will see how lazy evabuat
works (how little black magic there is), what exadt means for functional programming and how taka the
best use of it. But first, let's consider for haylazy evaluation. At first glance, it is temptitmythink that lazy
evaluation is meant to make programs more efficigfter all, what can be more efficient than notrap
anything? This is only true in a superficial seridesides, in practice, laziness often introducesvanhead that
leads programmers to hunt for places where theyraee their code stricter. The real benefit oflazs is not
merely that it makes things efficient, but titahakes the right thingsfficient enough. Lazy evaluation allows
us to write simple, elegant code which would simmpdy be practical in a strict environment.

Nonstrictness versus Laziness

There is a slight difference betwelazinessandnonstrictnessNonstrict semanticsrefers to a given property
of Haskell programs that you can rely on: nothinll me evaluated until it is needeldazy evaluationis how
you implement nonstrictness, using a device cdladks which we explain in the next section. However sthe
two concepts are so closely linked that it is biemafto explain them both together: a knowledgéhoiks is
useful for understanding nonstrictness, and theasins of nonstrictness explains why you would bagilazy
evaluation in the first place. As such, we introgltite concepts simultaneously and make no partietfiart to
keep them from intertwining, with the exceptiongetting the terminology right.

Thunks and Weak head normal form

There are two principles you need to understarggtdow programs execute in Haskell. Firstly, weehide
property of nonstrictness: we evaluate as littlp@ssible for as long as possible. Secondly, Haskéles are
highly layered; 'evaluating' a Haskell value comldan evaluating down to any one of these layersegowvhat
this means, let's walk through a few examples usipgir.

(We'll assume that in the 'in' part, we usendy somewhere. Otherwise, we're not forced to evalinge
let-binding at all; the right-hand side could h&ee=nundefined and it would still work if the 'in’ part doesn't
mentionx ory. This assumption will remain for all the exampieshis section.) What do we know aba(t
Looking at it we can see it's pretty obvious 5 andy "hello”, but remember the first principle: we domant

to evaluate the calls tength andreverse until we're forced to. So okay, we can say thahdy are both
thunks: that is, they aranevaluated valuewith arecipethat explains how to evaluate them. For examples f
this recipe says 'Evaluategth [1..5] '. However, we are actually doing some pattern hiatcon the left
hand side. What would happen if we removed that?

Although it's still pretty obvious to us thais a pair, the compiler sees that we're not trygndeconstruct the

244 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

value on the right-hand side of the '=' sign gtsadlit doesn't really care what's there. It tebe a thunk on its
own. Later on, when we try to usewe'll probably need one or both of the componesudswve'll have to
evaluatez, but for now, it can be a thunk.

Above, we said Haskell values were layered. Wesesnthat at work if we pattern matchzon

:Iet z = (length [1..5], reverse "olleh")
L (ns)=z
in ...

After the first line has been executeds simply a thunk. We know nothing about the sdnalue it is because
we haven't been asked to find out yet. In the sgdtioe, however, we pattern match onsing a pair pattern.
The compiler thinks 'l better make sure that pattiyes indeed mateh and in order to do that, | need to make
surez is a pair.' Be careful, though. We're not as ofdgeng anything with the component parts (thesctdl

length andreverse), SO they can remain unevaluated. In other wardahich was just a thunk, gets evaluated
to something likg*thunk*, *thunk*) , andn ands become thunks which, when evaluated, will be the
component parts of the original

Let's try a slightly more complicated pattern match

:Iet z = (length [1..5], reverse "olleh")
1 (n,s)=z

1 'hss=s

:in

The pattern match on the second component of

causes some evaluation. The compiler wishes to
check that ther:ss pattern matches the second
component of the pair. So, it:

Evaluates the top level efto ensure it's a cons

cell: s = *thunk* : *thunk* . (If s had been an

empty list we would encounter an pattern match
failure error at this point.)

Evaluates the first thunk it just revealed to make

sure it's 'h's = h : *thunk*

The rest of the list stays unevaluated, snd

becomes a thunk which, when evaluated, will be
[k| the rest of this list.

So it seems that we can 'partially evaluate' (most)
Haskell values. Also, there is some sense of the
minimum amount of evaluation we can do. For

Evaluating the valuet, [1, 2]) step by step. The first

stage is completely unevaluated; all subsequentsare in example, if we have a pair thunk, then the minimum
WHNF, and the last one is also in normal form. amount of evaluation takes us to the pair
constructor with two unevaluated components:
(*thunk*, *thunk*) . If we have a list, the
minimum amount of evaluation takes us either tomsaellthunk* : *thunk* or an empty lisf] . Note that

in the second case, no more evaluation can berpgtbon the value; it is said to benarmal form. If we are
at any of the intermediate steps so that we'veopedd at least some evaluation on a value, it veéaak head

245 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

normal form (WHNF). (There is also a 'head normal form’, stnot used in HaskellBully evaluating
something in WHNF reduces it to something in norfoah; if at some point we needed to, say, priout to

the user, we'd need to fully evaluate it to, inahgdthose calls t@ength andreverse , to (5, "hello”) , Where
it is in normal form. Performing any degree of exdlon on a value is sometimes calfecting that value.

Note that for some values there is only one. Fang{e, you can't partially evaluate an integes.dither ¢
thunk or it's in normal form. Furthermore, if wevieaa constructor with strict components (annotatgl an
exclamation mark, as witdata MaybeS a = NothingS | JustS !a), these components become evaluated as

soon as we evaluate the level above. l.e. we caegr i@velustS *thunk* , as soon as we get to this level the
strictness annotation on the componentuefs forces us to evaluate the component part.

So in this section we've explored the basics ohtss. We've seen that nothing gets evaluateditsitieeded
(in fact theonly place that Haskell values get evaluated is irepattnatches, and inside certain primitive 10
functions), and that this principle even appliegvaluting values- we do the minimum amount of work on a
value that we need to compute our result.

Lazy and strict functions

Functions can be lazy or strict 'in an argumentgsiMunctions need to do something with their argnts, and
this will involve evaluating these arguments tdetént levels. For examplength needs to evaluate only the
cons cells in the argument you give it, not theteots of those cons cehslength *thunk* might evaluate to
something likaength (*thunk* : *thunk* : *thunk* : []) , Which in turn evaluates & Others need to
evaluate their arguments fully, likeow. If you hadshow *thunk* , there's no way you can do anything other
than evaulate that thunk to normal form.

So some functions evaluate their arguments mohgthan others. Given two functions of one parametand
g, We say is stricter thamgy if fx evaluates to a deeper level thayx . Often we only care about WHNF, so a

function that evaluates its argument to at leastNIFhk calledstrict and one that performs no evaluatiotay.
What about functions of more than one parameter?, We can talk about functions being strict in one
parameter, but lazy in another. For example, gavéumction like the following:

Clearly we need to perform no evaluationygiut we need to evaluatdully to normal form, sa@ is strict in
its first parameter but lazy in its second.

Exercises

1. Why must we fully evaluate to normal form irf x y = show x ?
2. Which is the stricter function?

:f x = length [head x]
19 x = length (tail x)

TODO: explain that it's also about how much of ithfgut we need to consume before we can start pinguc
output. E.g. foldr () [] and foldl (flip (:)) [] oth evaluate their arguments to the same levelrmitsess, but

246 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

foldr can start producing values straight away, wdes foldl needs to evaluate cons cells all the teahe enc

before it starts anything.

Black-box strictness analysis

Imagine we're given some functiorwhich takes a single
parameter. We're not allowed to look at its sowase, but
we want to know whetheris strict or not. How might we
do this? Probably the easiest way is to use thnelatd
Prelude valuendefined . Forcingundefined to any level o
evaluation will halt our program and print an eyisw all of

these print errors:

:Iet (X, y) = undefined in x

length undefined

head undefined

:JustS undefined -- Using MaybeS as defined in the |

of the following produce errors:

:Iet (X, y) = (4, undefined) in x

length [undefined, undefined, undefined]
head (4 : undefined)

:Just undefined

So we can say thatis a strict function if, and only if,undefined

halting of our program.

In the context of nonstrict semantics

J f
So if a function is strict, passing it undefinedlwesult in ar
error. Were the function lazy, passing it undefimeld print

no error and we can carry on as normal. For examplee

If f returns an error when passed undefined, it must
be strict. Otherwise, it's lazy.

results in an error being printed and the

What we've presented so far makes sense untiltgouts think about functions like . Isid strict? Our gut
reaction is probably to say "No! It doesn't evaduiéd argument, therefore its lazy". However, lapply our

black-box strictness analysis from the last sediiaa . Clearly,id undefined

IS going to print an error and

halt our program, so shouldn't we say thats strict? The reason for this mixup is that Héi&kaonstrict

semantics makes the whole issue a bit murkier.

Nothing gets evaluated if it doesn't need to bepaing to nonstrictness. In the following codell Vength

undefined be evaluated?

If you type this into GHCI, it seems so, becauseliyget an error printed. However, our questiorswa
something of a trick one; it doesn't make sensajyowvhether a value get evaluated, unless we'rgdoi

something to this value. Think about it: if we tyipehead [1, 2, 3]

into GHCI, the only reason we have to do

any evaluation whatsoever is because GHCi hasrbys out the result. Typing, 10, length undefined,

247 of 290

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

12] again requires GHCi to print that list back to st must evaluate it to normal form. You camkhof
anything you type into GHCi as being passeshtw. In your average Haskell program, nothing at 4lll e
evaluated until we come to perform the IQriain . So it makes no sense to say whether somethienpisiated
or not unless we know what it's being passed te,level up.

So when we say "Does forcex?" what we really mean is "Given that we're fordirg, doesx get forced as
a result?". Now we can turn our attention baci tolf we forceid x to normal form, ther will be forced to
normal form, so we conclude that is strict.id itself doesn't evaluate its argument, it just tsaman to the
caller who will. One way to see this is in the éoling code:

- We evaluate the right-hand of the let-binding to WHNF by pattern-matching :
- against it. '
let (X, y) = undefined in x -- Error, because we fo rce undefined. 1
:Iet (x, y) = id undefined in x -- Error, because we force undefined. '

:Iet (X, y) = undefined in x -- Error, because we fo rce undefined.
let (x, y) = const (3, 4) undefined -- No error, be cause const (3, 4) is lazy.

