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The principle of relativity
Introduction
Special relativity (SR) or the 'special theory of relativity' was discovered by Albert
Einstein and first published in 1905 in the article "On the Electrodynamics of Moving
Bodies". It replaced Newtonian notions of space and time and it incorporates
Maxwell's theory of electromagnetism. The theory is called "special" because it
applies the principle of relativity to the "restricted" or "special" case of inertial
reference frames in 'flat' spacetime where the effects of gravity can be ignored. Ten
years later, Einstein published his general theory of relativity (general relativity,
"GR") which incorporated these effects.

Beginners often believe that special relativity is only about objects that are moving at
high velocities. This is a mistake. Special relativity applies at all velocities but at low
velocity the predictions of special relativity are almost identical to those of the
Newtonian empirical formulae. Special relativity introduces a deeper understanding of
why physical events happen.

This book is intended for undergraduates but can be used by anyone with a higher
school level of mathematics. It is arranged in two sections, a general description and a
mathematical description of the theory. As a "Wikibook" it is not complete and the
next edition can be edited by anyone who feels they have spotted a mistake or wishes
to add more detail and clarity.

The principle of relativity
Principles of relativity address the problem of how events that occur in one place are
observed from another place. This problem has been a difficult theoretical challenge
since the earliest times.

Aristotle argued in his "Physics" that things must either be moved or be at rest.
According to Aristotle, on the basis of complex and interesting arguments about the
possibility of a 'void', things cannot remain in a state of motion without something
moving them. As a result Aristotle proposed that objects would stop entirely in empty
space.

Galileo challenged this idea of movement being due to a continuous action of
something that causes the movement. In his " Dialogue Concerning the Two Chief
World Systems" he considers observations of motion made by people inside a ship
who could not see the outside:

"have the ship proceed with any speed you like, so long as the motion is uniform and
not fluctuating this way and that. You will discover not the least change in all the
effects named, nor could you tell from any of them whether the ship was moving or
standing still. "

According to Galileo, if the ship moves smoothly someone inside it would be unable
to determine whether they are moving. This concept leads to Galilean Relativity in
which it is held that things continue in a state of motion unless acted upon.



Galilean Relativity contains two important principles: firstly it is impossible to
determine who is actually at rest and secondly things continue in uniform motion
unless acted upon. The second principle is known as Galileo’s Law of Inertia or
Newton's First Law of Motion.

Reference:

Galileo Galilei (1632). Dialogues Concerning the Two Chief World Systems.
Aristotle (350BC). Physics. http://classics.mit.edu/Aristotle/physics.html

Frames of reference, events and transformations

Physical observers are considered to be surrounded by a reference frame which is a
set of coordinate axes in terms of which position or movement may be specified or
with reference to which physical laws may be mathematically stated.

An inertial reference frame is a collection of objects that have no net motion relative
to each other. It is a coordinate system defined by the non-accelerated motion of
objects with a common direction and speed.

An event is something that happens independently of the reference frame that might
be used to describe it. Turning on a light or the collision of two objects would
constitute an event.

Suppose there is a small event, such as a light being turned on, that is at coordinates
x,y,z,t in one reference frame. What coordinates would another observer, in another
reference frame moving relative to the first at velocity v assign to the event? This
problem is illustrated below:



What we are seeking is the relationship between the second observer's coordinates
x',y',z',t' and the first observer's coordinates x,y,z,t. According to Newtonian Relativity:

x' = x − vt

y' = y

z' = z

t' = t

This set of equations is known as a Galilean coordinate transformation or Galilean
transformation . These equations show how the position of an event in one reference
frame is related to the position of an event in another reference frame. But what
happens if the event is something that is moving? How do velocities transform from
one frame to another?

The calculation of velocities depends on Newton's formula: v = dx / dt. The use of
Newtonian physics to calculate velocities and other physical variables has led to
Galilean Relativity being called Newtonian Relativity in the case where conclusions
are drawn beyond simple changes in coordinates. The velocity transformations for the
velocities in the three directions in space are, according to Galilean relativity:

This result is known as the classical velocity addition theorem and summarises the
transformation of velocities between two Galilean frames of reference. It means that
the velocities of projectiles must be determined relative to the velocity of the source
and destination of the projectile. For example, if a sailor throws a stone at 10 km/hr
from Galileo's ship which is moving towards shore at 5 km/hr then the stone will be
moving at 15 km/hr when it hits the shore.

In Newtonian Relativity the geometry of space is assumed to be Euclidian and the
measurement of time is assumed to be the same for all observers.
The derivation of the classical velocity addition t heorem is as
follows:
If the Galilean transformations are differentiated with respect to
time:
x'  = x − vt
So:
dx'  / dt = dx / dt − v
But in Galilean relativity t'  = t and so dx'  / dt'  = dx'  / dt
therefore:
dx'  / dt'  = dx / dt − v
dy'  / dt'  = dy / dt
dz'  / dt'  = dy / dt



If we write  etc. then:



Special relativity

In the nineteenth century James Clerk Maxwell discovered the equations that describe
the propagation of electromagnetic waves such as light. If one assumes that both the
Maxwell equations are valid, and that the Galilean transformation is the appropriate
transformation, then it should be possible to measure velocity absolutely and there
should be a preferred reference frame. The preferred reference frame could be
considered the true zero point to which all velocity measurements could be referred.