The denotational view on things

If you're familiar with denotational semantics (pa&ps you've read the wikibook chapter on it?), tien
strictness of a function can be summed up veryisatty:

fl=1 <« fisstrict

Assuming that you say that everything with tygell a. a , iIncludingundefined , error "any string" ,
throw and so on, has denotatidn

Lazy pattern matching

You might have seen pattern matches like the foliguin Haskell sources.

L
Example: A lazy pattern match

:—- From Control.Arrow
) fg~xy)=(@{x9Y)

The question is: what does the tilde sign (~) maahe above pattern match? ~ makégzy patternor
irrefutable pattern Normally, if you pattern match using a construes part of the pattern, you have to
evaluate any argument passed into that functionake sure it matches the pattern. For exampleufhad a
function like the above, the third argument woudddvaluated when you call the function to make thee
value matches the pattern. (Note that the firstssewbnd arguments won't be evaluated, becauseattezns
andg match anything. Also it's worth noting that tmmponentsf the tuple won't be evaluated: just the 'top
level'. Trylet f (Just x) = 1 in f (Just undefined) to see the this.)

248 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

However, prepending a pattern with a tilde sigragelthe evaluation of the value until the compomants are
actually used. But you run the risk that the vahight not match the pattern -- you're telling tloenpiler 'Trust
me, | know it'll work out'. (If it turns out it de@&'t match the pattern, you get a runtime errav.)l[Tistrate the
difference:

. L
Example: How ~ makes a difference

:Prelude> let f (x,y) = 1 in f undefined
Undefined
\Prelude> let f ~(x,y) = 1 in f undefined

In the first example, the value is evaluated beedilisas to match the tuple pattern. You evaluatietined and
get undefined, which stops the preceedings. Inater example, you don't bother evaluating thepeter until
it's needed, which turns out to be never, so isdbenatter you passeduitdefined . To bring the discussion

around in a circle back to+)

Example: How ~ makes a difference wittt*))

e 1
:Prelude> (const 1 *** const 2) undefined :
@2 :
L e e e e e f e e e e e mm e mc e m e e e e e e ;e e e e e e e —— e —m e — e —————— 1

If the pattern weren't irrefutable, the example ldcdwave failed.

When does it make sense to use lazy patterns?

Essentially, when you only have the single construior the type, e.g. tuples. Multiple equationsn work
nicely with irrefutable patterns. To see thisslekamine what would happen were we to make have an

irrefutable pattern:

L
Example: Lazierhead

:head‘ t[a]l->a

thead' ~[] = undefined
ihead' ~(x:xs) = x

1

The fact we're using one of these patterns tellsotiso evaluate even the top level of the argumetit
absolutely necessary, so we don't know whetheauit'smpty list or a cons cell. As we're usingregfutable
pattern for the first equation, this will match dathe function will always return undefined.

Exercises

249 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

= Why won't changing the order of the equationseta’ help here?
= More to come...

Techniques with Lazy Evaluation

This section needs a better title and is intendelet the workhorse of this chapter.

Separation of concerns without time penality

Examples

jor = foldr (||) False

iisSubstringOf x y = any (isPrefixOf x) (tails y)
ftake n . quicksort

itake n . mergesort

jprune . generate

The more examples, the better!

What about the case of (large data -> small dathgre lazy evaluation is space-hungry but doesk# tass
reductions than eager evaluation? Mention it heé&borate it in Haskell/Strictness?

XS++ys

xs ++ ys is O(min(length xs,k)) where k is the légngf the part of the result which you observe sTioilows
directly from the definition of++) and laziness.

:[| ++ys=ys --casel
(XiXs) ++ys = X : (xs ++ys) -- case 2

—

1,2,3] ++ys 1
1:([2,3] ++ys) -- by case 2 '
1:(2:(3]++ys)) --bycase?2 1
1:(2:(3: (] ++ys))-- by case 2 '
1:(2:(3:y9)) -- by case 1 1

Here, the length of the left list was 3, and itkdosteps to completely reduce the definitio+ef . As you can
see, the length and contentyefactually doesn't matter at all, as it just endbeing a tail of the resulting list.
You can see fairly easily that it will takength xs + 1 steps to completely expand the definitior+@§ in xs
++ys in general. However, this won't actually happetilyou go about actually using those elementdef t
list. If only the firstk elements of the list are demanded, whetelength xs , then they will be available aft

250 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

only k steps, so indeed,

(or getting any constant number of elements froenhtbad) will evaluate in constant time.

i sSubstri ngOr

TODO:rewrite introduction to this section / now tadlant with main intro
Often code reuse is far better.

Here's a simple example:

Example: Laziness helps code reuse

:—— From the Prelude
1or = foldr (|[) False
any p =or.mapp

1

I From Data.List
isPrefixOf [_ =True

isPrefixOf _ [=False

isPrefixOf (x:xs) (y:ys) = x ==y && isPrefixOf xs ys
1

tails [] =

:tails XSS@(_:XS) = xss : tails xs

. Our function
v ; _ :) .
lisSubstringOf x y = any (isPrefixOf x) (tails y)

Whereany, isPrefixOf andtails are the functions taken from tbeta.List library. This function determines
if its first parameterx occurs as a substring of its secondRead in a strict way, it forms the list of alettails

of y, then checks them all to see if any of them hasae a prefix. In a strict language, writing thiadtion this
way (relying on the already-written prograamg, isPrefixof , andtails) would be silly, because it would be
far slower than it needed to be. You'd end up ddingct recursion again, or in an imperative lamgga couple
of nested loops. You might be able to get someousefisPrefixof , but you certainly wouldn't usails

You might be able to write a usable shortcutting, but it would be more work, since you wouldn't wemuse
foldr to do it.

Now, in a lazy language, all the shortcutting iseldor you. You don't end up rewriting foldr to steoit when
you find a solution, or rewriting the recursion édn tails so that it will stop early again. Yowuna@use
standard library code better. Laziness isn't justrastant-factor speed thing, it makes a qualigativwpact on th
code which it's reasonable to write. In fact,atsnmonplace to define infinite structures, and tbely use as
much as is needed, rather than having to mix upotie of constructing the data structure with cdlot
determines whether any part is needed. Code maukicreased, as laziness gives you more waghop
up your code into small pieces, each of which dossnple task of generating, filtering, or othemvis
manipulating data.

Why Functional Programming Matters (http://www.ntthbmers.se/~rjmh/Papers/whyfp.htmi)argely focuse

251 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

on examples where laziness is crucial, and prowadesong argument for lazy evaluation being thHaule

Infinite Data Structures

Examples

1

:fibs = 1:1:zipWith (+) fibs (tail fibs)
i'rock-scissors-paper” example from Bird&Wadler
jprune . generate

Infinite data structures usually tie a knot, toait bhe Sci-Fi-Explanation of that is better leftthee next sectiot
One could move the next section before this onéthirik that infinite data structures are simpléan tying
general knot

Tying the Knot

More practical example:

Sci-Fi-Explanation: "You can borrow things from thiture as long as you don't try to change them".
Advanced: the "Blueprint"-technique. Examples:ahe from the haskellwiki, the one from the mailiag

At first a pure functional language seems to hapeohlem with circular data structures. Supposaviena data
type like this:

If I want to create two objects "x" and "y" whepe' ‘tontains a reference to "y" and "y" containgfrence to
"X" then in a conventional language this is strigfward: create the objects and then set the aelefields to
point to each other:

: -- Not Haskell code :
:x = new Foo; :
1Y = new Foo; |
:x.value =1 :
 X.next:=y; .
1y.value ;=2 1
1 — 1
L y-next = x; .

1 1
circularFoo :: Foo Int !
icircularFoo = x '
1 where 1
1 _

i x=Fooly '
1 y=Foo2x 1
1 1

This depends on the fact that the "Foo" construstarfunction, and like most functions it getslaated lazily.
Only when one of the fields is required does itgetluated.

252 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

It may help to understand what happens behinddéees here. When a lazy value is created, for ebealnypa
call to "Foo", the compiler generates an interregdstructure called a "thunk” containing the fiorctcall and
arguments. When the value of the function is deredritle function is called, as you would expect. tBet the
thunk data structure is replaced with the retudne/alhus anything else that refers to that vakts g straight
away without the need to call the function.

(Note that the Haskell language standard makesemdian of thunks: they are an implementation meigman
From the mathematical point of view this is a gfintfiorward example of mutual recursion)

So when | call "circularFoo" the result "x" is aally a thunk. One of the arguments is a referea@gecond
thunk representing "y". This in turn has a refeeehack to the thunk representing "x". If | then tisevalue
"next x" this forces the "x" thunk to be evaluate! returns me a reference to the "y" thunk. Eé the value
"next $ next x" then | force the evaluation of bdthinks. So now both thunks have been replacedthéh
actual "Foo" structures, refering to each otheridNls what we wanted.

This is most often applied with constructor funospbut it isn't limited just to constructors. Yoan just as
readily write:

The same logic applies.

Memoization, Sharing and Dynamic Programming

Dynamic programming with immutable arrays. DP wother finite maps, Hinze's paper "Trouble share
Trouble halved". Let-floatingk-> let z = foo x in \y -> ...

Conclusions about laziness

Move conclusions to the introductic

Can make qualitative improvements to performance!

Can hurt performance in some other cases.

Makes code simpler.

Makes hard problems conceivable.

Allows for separation of concerns with regard togmting and processing data.

References

= Laziness on the Haskell wiki (http://www.haskelgtraskellwiki/Performance/Laziness)
= Lazy evaluation tutorial on the Haskell wiki
(http://www.haskell.org/haskellwiki/Haskell/Lazy &wation)

Strictness

253 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Difference between strict and lazy evaluation

Strict evaluation, or eager evaluation, is an eatabun strategy where expressions are evaluatedasas they
are bound to a variable. For example, with stnetleation, whex=3+*7 isread, 3 * 7 is immediately
computed and 21 is bound to x. Conversely, witly Ezaluation values are only computed when they are
needed. In the exampte-3*7 |, 3 * 7 isn't evaluated until it's needed, likgalu needed to output the value
of x.

Why laziness can be problematic

Lazy evaluation often involves objects called thaink thunk is a placeholder object, specifying thet data
itself, but rather how to compute that data. Antgmian be replaced with a thunk to compute thétyenVhen
an entity is copied, whether or not it is a thuilesh't matter - it's copied as is (on most impleatens, a
pointer to the data is created). When an entigveduated, it is first checked if it is thunk; tsia thunk, then it
is executed, otherwise the actual data is returhézliby the magic of thunks that laziness carmntyg@emented.

Generally, in the implementation the thunk is nealkt a pointer to a piece of (usually static) €oplus anothe
pointer to the data the code should work on. Ifehty computed by the thunk is larger than thm{go to the

code and the associated data, then a thunk wins as¢mory usage. But if the entity computed bytthenk is

smaller, the thunk ends up using more memory.

As an example, consider an infinite length listeg@ted using the expressianate (+ 1) 0 . The size of the

list is infinite, but the code is just an add instion, and the two pieces of data, 1 and 0, asetyw Integers. |
this case, the thunk representing that list takeshnhess memory than the actual list, which woaldtinfinite
memory.

However, as another example consider the numbergtsd using the expression13 +2 . The value of thi
number is 54, but in thunk form it is a multiplyy add, and three numbers. In such a case, the thse& in
terms of memory.

Often, the second case above will consume so mechary that it will consume the entire heap andddhe
garbage collector. This can slow down the executifaihe program significantly. And that, in fact,the reason
why laziness can be problematic.

Stricthness annotations
seq
DeepSeq

References

» Strictness on the Haskell wiki (http://www.haskaity/haskellwiki/Performance/Strictness)

254 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Algorithm complexity

Complexity Theory is the study of how long a pragraill take to run, depending on the size of ifguh There
are many good introductory books to complexity tigeand the basics are explained in any good alyost
book. I'll keep the discussion here to a minimum.

The idea is to say how well a program scales withendlata. If you have a program that runs quicklyery
small amounts of data but chokes on huge amourttatef it's not very useful (unless you know yaarily be
working with small amounts of data, of course). §ider the following Haskell function to return them of the
elements in a list:

1
isum[]=0
isum (x:xs) = X + sum xs

How long does it take this function to completeafi$a very difficult question; it would dependahsorts of
things: your processor speed, your amount of mentlbeyexact way in which the addition is carried, dloe
length of the list, how many other programs arenmig on your computer, and so on. This is far tazimto
deal with, so we need to invent a simpler modee iitodel we use is sort of an arbitrary "machinp.5t8o the
question is "how many machine steps will it taketfos program to complete?" In this case, it agpends on
the length of the input list.

If the input list is of length 0, the function wtkke either 0 or 1 or 2 or some very small nundbenachine
steps, depending exactly on how you count themh§per 1 step to do the pattern matching and 1 martdirn
the value 0). What if the list is of length 1. Wadlwould take however much time the list of lam§twould
take, plus a few more steps for doing the firsti(anly element).

If the input list is of lengtim, it will take however many steps an empty list Vdotake (call this valug) and
then, for each element it would take a certain nemalb steps to do the addition and the recursiig@all this
numberx). Then, the total time this function will takerig + y since it needs to do those additionsany times.
Thesex andy values are calledonstantvalues since they are independent of n, and actuallyeddpntonly on
exactly how we define a machine step, so we retyt want to consider them all that important. fEfi@re, we
say that the complexity of thism function is()(n) (read "orden”). Basically saying something ((n)
means that for some constant factoendy, the function takeex + y machine steps to complete.

Consider the following sorting algorithm for ligisommonly called "insertion sort"):

:sort|] =1
isort [x] = [X]
isort (x:xs) = insert (sort xs)
1 where insert [] = [X]
insert (y:ys) | x<=y =x:y:ys
| otherwise =y : insert ys

The way this algorithm works is as follow: if we mido sort an empty list or a list of just one edg) we return
them as they are, as they are already sorted. Widesrwe have a list of the forxtxs . In this case, we soxt

and then want to insextin the appropriate location. That's what itizert function does. It traverses the
now-sorted tail and insertswherever it naturally fits.

255 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Let's analyze how long this function takes to caetgl Suppose it také®) stepts to sort a list of length
Then, in order to sort a list ofmany elements, we first have to sort the taiheflist first, which takef{n — 1)
time. Then, we have to inserinto this new list. Ik has to go at the end, this willta@Q(n — 1) = O(n)

steps. Putting all of this together, we see thahaee to dd(n) amount of work)(n) many times, which
means that the entire complexity of this sortirgpathm is(j)(nz‘]. Here, the squared is not a constant value,
SO we cannot throw it out.

What does this mean? Simply that for really losgsli thesum function won't take very long, but that tet
function will take quite some time. Of course thare algorithms that run much more slowly than $ymp
(f){nz‘] and there are ones that run more quickly @(n). (Also note that a@(nz‘] algorithm may actually

be much faster than(,’_)(n) algorithm in practice, if it takes much less titogperform a single step of the
O(n?) algorithm.)

Consider the random access functions for listsaaralys. In the worst case, accessing an arbittangent in a
list of lengthn will take C)l:n) time (think about accessing the last element). éi@w with arrays, you can
access any element immediately, which is said tm lsenstantiime, or@(1), which is basically as fast an any
algorithm can go.

There's much more in complexity theory than thid,this should be enough to allow you to undersththe
discussions in this tutorial. Just keep in mind C)(l) is faster tha@(n) is faster than@(n?‘], etc.

Optimising

Profiling

Concurrency

Concurrency

If you need concurrency in Haskell, you should bke &0 simply consult the docs for Control.Concuatreand
Control.Monad.STM.

Example

Example: Downloading files in parallel

256 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1
idownloadFile :: URL -> 10 ()
'downloadFile = undefined

1
‘downloadFiles :: [URL] -> 10 ()
downloadFiles = mapM__ (forklO . downloadFile)

Choosing data structures

Haskell/Choosing data structures

Libraries Reference

Hierarchical libraries

Haskell has a rich and growing set of functiondilies. They fall into several groups:

= The Standard Prelude (often referred to as just Pitelude") is defined in the Haskell 98 standaudl a
imported automatically to every module you writbisTdefines standard types such as strings, lgts a
numbers and the basic functions on them, suchithsretic, map andfoldr

= The Standard Libraries are also defined in the Bl&9I8 standard, but you have to import them whaumn y
need them. The reference manuals for these lilsrarie at http://www.haskell.org/onlinereport/

m Since 1998 the Standard Libraries have been grigderbended, and the resulting de-facto standard is
known as the Base libraries. The same set is dlaifar both HUGS and GHC.

m Other libraries may be included with your compilercan be installed using the Cabal mechanism.

When Haskell 98 was standardised modules were @iVt namespace. This has proved inadequate and a
hierarchical namespace has been added by allowitsgrd module names. For backward compatibility the
standard libraries can still be accessed by thmirlmerarchical names, so the modules andData.List

both refer to the standard list library.

For details of how to import libraries into yourogram, see Modules and libraries. For an explanatidhe
Cabal system for packaging Haskell software se#&ibiging your software with the Cabal.

Haddock Documentation

Library reference documentation is generally pr@dugsing the Haddock tool. The libraries shippeith G&@HC
are documented using this mechanism. You can \nevdbcumentation at
http://www.haskell.org/ghc/docs/latest/html/libesiindex.html, and if you have installed GHC theere
should also be a local copy.

Haddock produces hyperlinked documentation, soyetu@e you see a function, type or class name you ¢

257 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:
click on it to get to the definition. The sheer Weaf libraries available can be intimidating, this tutorial will
point out the highlights.

One thing worth noting with Haddock is that typesl @lasses are cross-referenced by instance. Sxdonple
in theData.Maybe (http://www.haskell.org/ghc/docs/latest/ html/libraries/base/Data-Maybe.html)

library themaybe data type is listed as an instanceaf:

This means that if you declare a tyf® is an instance abrd then the typetaybe Foo will automatically be an
instance obrd as well. If you click on the wordrd in the document then you will be taken to the miedn of
theord class and its (very long) list of instances. Tigance fomaybe will be down there as well.

Hierarchical libraries/Lists

ThelList datatype is the fundamental data structure in elask this is the basic building-block of data stge
and manipulation. In computer science terms itsshgly-linked list. In the hierarchical librarysgm the List
module is stored ipata.List ; but this module only contains utility functiorihe definition of list itself is

integral to the Haskell language.

Theory

A singly-linked list is a set of values in a defiherder. The list can only be traversed in onedtiioa (ie, you
cannot move back and forth through the list likgetan a cassette machine).

The list of the first 5 positive integers is writtas

We can move through this list, examining and chaggialues, from left to right, but not in the otlugrection.
This means that the list

is not just a trivial change in perspective frora grevious list, but the result of significant cartagion ©O(n)in
the length of the list).

Definition

The polymorphic list datatype can be defined wité following recursive definition:

The "base case" for this definition[js, the empty list. In order to put something ints tiist, we use the)
constructor

258 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:emptyList =1
joneElem = 1:[]

The() (pronouncedons is right-associative, so that creating multi-edstlists can be done like

Basic list usage

Prepending

It's easy to hard-code lists without cons, buttiore list creation will use cons. For example, tsip an
argument onto a simulated stack, we would use:

:push 2 Arg -> [Arg] -> [Arg]
jpush arg stack = arg:stack

Pattern-matching

If we want to examine the top of the stack, we wlidypically use a peek function. We can try patieraiching
for this.

:peek :: [Arg] -> Maybe Arg
ipeek [] = Nothing

peek (a:as) = Just a

1

Thea before theconsin the pattern matches the head of the list. ashmatches the tail of the list. Since we

don't actually want the tail (and it's not referesh@nywhere else in the code), we can tell the dentpis
explicitly, by using a wild-card match, in the foohan underscore:

List utilities

FIXME: is this not covered in the chapter on lisampulation”
Maps

Folds, unfolds and scans

Length, head, tail etc.

259 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Hierarchical libraries/Randoms

Random examples

Here are a handful of uses of random numbers bypbea

L
Example: Ten random integer numbers

:import System.Random
1

imain = do

! gen <- getStdGen

1 let ns = randoms gen :: [Int]
' print $ take 10 ns

There exists a global random number generator whkigtitialized automatically in a system dependashion.
This generator is maintained in the 10 monad amdbzaaccessed with getStdGen. Once obtained getting
random numbers out of a generator does not retheréO monad, i.e. a generator can be used infpations.

Alternatively one can get a generator by initiadgzit with an integer, using mkStdGen:

Example: Ten random floats using mkStdGen

:import System.Random
1

randomList :: (Random a) => Int -> [a]

:randomList seed = randoms (mkStdGen seed)

:main 210 ()

imain = do print $ take 10 (randomList 42 :: [Float])

L
Example: Unsorting a list (imperfectly)

260 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1

timport Data.List (sort)

limport Data.Ord (comparing)

iimport System.Random (Random, RandomGen, randoms, getStdGen)
1

imain :: 10 0

:main =

ydo gen <- getStdGen

! interact $ unlines . unsort gen . lines

wunsort :: g->[x]->[x]
lunsort g es = map snd $ sortBy (comparing fst) $ zi prses
1+ Where rs = randoms g :: [Integer]

There's more to random number generation thatms . You can, for example, usendom (sans 's’) to
generate a random number from a low to a high ra®ge below for more ideas.

The Standard Random Number Generator

The Haskell standard random number functions apestyare defined in the Random module (or
System.Random if you use hierarchical modules).défmition is at
http://www.haskell.org/onlinereport/random.htmltlis a bit tricky to follow because it uses class® make
itself more general.

From the standard:

class RandomGen g where
1 genRange :: g -> (Int, Int)
| next :g->(Int, g)

1split g ->(g, 9)

1

P A standard instance of RandomGen- ~ ceeeeeeeee

[}
:data StdGen = ... -- Abstract

OK. This basically introduces StdGen, the standandlom number generator "object". Its an instaricbe
RandomGen class just in case anyone wants to ingpieandifferent random number generator.

If you have r :: StdGen then you can say:

This gives you a random Int x and a new StdGefh2.'next' function is defined in the RandomGessland
you can apply it to something of type StdGen bee&tdGen is an instance of the RandomGen class|aw.

From the Standard:

1

linstance RandomGen StdGen where ...
instance Read ~ StdGen where ...
iinstance Show StdGen where ...

This also says that you can convert a StdGen tdranda string, which is there as a handy way ieghe state
of the generator. (The dots are not Haskell syntaey simply say that the Standard does not defme

261 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

implementation of these instances.)

From the Standard:

This is the factory function for StdGen objectst iua seed, get out a generator.

The reason that the 'next' function also returneva random number generator is that Haskell isiatfonal
language, so no side effects are allowed. In navgjuages the random number generator routine bdsdten
side effect of updating the state of the genenaady for the next call. Haskell can't do thatifS@u want to
generate three random numbers you need to say lsiogéke

let
(x1, r2) =nextr
(x2, r3) = next r2
(x3, r4) = next r3

The other thing is that the random values (x1 x&,are random integers. To get something in thgeasay,
(0,999) you would have to take the modulus youysdtich is silly. There ought to be a library ragibuilt on
this, and indeed there is.

From the Standard:

randomR :: RandomGen g =>(a,a)->g->(a, g)
random :: RandomGen g =>g ->(a, g)

randomRs :: RandomGen g => (a, a) -> g -> [a]
randoms :: RandomGen g => g -> [a]

randomRIO :: (a,a) -> 10 a
randomlO : 10 a

Remember that StdGen is the only instance of tyggadBmGen (unless you roll your own random number
generator). So you can substitute StdGen for ‘tiiertypes above and get this:

randomR :: (a, &) -> StdGen -> (a, StdGen)
random :: StdGen -> (a, StdGen)

randomRs :: (a, a) -> StdGen -> [a]
randoms :: StdGen -> [a]

But remember that this is all inside *another* slaeclaration "Random". So what this says is thgtiastance
of Random can use these functions. The instancBRsaiwdom in the Standard are:

1 1
linstance Random Integer where ... 1
instance Random Float where ... '
iinstance Random Double where ... 1
instance Random Bool where ... '
instance Random Char where ... 1

1

So for any of these types you can get a randonetarigu can get a random integer with:

262 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

So far so good, but threading the random numbés gteough your entire program like this is paintdror
prone, and generally destroys the nice clean fanatiproperties of your program.

One partial solution is the "split" function in tRandomGen class. It takes one generator and gotesvo
generators back. This lets you say something hiee t

(r1, r2) = splitr

1
1
:x:foorl

In this case we are passing rl down into functemm vhich does something random with it and retarnssult

"x", and we can then take "r2" as the random nurgeeerator for whatever comes next. Without "spli¢'
would have to write

But even this is often too clumsy, so you can dbetquick and dirty way by putting the whole thinghe 10
monad. This gives you a standard global random euménerator just like any other language. But beeats
just like any other language it has to do it in iBemonac

From the Standard:

1
b The global random generator ------ cemeeeeeee 1
inewStdGen :: 10 StdGen '
setStdGen :: StdGen -> 10 () 1
jgetStdGen :: 10 StdGen '
getStdRandom :: (StdGen -> (a, StdGen)) -> 10 a 1
1 1

1 f00 32 10 Int

! foo =do

rl <- getStdGen

let (x, r2) = randomR (0,999) r1
setStdGen r2

return x

This gets the global generator, uses it, and tipelates it (otherwise every random number will legame).
But having to get and update the global generaterygtime you use it is a pain, so its more comnwuse

263 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

getStdRandom. The argument to this is a functimmgare the type of that function to that of 'rantand
‘randomR’. They both fit in rather well. To getamdom integer in the 10 monad you can say:

The 'randomR (1,999)" has type "StdGen -> (IntG&ta)", so it fits straight into the argument reqdiby
getStdRandom.

Using QuickCheck to Generate Random Data

Only being able to do random numbers in a nicegsttiorward way inside the 1O monad is a bit ofarp You
find that some function deep inside your code ne@edsidom number, and suddenly you have to rewailie
your program as IO actions instead of nice puretions, or else have an StdGen parameter tramypaysdown
there through all the higher level functions. Sdrreg a bit purer is needed.

If you have read anything about Monads then yolhtriigve recognized the pattern | gave above:

(x1, r2) =nextr
(x2, r3) = next r2
(x3, r4) = next r3

do -- Not real Haskell
x1 <- random
X2 <- random
x3 <- random

Of course you can do this in the IO monad, butdula be better if random numbers had their owtelittonad
that specialised in random computations. And it gashappens that such a monad exists. It livéisan
Test.QuickCheck library, and it's called "Gen". Ahdoes lots of very useful things with random rinars.

The reason that "Gen" lives in Test.QuickCheckissonical: that is where it was invented. The pwgof
QuickCheck is to generate random unit tests tdywproperties of your code. (Incidentally its veyyod at this,
and most Haskell developers use it for testingg. the QuickCheck
(http://www.cs.chalmers.se/~rjmh/QuickCheck) honggpor more details. This tutorial will concentrate
using the "Gen" monad for generating random data.

Most Haskell compilers (including GHC) bundle Quidteck in with their standard libraries, so you @ioly
won't need to install it separately. Just say

in your source file.

The "Gen" monad can be thought of as a monad dformarcomputations. As well as generating random
numbers it provides a library of functions thatldwip complicated values out of simple ones.

So lets start with a routine to return three randat@gers between 0 and 999:

264 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:randomTripIe :: Gen (Integer, Integer, Integer)
jrandomTriple = do

1 x1 <- choose (0,999)

' x2 <- choose (0,999)

| x3 <- choose (0,999)

! return (x1, x2, x3)

In other words, for any type "a" which is an ingtaof "Random"” (see above), "choose" will map @eanto a
generator.

Once you have a "Gen" action you have to execulené "generate” function executes an action andns the
random result. The type is:

The three arguments are:

1. The "size" of the result. This isn't used in thample above, but if you were generating a datastre
with a variable number of elements (like a lisgrilthis parameter lets you pass some notion of the
expected size into the generator. We'll see an phealater.

2. A random number generator.

3. The generator action.

So for example:

1
let
, triple = generate 1 (mkStdGen 1) randomTriple

will generate three arbitrary numbers. But noté Hecause the same seed value is used the numiiexbvays
be the same (which is why | said "arbitrary”, n@ridom™). If you want different numbers then yowd¢o use
a different StdGen argument.

A common pattern in most programming languages isse a random number generator to choose between t
courses of action:

:—— Not Haskell code
Ir := random (0,1)
if r == 1 then foo else bar

QuickCheck provides a more declaritive way of ddimg same thing. If "foo" and "bar" are both getasa
returning the same type then you can say:

This has an equal chance of returning either "tmd'bar"”. If you wanted different odds, say thardhwas a
30% chance of "foo" and a 70% chance of "bar" §ywncould say

265 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

"oneof" takes a simple list of Gen actions andaslene of them at random. "frequency” does somgthi
similar, but the probability of each item is givieynthe associated weighting.

:oneof ::[Gena]->Gena
frequency :: [(Int, Gen a)] -> Gen a

General Practices

Applications

So you want to build a simple application -- a pie€ standalone software -- with Haskell.

The Main module

The basic requirement behind this is to have a neddain with a main functiormain

1 1
1 -- thingamie.hs !
1 module Main where '
1 1
;main = do '
1 putStrLn "Bonjour, world!" 1
1 1

:$ ghc --make -o bonjourWorld thingamie.hs :
1'$./bonjourWorld !
1 Bonjour, world! 1
! 1

Voila! You now have a standalone application bimilHaskell.

Other modules?

Invariably your program will grow to be complicatedough that you want to split it across differides. Here
is an example of an application which uses two nesiu

- hello.hs
:module Hello where

1
:hello = "Bonjour, world!"

266 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

- thingamie.hs
:module Main where

1
:import Hello

main = do
1 putStrLn hello

We can compile this fancy new program in the samg Mote that the --make flag to ghc is rather lyand
because it tells ghc to automatically detect depeaigs in the files you are compiling. That iscsin
thingamie.hs imports a module 'Hello', ghc will mdethe haskell files in the current directory fibes that
implement Hello and also compile that. If Hello dads on yet other modules, ghc will automaticaétedt
those dependencies as well.

:$ ghc --make -o bonjourWorld thingamie.hs
1'$ /bonjourWorld

1 Bonjour, world!

1

If you want to search in other places for soursfiincluding a nested structure of files andadoges, you ca
add the starting point for the dependency searthte -i flag. This flag takes multiple, colon-septed
directory names as its argument.

As a contrived example, the following program Haee¢ files all stored in a src/ directory. The diogy
structure looks like:

:HaskeIIProgram/
src/
Main.hs
GUI/
Interface.hs
Functions/
Mathematics.hs

The Main module imports its dependencies by seagchipath analogous to the module name — sartpatirt
GUL.Interface would search foGUl/Interface (with the appropriate file extension).

To compile this program from within the HaskellPraxq directory, invoke ghc with:

Debugging/
Haskell/Debugging/
Testing
Quickcheck

Consider the following function:

267 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:getList =find 5 where
' find 0 =return []
find n = do
ch <- getChar
if ch "elem’ ['a'..'e] then do
tl <- find (n-1)
return (ch : tl) else
find n

How would we effectively test this function in Hatlk The solution we turn to is refactoring and €x@heck.
Keeping things pure

The reason your getList is hard to test, is thatside effecting monadic code is mixed in with plee
computation, making it difficult to test without wiag entirely into a "black box" 10-based testingatel. Such
a mixture is not good for reasoning about code.

Let's untangle that, and then test the referegtiedhsparent parts simply with QuickCheck. We e
advantage of lazy 10 firstly, to avoid all the uaasant low-level IO handling.

So the first step is to factor out the 10 parthaf function into a thin "skin" layer:

- A thin monadic skin layer
igetList :: 10 [Char]

getList = fmap take5 getContents
1

i-- The actual worker
itake5 :: [Char] -> [Char]
ftake5 = take 5 . filter (elem’ [a'..'e"])

Testing with QuickCheck

Now we can test the 'guts’ of the algorithm, theSafunction, in isolation. Let's use QuickChecksFwe neec
an Arbitrary instance for the Char type -- thisaslkare of generating random Chars for us to teist M
restrict it to a range of nice chars just for siipy:

:import Data.Char
jimport Test.QuickCheck

1

linstance Arbitrary Char where

i arbitrary = choose (\32', \128")

1 coarbitrary ¢ = variant (ord ¢ ‘rem’ 4)
1

Let's fire up GHCIi (or Hugs) and try some generigperties (it's nice that we can use the QuickChieskng
framework directly from the Haskell REPL). An easye first, a [Char] is equal to itself:

:*A> quickCheck ((\s -> s == s) :: [Char] -> Bool)
1OK, passed 100 tests.

What just happened? QuickCheck generated 100 rafdbar] values, and applied our property, checkirg
result was True for all cases. QuickChegehnerated the test sets for us

A more interesting property now: reversing twicehis identity:

268 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

:*A> quickCheck ((\s -> (reverse.reverse) s == s) :: [Char] -> Bool)
1OK, passed 100 tests.

Testing take5

The first step to testing with QuickCheck is to Wwout some properties that are true of the functionall
inputs. That is, we need to fimavariants

A simple invariant might bey/' s . length (mke!ﬁ 5) = 5

So let's write that as a QuickCheck property:

:*A> quickCheck (\s -> length (take5 s) == 5)
[Falsifiable, after O tests:

Ah! QuickCheck caught us out. If the input striraptains less than 5 filterable characters, theltiagustring
will be less than 5 characters long. So let's weake property a bi'/ s . length (take5 s) < 5

That is, take5 returns a string of at most 5 chiaradong. Let's test this:

*A> quickCheck (\s -> length (take5 s) <= 5)
10K, passed 100 tests.

Another property

Another thing to check would be that the corre@reloters are returned. That is, for all returneatatters,
those characters are members of the set ['d,, i, &].

We can specifythataV s .V e . e € takeb s — e € [abede]

And in QuickCheck:

*A> quickCheck (\s -> all (Celem’ ['a'..'e"]) (take 55))
10K, passed 100 tests.

Excellent. So we can have some confidence thdutietion neither returns strings that are too langy,
includes invalid characters.

Coverage

269 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

One issue with the default QuickCheck configuratiwhen testing [Char], is that the standard 10Gtiss't
enough for our situation. In fact, QuickCheck negenerates a String greater than 5 characters \dme using
the supplied Arbitrary instance for Char! We canfom this:

*A> quickCheck (\s -> length (take5 s) < 5)
10K, passed 100 tests.

QuickCheck wastes its time generating differentr€hahen what we really need is longer strings. Soiation
to this is to modify QuickCheck's default configuoa to test deeper:

This instructs the system to find at least 10080 ¢ases before concluding that all is well. Left'sck that it is
generating longer strings:

:*A> deepCheck (\s -> length (take5 s) < 5)

[Falsifiable, after 125 tests:

1";:ID*NNi~Y\\RegMob\DEL @krsx/=dcf7kub|EQI\DELD*"
1

We can check the test data QuickCheck is generatimgy the 'verboseCheck' hook. Here, testing tagars
lists:

:*A> verboseCheck (\s -> length s < 5)
0:]
1: [0]
:2: Il
3
4]
5:[1,2,1,1]
i6: 2]
i7:[-2,4,-4,0,0]
[Falsifiable, after 7 tests:
:[-2,4,-4,0,0]

More information on QuickCheck

» http://haskell.org/haskellwiki/Introduction_to_Quicheck
» http://haskell.org/haskellwiki/QuickCheck _as_a_test generator

HUnNit

Sometimes it is easier to give an example for taaled to define one from a general rule. HUnit jpleg a unit
testing framework which helps you to do just tieu could also abuse QuickCheck by providing a ganele
which just so happens to fit your example; butgtgbably less work in that case to just use HUnit.

TODO: give an example of HUnit test, and a smalr tof it

More details for working with HUnit can be foundits user's guide
(http://hunit.sourceforge.net/HUnIt-1.0/Guide.html)

270 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

At least part of this page was imported from thelkédl wiki article Introduction
to QuickCheck
(http://www.haskell.org/haskellwiki/Introduction_tQuickCheck) , in

.. accordance to its Simple Permissive License. Ifwah to modify this page

=4 and if your changes will also be useful on thatiywwku might consider

modifying that source page instead of this onehanges from that page may
propagate here, but not the other way around. Adtety, you can explicitly
dual license your contributions under the Simplenissive License.

Packaging
A guide to the best practice for creating a newkidlproject or program.

Recommended tools

Almost all new Haskell projects use the followingls. Each is intrinsically useful, but using a setommon
tools also benefits everyone by increasing prodiigtiand you're more likely to get patches.

Revision control
Use darcs (http://darcs.net) unless you have afgpezason not to. It's much more powerful thansino

competing systems, it's written in Haskell, angltite standard for Haskell developers. See thebwii
Understanding darcs to get started.

Build system

Use Cabal (http://haskell.org/cabal) . You shoelad at least the start of section 2 of the Cabat'§Suide
(http://www.haskell.org/ghc/docs/latest/html/Calraex.html) .

Documentation

For libraries, use Haddock (http://haskell.org/haad . We recommend using recent versions of had (@8
or above).

Testing
Pure code can be tested using QuickCheck (httpw/wwd.chalmers.se/~rjmh/QuickCheck/) or SmallCheck

(http://www.mail-archive.com/haskell@haskell.org/m8815.html) , impure code with HUnit
(http://hunit.sourceforge.net/) .

271 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

To get started, try Haskell/Testing. For a sligmigre advanced introduction, Simple Unit Testinglaskell
(http://blog.codersbase.com/2006/09/01/simple-testing-in-haskell/) is a blog article about cregta testing
framework for QuickCheck using some Template Hdskel

Structure of a simple project

The basic structure of a new Haskell project caadmpted from HNop (http://semantic.org/hnop/)e th
minimal Haskell project. It consists of the followi files, for the mythical project "haq".

Haqg.hs -- the main haskell source file
hag.cabal -- the cabal build description
Setup.hs -- build script itself

_darcs -- revision control

README -- info

LICENSE -- license

You can of course elaborate on this, with subdimees and multiple modules.

Here is a transcript on how you'd create a minidaats-using and cabalised Haskell project, forcthw@ new
Haskell program "haq", build it, install it and eake.

The new tool 'mkcabal’ automates all this for ymut, it's important that you understand all the pé&rst.

We will now walk through the creation of the infrature for a simple Haskell executable. Adviceliioraries
follows after.

Create a directory

Create somewhere for the source:

$ mkdir haq
1$ cd haq

Write some Haskell source

Write your program:

1
:$ cat > Hag.hs

- Copyright (c) 2006 Don Stewart - http://www.cse. unsw.edu.au/~dons
i-- GPL version 2 or later (see http://www.gnu.org/c opyleft/gpl.html)

-

:import System.Environment

1

-- 'main’ runs the main program

imain :: 10 ()

imain = getArgs >>= print . hagify . head
1

:haqify s="Haq!" ++s
1

Stick it in darcs

Place the source under revision control:

272 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

$ darcs init

1$ darcs add Hag.hs

$ darcs record

laddfile ./Haq.hs

iShall | record this change? (1/?) [ynWsfgadjkc], o r ? for help: y
:hunk J/Haqg.hs 1

+

e Copyright (c) 2006 Don Stewart - http://www.cse .unsw.edu.au/~dons

i+-- GPL version 2 or later (see http://www.gnu.org/ copyleft/gpl.html)
-

:+imp0rt System.Environment

1

+-- | 'main’ runs the main program
+main :: 10 ()

rtmain = getArgs >>= print . haqify . head

4
r+hagify s = "Hag! " ++ s
1Shall | record this change? (2/?) [ynWsfqgadijkc], o r ? for help: y

What is the patch name? Import haq source
Do you want to add a long comment? [yn]n
[Finished recording patch ‘Import haqg source'

1
$Is

Add a build system

Create a .cabal file describing how to build yorojgct:

$ cat > hag.cabal

'Name: haq

Version: 0.0

:Description: Super cool mega lambdas
\License: GPL

iLicense-file: LICENSE

Author: Don Stewart

IMaintainer: dons@cse.unsw.edu.au

|Build-Depends: base

1
IExecutable: haq

Main-is: Hag.hs
ighc-options: -0
1

(If your package uses other packages,eggellos , you'll need to add them to tBeild-Depends: field.) Adc
asetup.lhs that will actually do the building:

1

1$ cat > Setup.lhs

#! Jusr/bin/env runhaskell

1

1> import Distribution.Simple
> main = defaultMain

Cabal allows eithegetup.hs or Setup.lns , but we recommend writing the setup file this wgaythat it can be
executed directly by Unix shells.

Record your changes:

273 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1 1
1$ darcs add hag.cabal Setup.lhs 1
1$ darcs record --all '
What is the patch name? Add a build system 1
iDo you want to add a long comment? [yn]n '
i[Finished recording patch 'Add a build system' 1
1 1

Build your project

Now build it!

:$ runhaskell Setup.lhs configure --prefix=$HOME --u ser
1$ runhaskell Setup.lhs build
1$ runhaskell Setup.lhs install

$ dist/build/hag/haq you
I"Haq! you"

Build some haddock documentation

Generate some APl documentation into dist/doc/*

:$ w3m -dump dist/doc/html/hag/Main.html
1 haq Contents Index

1 Main
1

| Synopsis

rmain :: 10 ()

1

: Documentation

1

' main :: 10 0

:main runs the main program

: Produced by Haddock version 0.7
1

No output? Make sure you have actually installeddoak. It is a separate program, not somethingdbiates
with the Haskell compiler, like Cabal.

Add some automated testing: QuickCheck

We'll use QuickCheck to specify a simple propeftgur Hag.hs code. Create a tests module, Testsitis,

274 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

some QuickCheck boilerplate:

$ cat > Tests.hs

import Char

import List

'import Test.QuickCheck

iimport Text.Printf

1

imain = mapM_ (\(s,a) -> printf "%-25s: " s >> a) t ests
1

instance Arbitrary Char where

i arbitrary = choose (\0', \128")

' coarbitrary ¢ = variant (ord ¢ ‘rem’ 4)

$ cat >> Tests.hs

- reversing twice a finite list, is the same as id entity
prop_reversereverse s = (reverse . reverse) s == id S

! where _ =s:: [Int]

1
- and add this to the tests list
ftests = [("reverse.reverse/id", test prop_reverser everse)]

:$ runhaskell Tests.hs
reverse.reverse/id : OK, passed 100 tests.

- Dropping the "Hag! " string is the same as ident ity
jprop_hagq s = drop (length "Hag! ") (haqify s) ==id s
1 Where hagify s ="Haq! " ++ s

1

ftests = [("reverse.reverse/id", test prop_reverser everse)
1 ,("drop.hag/id", test prop_haq)]

1

:$ runhaskell Tests.hs

1

1
reverse.reversefid : OK, passed 100 tests. '
drop.hag/id : OK, passed 100 tests. 1
1 1
Great!

Running the test suite from darcs

We can arrange for darcs to run the test suiteveryeeommit:

:$ darcs setpref test "runhaskell Tests.hs"
iChanging value of test from " to 'runhaskell Tests .hs'

will run the full set of QuickChecks. (If your testquires it you may need to ensure other thing$aiit too eg
darcs setpref test "alex Tokens.x;happy Grammar.y;r unhaskell Tests.hs").

Let's commit a new patch:

275 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

1

1$ darcs add Tests.hs

1$ darcs record --all

What is the patch name? Add testsuite

Do you want to add a long comment? [yn]n
{Running test...

reverse.reverse/id : OK, passed 100 tests.
idrop.hag/id : OK, passed 100 tests.
iTest ran successfully.

iLooks like a good patch.

iFinished recording patch 'Add testsuite'

1

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Excellent, now patches must pass the test suitgdéfiey can be committed.

Tag the stable version, create a tarball, and setl

Tag the stable version:

1

1$ darcs tag

What is the version name? 0.0
iFinished tagging patch 'TAG 0.0'
1

Tarballs via Cabal

Since the code is cabalised, we can create a taritalCabal directly:

:$ runhaskell Setup.lhs sdist
1Building source dist for hag-0.0...
iSource tarball created: dist/hag-0.0.tar.gz

This has the advantage that Cabal will do a bitevabrecking, and ensure that the tarball has thetane
expected by HackageDB. It packages up the filederk#o build the project; to include other fileagk as

Tesths in the above example), we need to add:

to the .cabal file to have everything included.
Tarballs via darcs
Alternatively, you can use darcs:

$ darcs dist -d hag-0.0
iCreated dist as hag-0.0.tar.gz

And you're all set up!

Summary

The following files were created:

276 of 290

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

: $ls :
i Hag.hs Tests.hs dist hag.cabal '
1 Setup.lhs _darcs hag-0.0.tar.gz 1
1 1
Libraries

The process for creating a Haskell library is almdentical. The differences are as follows, fag ttypothetical
"Itree” library:

Hierarchical source

The source should live under a directory path fikatnto the existing module layout guide
(http://www.haskell.org/~simonmatr/lib-hierarchy.hfjmSo we would create the following directoryustiure,
for the module Data.LTree:

$ mkdir Data
$ cat > Data/LTree.hs
module Data.LTree where

So our Data.LTree module lives in Data/LTree.hs

The Cabal file

Cabal files for libraries list the publically visdomodules, and have no executable section:

$ cat Itree.cabal

Name: ltree

Version: 0.1

Description: Lambda tree implementation
License: BSD3

License-file: LICENSE

Author: Don Stewart

Maintainer: dons@cse.unsw.edu.au

Build-Depends: base
Exposed-modules: Data.LTree
ghc-options: -Wall -O

$ runhaskell Setup.lhs configure --prefix=$HOME --user

$ runhaskell Setup.lhs build

Preprocessing library Itree-0.1...

Building Itree-0.1...

[1 of 1] Compiling Data.LTree (Data/LTree .hs, dist/build/Data/LTree.o)
Jusr/bin/ar: creating dist/build/libHSItree-0.1. a

and our library has been created as a object acliim *nix systems, you should probably add theerdlag to
the configure step (this means you want to updaie ppcal package database during installationyv Nwstall
it:

$ runhaskell Setup.lhs install

Installing: /home/dons/lib/ltree-0.1/ghc-6.6 & / home/dons/bin Itree-0.1...
Registering Itree-0.1...
Reading package info from ".installed-pkg-config " ... done.

Saving old package config file... done.
Writing new package config file... done.

277 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

And we're done! You can use your new library fréon,example, ghci:

$ ghci -package Itree
Prelude> :m + Data.LTree
Prelude Data.LTree>

The new library is in scope, and ready to go.

More complex build systems

For larger projects it is useful to have sourcegrstored in subdirectories. This can be done gitmptreating
a directory, for example, "src", into which you Mplut your src tree.

To have Cabal find this code, you add the followling to your Cabal file:

Cabal can set up to also run configure scripts)gleith a range of other features. For more infdromaconsult
the Cabal documentation (http://www.haskell.org/dbcs/latest/html/Cabal/index.html) .

Automation

A tool to automatically populate a new cabal prbje@vailable (betal!):

N.B. This tool does not work in Windows.The Windows version of GHC does not include tlresll@e
package that this tool needs.

Usage is:

i$ mkcabal

'Project name: haq

What license ['GPL","LGPL","BSD3","BSD4","PublicDom ain","AllRightsReserved"] ['BSD3"]:
‘What kind of project [Executable,Library] [Executab le]:

Is this your name? - “Don Stewart " [Y/n]:

iIs this your email address? - "<dons@cse.unsw.edu.a u>"[Y/n]:

iCreated Setup.lhs and hag.cabal

S$ls

:Haq.hs LICENSE Setup.lhs _darcs dist h ag.cabal

which will fill out some stub Cabal files for thegpect 'haq'.

To create an entirely new project tree:

1
1$ mkcabal --init-project
{Project name: haq

1
\
What license ['GPL","LGPL","BSD3","BSD4","PublicDom ain","AllRightsReserved"] ['BSD3"]: :
\What kind of project [Executable,Library] [Executab le]: '
iIs this your name? - "Don Stewart " [Y/n]: |
1Is this your email address? - "<dons@cse.unsw.edu.a u>" [Y/n]: !
\Created new project directory: haq '
1$ cd haq]
$1s '
1
1

278 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Licenses

Code for the common base library package must 2 Ig8nsed or Freer. Otherwise, it is entirely agyou as
the author.

Choose a licence (inspired by this (http://www.ditkéd~abraham/rants/license.html)). Check the besnof
things you use, both other Haskell packages anbré@ries, since these may impose conditions you follsw.

Use the same licence as related projects, wheslp@sThe Haskell community is split into 2 camgsjghly,
those who release everything under BSD, GPLers| @Rl ers. Some Haskellers recommend specifically
avoiding the LGPL, due to cross module optimisatgsues. Like many licensing questions, this adigce
controversial. Several Haskell projects (wxHaskedXml, etc) use the LGPL with an extra permissilaise
to avoid the cross-module optimisation problem.

Releases

It's important to release your code as stable g@ddarballs. Don't just rely on darcs for distribat
(http://awayrepl.blogspot.com/2006/11/we-dont-dieases.html) .

m darcs distgenerates tarballs directly from a darcs repogitor

For example:

1$ darcs dist -d fps-0.8

1
:
1
Data LICENSE README Setup.hs TODO _ darcs chitsdist fps.cabal tests 1
1
iCreated dist as fps-0.8.tar.gz :

1

You can now just post your fps-0.8.tar.gz
You can also have darcs do the equivalent of 'da@pshots’ for you by using a post-hook.

put the following in _darcs/prefs/defaults:

: apply posthook darcs dist
1 apply run-posthook

Advice:

m Tag each release usidgrcs tag For example:

:$'d_arcs tag 0.8
[Finished tagging patch 'TAG 0.8

Then people cadarcs pull --partial -t 0.8 , to get just the tagged version (and not the emiistory).

Hosting

A Darcs repository can be published simply by mgkiravailable from a web page. If you don't hawe a

279 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

account online, or prefer not to do this yours&dfurce can be hosted on darcs.haskell.org (younedt to
email Simon Marlow (http://research.microsoft.coswronmar/) to do this). haskell.org itself has sarser
accounts available.

There are also many free hosting places for oparcepsuch as

= Google Project Hosting (http://code.google.com/imgg}
m SourceForge (http://sourceforge.net/) .

Example

A complete example (http://www.cse.unsw.edu.au/sfmng/2006/12/11#release-a-library-today) of wagi
packaging and releasing a new Haskell library utitisrprocess has been documented.

At least part of this page was imported from thelkédl wiki article How to
write a Haskell program
(http:/wvww.haskell.org/haskellwiki/How_to_write_ldaskell_program) , in
accordance to its Simple Permissive License. Ifwah to modify this page
.. and if your changes will also be useful on thatiwyku might consider

=4 modifying that source page instead of this onehamges from that page may
propagate here, but not the other way around. Adtety, you can explicitly
dual license your contributions under the Simpleri#esive License. Note also
that the original tutorial contains extra inforneatiabout announcing your
software and joining the Haskell community, whichynbe of interest to you.

Specialised Tasks

GUI

Haskell has at least three toolkits for programnargyaphical interface:

= wxHaskell - provides a Haskell interface to the wggéts toolkit

» Gtk2Hs (http://haskell.org/gtk2hs/) - provides askell interface to the GTK+ library

= hoc (http://hoc.sourceforge.net/) - provides a ld#iskh Objective-C binding which allows users tcass
to the Cocoa library on MacOS X

280 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

In this tutorial, we will focus on the wxHaskelldit, as it allows you to produce a native graphiaterface
on all platforms that wxWidgets is available orgluding Windows, Linux and MacOS X.

Getting and running wxHaskell

To install wxHaskell, you'll need to use the GH@pgh/haskell.org/ghc/) . Then, find your wxHaske#ickage
on the wxHaskell download page (http://wxhaskellrseforge.net/download.html) .

The latest version of GHC is 6.6.1, but wxHaskelldsn't been updated for versions higher than 6.4. Yo
can either downgrade GHC to 6.4, or build wxHaskellyourself. Instructions on how to do this can be
found on the building page (http://wxhaskell.sourctorge.net/building.html) .

Follow the installation instruction provided on th@Haskell download page. Don't forget to registgHaskell
with GHC, or else it won't run. To compile source(tvhich happens to use wxHaskell code), open araomd
line and type:

You can then load the files from within the GHGigrface. To test if everything works, go to
$wxHaskellDir/samples/wx ($wxHaskellDir is the ditery you installed it in) and load (or compile)
HelloWorld.hs. It should show a window with titleléllo World!", a menu bar with File and About, aadtatus
bar at the bottom, that says "Welcome to wxHaskell"

If it doesn't work, you might try to copy the conte of the $wxHaskellDir/lib directory to the ghrstall
directory.

Hello World
Here's the basic Haskell "Hello World" program:
imodule Main where

main :: 10 0
:main = putStr "Hello World!"

It will compile just fine, but it isn't really faryc We want a nice GUI! So how to do this? First) youst import
Graphics.ULWX . This is the wxHaskell librangGraphics.UlL.wXCore =~ has some more stuff, but we won't be

needing that now.

To start a GUI, use (guess whatytgui . In this casegui is the name of a function which we'll use to build
the interface. It must have an 10 type. Let's shatwe have:

281 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1

imodule Main where

1

:import Graphics.ULLWX
1

imain :: 10 0
:main = start gui
:gui 210 ()

|gui = do

1 --GUI stuff

To make a frame, we ugame . Check the type dfame . It's[Prop (Frame ())] -> IO (Frame ()) . It takes

a list of "frame properties" and returns the cquoesling frame. We'll look deeper into propertidefdabut a
property is typically a combination of an attribatied a value. What we're interested in now isithee This is

in thetext attribute and has typg@extual w) => Attr w String . The most important thing here, is that it's a
String attribute. Here's how we code it:

:gui 210 ()

\gui = do

1 frame [text := "Hello World!"]
1

The operator=) takes an attribute and a value, and combinesihtila property. Note thatme returns an
IO (Frame () . You can change the type@ii tolo (Frame ()) , but it might be better just to addurmn ()
Now we have our own GUI consisting of a frame witle "Hello World!". Its source

:module Main where

1

:import Graphics.ULWX
1

imain :: 10 ()
:main = start gui

:gui 210 ()

\gui = do

1 frame [text := "Hello World!"]
' return ()

Hello World! (winXP)

The result should look like the screenshot. (Ithmigok slightly different on
Linux or MacOS X, on which wxhaskell also runs)

Controls
From here on, its good practice to keep a browsedow or tab open with the
| wxHaskell documentation (http://wxhaskell.sourcgtanet/doc/) . It's also
available in $wxHaskellDir/doc/index.html.
A text label

Simply a frame doesn't do much. In this chaptefiergoing to add some more elements. Let's staint wi
something simple: a label. wxHaskell hasbal , but that's a layout thing. We won't be doing latyantil next

chapter. What we're looking for issaticText . It'S in Graphics.Ul.WX.Controls . As you can see, the
staticText ~ function takes &indow as argument, and a list of properties. Do we lzawendow? Yup! Look at

282 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Graphics.UL.WX.Frame . There we see thatreame is merely a type-synonym of a special sort of wiwdWe'll
change the code i so it looks like this:

1 1
1gui 10 () \
|gui = do '
1 f <- frame [text := "Hello World!"] 1
\
1
1

| staticText f [text := "Hello StaticText!"]
1 return ()
1

__

Again,text is an attribute of ataticText ~ object, so this works. Try it!

A button Hello StaticText! (winXP)

Now for a little more interaction. A button. Wehet going to add functionali
to it until the chapter about events, but at Isashething visible will happen when you click on it.

A button IS a control, just liketaticText . LOOK it up inGraphics.Ul.WX.Controls

Again, we need a window and a list of propertieg'IWise the frame agaitext is also an attribute of a button:

e A
:QUi 210 () I .1
'qui = do

| f <-frame [text := "Hello World!"]

! staticText f [text := "Hello StaticText!"]
1 button f [text := "Hello Button!"]

! return ()

Load it into GHCi (or compile it with GHC) and..e\#? What's that? The

button's been covered up by the label! We're gtorfik that next, in the layol - :
chapter. Overlapping button and

StaticText (winXP)

Layout

The reason that the label and the button overtaiihat we haven't seti@ayoutfor our frame yet. Layouts are
created using the functions found in the documantaif Graphics.Ul.WXCore.Layout . Note that you don't

have to imporGraphics.UL.WXCore to use layouts.

The documentation says we can turn a member afidhget class into a layout by using thieget function.
Also, windows are a member of the widget class, Bait a minute... we only have one window, and'shiae
frame! Nope... we have more, look@éphics.Ul.WX.Controls and click on any occasion of the word
Control. You'll be taken t@raphics.Ul.WXCore.WxcClassTypes and it is here we see that a Control is also a
type synonym of a special type of window. We'll tiée change the code a bit, but here it is.

:gui 210 ()

|gui = do

1 f <- frame [text := "Hello World!"]

' st <- staticText f [text := "Hello StaticText!"]
, b <- button f [text := "Hello Button!"]

! return ()

Now we can uswidget st —andwidgetb to create a layout of the staticText and the utégout is an
attribute of the frame, so we'll set it here:

283 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Fr TSI ST ETITITISESEEEEESETEEEEE S A
:gui 210 ()
:gui =do

1
\
i f <-frame [text := "Hello World!"] '
I st <- staticText f [text := "Hello StaticText!"] !
1 b <- button f [text := "Hello Button!"] '
1 set f [layout := widget st] 1

1

1

, return ()

Theset function will be covered in the chapter aboutibtttes. Try the code, StaticText with layout
what's wrong? This only displays the staticText,the button. We need a wi (WinXP)

to combine the two. We will udayout combinatorgor this.row andcolumn

look nice. They take an integer and a list of ldgoMVe can easily make a list

of layouts of the button and the staticText. Theger is the spacing between the elements ofshd kt's try
something:

:gui 210 () :
:gui =do '
y f<-frame [text := "Hello World!"] |
1 st <- staticText f [text := "Hello StaticText!"] !
b <- button f [text := "Hello Button!"] '
1
1
1
1
1
1

1
: set f [layout :=

. - .

. row O [widget st, widget b]
1

1

1

return ()
e il 4 A row layout (winXP)

Play around with the integer and see what hap@ss,changeow into

column . Try to change the order of the elements in thtetdi get a feeling of
how it works. For fun, try to adgidgetb several more times in the list. Wk
happens?

Here are a few exercises to spark your imaginalR@member to use the
documentation!

Column layout with a spacing
of 25 (winXP)

Exercises

1. Add a checkbox control. It doesn't have to do anglyet, just
make sure it appears next to the staticText anthaktten when
using row-layout, or below them when using columyolt.text is
also an attribute of the checkbox.

2. Notice thatow andcolumn take a list ofayouts and also generates
a layout itself. Use this fact to make your checkbppear on the
left of the staticText and the button, with thetistBext and the
button in a column.

3. Can you figure out how the radiobox control worlske the layout
of the previous exercise and add a radiobox with (v more)
options below the checkbox, staticText and buttése the
documentation!

4. Use theboxed combinator to create a nice looking border arotined
four controls, and another one around the staticded the button.
(Note: theboxed combinator might not be working on MacOS X -
you might get widgets that can't be interacted withis is likely just

284 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks

After having completed the exercises, the end tefiduld look like this:

You could have used different spacingdat andcolumn , or the options of tt
radiobox are displayed horizontally.

Attributes

After all this, you might be wondering things liK&here did thatet function
suddenly come from?", or "How wouldknow if text
something?". Both answers lie in the attributeesysof wxHaskell.

Setting and modifying attributes

In a wxHaskell program, you can set the properdfabe widgets in two ways:

1. during creationt <- frame
2. using theset function:set f

a bug in wxhaskel)l.

ehedh Shnie T

is an attribute of

http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

CEX

= "Hello World!l"]
;= widget st]

Answer to exercises

Theset function takes two arguments: one of any typand the other is a list of propertiesnotn wxHaskell,
these will be the widgets and the properties odehsidgets. Some properties can only be set derition,

like thealignment

of atextEntry
you have a reference to it (then set f [--stuff

, but you can set most others in any IO-functiogaar program, as long as

Apart from setting properties, you can also getrth€his is done with thget function. Here's a silly example:

:gui 210 ()
'qui = do

| f <- frame [text := "Hello World!"]

I st <- staticText f []
| ftext <- get f text
1 set st [text := ftext]

; set f[text:= ftext ++ " And hello again!"]

Look at the type signature gét . It'sw->Atrwa->10 a
string which we can bind t@ext
possible in wxHaskell. We can overwrite the projgsrtising:=)

modify function:

:modify Tw->Attrwa->(a->a)->10 ()

imodify w attr f = do
1 val <- get w attr
' setw [attr :=fval]

is astring attribute, so we have an
. The last line edits the text of the frame. Yegstductive updates are
anytime withset . This inspires us to write a

First it gets the value, then it sets it againradigplying the function. Surely we're not the fiosie to think of

that...

And nope, we aren't. Look at this operatet). . You can use it iget , because it takes an attribute and a

285 of 290

11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

function. The result is an property, in which thegimal value is modified by the function. This nmsave can
write:

:gui 210 ()

:gui =do

i f <-frame [text := "Hello World!"]
1 st <- staticText f []

| ftext <- get f text

1 set st [text := ftext]

| set f[text:~++" And hello again!"]

This is a great place to use anonymous functiotis the lambda-notation.

There are two more operators we can use to sebdifyrproperties(:=) and(:~) . They do the same as
(=) and(~) , except a function of type->orig is expected, whereis the widget type, angtig is the
original "value" type 4 in case of:=) , anda->a in case of:~)). We won't be using them now, though, as
we've only encountered attributes of non-IO typesl the widget needed in the function is generaily useful
in 10-blocks.

How to find attributes

Now the second question. Where did | read text is an attribute of all those things? The easy anssv in
the documentation. Now where in the documentatidodk for it?

Let's see what attributes a button has, so godhics.Ul.WX.Controls , and click the link that says "Button".
You'll see that ®utton is a type synonym of a special kindawhtrol , and a list of functions that can be used
to create a button. After each function is a listiostances”. For the normailtion function, this is

Commanding -- Textual, Literate, Dimensions, Cdloiisible, Child, Able, Tipped, Identity, Styl&bactive,
Paint. This is the list of classes of which a buttoamsinstance. Read through the Class_Declaratbapter. |
means that there are some class-specific functieagable for the buttormextual , for example, adds thext
andappendText functions. If a widget is an instance of thetual class, it means that it hasea attribute!

Note that whilestaticText hasn't got a list of instances, it's stitt@trol , which is a synonym for some kind
of window, and when looking at theextual class, it says thatindow is an instance of it. This is an error on the
side of the documentation.

Let's take a look at the attributes of a frame.yldan be found iGraphics.UL.WX.Frame . Another error in the
documentation here: It saysame instantiatesiasimage . This was true in an older version of wxHaskell. |
should sayictured . Apart from that, we haveorm, Textual , Dimensions , Colored , Able and a few more.
We're already seerextual androrm. Anything that is an instance Bérm has dayout attribute.

Dimensions adds (among others) thientSize attribute. It's an attribute of ttsze type, which can be made
with sz. Please note that theout attribute can also change the size. If you wanis&zlientSize you
should set it after thayout

Colored adds theolor andbgcolor attributes.

Able adds the Booleagmabled attribute. This can be used to enable or disadtmin form elements, which is
often displayed as a greyed-out option.

There are lots of other attributes, read throughdihcumentation for each class.

286 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Events

There are a few classes that deserve specialiatieiitey are the@eactive class and theommanding class. As
you can see in the documentation of these clags®sdon't add attributes (of the fomwrwa), butevents
Thecommanding class adds theemmand event. We'll use a button to demonstrate evendlivan

Here's a simple GUI with a button and a staticText:

:gui 210 () :
'qui = do _ '
i f<-frame [text := "Event Handling"] ! = et . [BB
1
1
1
1

I st <- staticText f [text := "You haven\'t clicke d the button yet."]
1 b <- button f [text := "Click me!"]

1 set f [layout := column 25 [widget st, widget b 1]

1

Vo M} chokied B Sulion pal

Dk, vl |

We want to change the staticText when you presbitten. We'll need then Before (winXP)
function:

b <- button f [text := "Click me!"
, on command := --stuff

The type obon: Eventw a -> Attr w a . commandis of typeEvent w (10 ()) , SO we need an 10-function. This
function is called th&vent handlerHere's what we get:

F o T N N T SN ST E SN S Ssss=m===== |
1 1
igui :: 10 () 1
\gui = do '
1 f <- frame [text := "Event Handling"] ' M fvent Ha- [5[]
| st <-staticText f [text := "You haven\t clicke d the button yet."] ' Yiou furpe cheloas! the busen!
b <-button f [text := "Click me!" |
! , on command := set st [text :="Y ou have clicked the button!"] ! o e
]
: set f [layout := column 25 [widget st, widget b 1] :
1 1 .
e A After (winXP)

Insert text about event filters hi

Database

Haskell/Database

Web programming

An example web application, using the HAppS framdwis hpaste (http://hpaste.org) , the Haskeltpam.
Built around the core Haskell web framework, HApp&h HaXmL for page generation, and binary/zlilb fo
state serialisation.

The HTTP and Browser modules (http://homepagesdpsganet.nz/warrickg/haskell/http/) exist, and niiga
useful.

287 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

XML

There are several Haskell libraries for XML workdaadditional ones for HTML. For more web-specifiark,
you may want to refer to the Haskell/Web prograngr@hapter.

Libraries for parsing XML

= The Haskell XML Toolbox (hxt) (http://www.fh-wedele/~si/HXmIToolbox/) is a collection of tools for
parsing XML, aiming at a more general approach thamother tools.

= HaXml (http://www.cs.york.ac.uk/fp/HaXml/) is a d¢ettion of utilities for parsing, filtering,
transforming, and generating XML documents usingked.

= HXML (http://www.flightlab.com/~joe/hxml/) is a nexalidating, lazy, space efficient parser that can
work as a drop-in replacement for HaXml.

Libraries for generating XML
» HSXML represents XML documents as statically typesaexpressions.
Other options

= tagsoup (http://www.cs.york.ac.uk/fp/darcs/tagstagsoup.htm) is a library for parsing unstructured
HTML, i.e. it does not assume validity or even wielimedness of the data.

Getting aquainted with HXT

In the following, we are going to use the HaskeéMlIXToolbox for our examples. You should have a wogk
installation of GHC, including GHCi, and you shotidve downloaded and installed HXT according to the
instructions (http://www.fh-wedel.de/~si/HXmIToolkg¥install) .

With those in place, we are ready to start playwth HXT. Let's bring the XML parser into scope daparse a
simple XML-formatted string:

1
1 Prelude> :m + Text. XM.. HXT. Par ser

| Prelude Text.XML.HXT.Parser> xread "<foo>abc<bar/>def </ fo00>"
1[NTree (XTag (QN {namePrefix =", localPart = "fo 0", namespaceUri ="1}) [])
1 [NTree (XText "abc") [],NTree (XTag (QN {namePrefi x =", localPart = "bar",

1rnamespaceUri ="1) []) [I,NTree (XText "def") []]]

We see that HXT represents an XML document ad aflisees, where the nodes can be constructed X3 ag
containing a list of subtrees, or an XText contagna string. With GHCI, we can explore this in mdegail:

288 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

1
1 Prelude Text. XML.HXT.Parser Text. XML.HXT.DOM> :i NTree

1

1
1 data NTree a = NTree a (NTrees a) '
1 -- Defined in Data .Tree.NTree.TypeDefs 1
| Prelude Text. XML.HXT.Parser Text.XML.HXT.DOM> ©i NTrees '
1type NTrees a = [NTree a] -- Defined in Data .Tree.NTree.TypeDefs 1
1 1

As we can see, an NTree is a general tree struatueee a node stores its children in a list, andesmore
browsing around will tell us that XML documents arees over an XNode type, defined as:

: data XNode

= XText String

XCharRef Int
XEntityRef String

XCmt String

XCdata String

XPi QName XmITrees
XTag QName XmITrees
XDTD DTDElem Attributes
XAttr QName

XError Int String

Returning to our example, we notice that while H{(iccessfully parsed our input, one might desireeem
lucid presentation for human consumption. Luckyusythe DOM module supplies this. Notice that drea
returns a list of trees, while the formatting fuantworks on a single tree.

| Prelude Text.XML.HXT.Parser> :m + Text.XML.HXT.DOM
| Prelude Text. XML.HXT.Parser Text. XML.HXT.DOM> putStrLn $ format Xml Tree $ head $ xread "<foo>abc<bar/>def </foo>"
---XTag "foo"

+---XText "abc"
I

+---XTag "bar"

I

+---XText "def"

This representation makes the structure obvious$jtdaa easy to see the relationship to our inpuimg. Let's
proceed to extend our XML document with some aiteb (taking care to escape the quotes, of course):

: Prelude Text. XML.HXT.Parser> xread "<foo al=\"my\" b2=\"oh\">abc<bar/>def </ fo00>" :
1 [NTree (XTag (QN {namePrefix = ", localPart = "fo 0", namespaceUri =""}) [NTree (XAttr (QN '
1 {namePrefix =", localPart = "al", namespaceUri = "1) [NTree (XText "my") [],NTree (XAttr 1
' (QN {namePrefix =", localPart = "b2", namespaceU ri=""7) [NTree (XText "oh") []]]) [NTree '
| (XText "abc") [,NTree (XTag (QN {namePrefix =", localPart = "bar", namespaceUri ="}) []) \

1

1

! [I,NTree (XText "def") []1]

Notice that attributes are stored as regular NTiaskes with the XAttr content type, and (of counse)children.
Feel free to pretty-print this expression, as weahove.

For a trivial example of data extraction, consithés small example using XPath
(http://en.wikipedia.org/wiki/XPath) :

| Prelude> :set prompt "> "

1> m+ Text. XML.HXT.Parser Text. XML.HXT.XPath.XPat hEval

> let xml = "<foo><a>A<c>C</c></foo>"

1> |et xmltree = head $ xread xml

1> let result = getXPath "//a" xmltree

1> result

1> [NTree (XTag (QN {namePrefix =", localPart = " a", namespaceUri = ") []) [NTree (XText "A") []]]
1> tresult

:> result :: NTrees XNode

289 of 290 11/5/2007 9:02 P|

Haskell/Print version - Wikibooks, collection of@p-content textbooks http://en.wikibooks.org/w/ingdmp ?titte=Haskell/Print_version&print:

Retrieved from "http://en.wikibooks.org/wiki/Hask@rint_version”

= This page was last modified 23:52, 17 January 2007.

= All text is available under the terms of the GNW@&Documentation License (S8epyrights for
details).
Wikibooks® is a registered trademark of the WikinaeBHoundation, Inc.

290 of 290 11/5/2007 9:02 P|