Special relativity restored a principle of relativity in physics by maintaining that
although Maxwell's equations are correct Galilean relativity is wrong: there is no
preferred reference frame. Special relativity brought back the interpretation that in all
inertial reference frames the same physics is going on and there is no phenomenon
that would allow an observer to pinpoint a zero point of velocity. Einstein extended
the principle of relativity by proposing that the laws of physics are the same
regardless of inertial frame of reference. According to Einstein, whether you are in the
hold of Galileo's ship or in the cargo bay of a space ship going at a large fraction of
the speed of light the laws of physics will be the same.

The postulates of special relativity
1. First postulate: the principle of relativity

Observation of physical phenomena by more than one inertial observer must result in
agreement between the observers as to the nature of reality. Or, the nature of the
universe must not change for an observer if their inertial state changes. Every physical
theory should look the same mathematically to every inertial observer. Formally: the
laws of physics are the same regardless of inertial frame of reference.

2. Second postulate: invariance of the speed of light

The speed of light in vacuum, commonly denoted c, is the same to all inertial
observers, is the same in all directions, and does not depend on the velocity of the
object emitting the light. Formally: the speed of light in free space is a constant in
all inertial frames of reference.

Using these postulates Einstein was able to calculate how the observation of events
depends upon the relative velocity of observers. He was then able to construct a
theory of physics that led to predictions such as the equivalence of mass and energy
and early quantum theory.

Spacetime
The spacetime interpretation of special relativity
Although the special theory of relativity was first proposed by Einstein in 1905, the
modern approach to the theory depends upon the concept of a four-dimensional
universe, that was first proposed by Hermann Minkowski in 1908, and further
developed as a result of the contributions of Emmy Noether. This approach uses the
concept of invariance to explore the types of coordinate systems that are required to



provide a full physical description of the location and extent of things.

The modern theory of special relativity begins with the concept of "length". In
everyday experience, it seems that the length of objects remains the same no matter
how they are rotated or moved from place to place. We think that the simple length of
a thing is "invariant". However, as is shown in the illustrations below, what we are
actually suggesting is that length seems to be invariant in a three-dimensional
coordinate system.

The length of a thing in a two-dimensional coordinate system is given by Pythagoras's
theorem:

h2 = x2 + y2

This two-dimensional length is not invariant if the thing is tilted out of the two-
dimensional plane. In everyday life, a three-dimensional coordinate system seems to
describe the length fully. The length is given by the three-dimensional version of
Pythagoras's theorem:

h2 = x2 + y2 + z2

The derivation of this formula is shown in the illustration below.



It seems that, provided all the directions in which a thing can be tilted or arranged are
represented within a coordinate system, then the coordinate system can fully represent
the length of a thing. However, it is clear that things may also be changed over a
period of time. We must think of time as another direction in which things can be
arranged. This is shown in the following diagram:

The path taken by a thing in both space and time is known as the space-time interval.

Hermann Minkowski realised in 1908 that if things could be rearranged in time, then



the universe might be four-dimensional. He boldly suggested that Einstein's recently-
discovered theory of Special Relativity was a consequence of this four-dimensional
universe. He proposed that the space-time interval might be related to space and time
by Pythagoras' theorem in four dimensions:

s2 = x2 + y2 + z2 + (ict)2

Where i is the imaginary unit (sometimes imprecisely called ), c is a constant,
and t is the time interval spanned by the space-time interval, s. The symbols x, y and z
represent displacements in space along the corresponding axes. In this equation, the
'second' becomes just another unit of length. In the same way as centimetres and
inches are both units of length related by centimetres = 'conversion constant' times
inches, metres and seconds are related by metres = 'conversion constant' times
seconds. The conversion constant, c has a value of about 300,000,000 meters per
second. Now i2 is equal to minus one, so the space-time interval is given by:

s2 = x2 + y2 + z2 − (ct)2

Minkowski's use of the imaginary unit has been superseded by the use of advanced
geometry, that uses a tool known as the "metric tensor", but his original equation
survives, and the space-time interval is still given by:

s2 = x2 + y2 + z2 − (ct)2

Space-time intervals are difficult to imagine; they extend between one place and time
and another place and time, so the velocity of the thing that travels along the interval
is already determined for a given observer.

If the universe is four-dimensional, then the space-time interval will be invariant,
rather than spatial length. Whoever measures a particular space-time interval will get
the same value, no matter how fast they are travelling. The invariance of the space-
time interval has some dramatic consequences.

The first consequence is the prediction that if a thing is travelling at a velocity of c
metres per second, then all observers, no matter how fast they are travelling, will
measure the same velocity for the thing. The velocity c will be a universal constant.
This is explained below.

When an object is travelling at c, the space time interval is zero, this is shown below:

The space-time interval is s2 = x2 + y2 + z2 − (ct)2

The distance travelled by an object moving at velocity v in the x direction for t
seconds is:

x = vt

If there is no motion in the y or z directions the space-time interval is s2 = x2 + 0 + 0 −
(ct)2

So: s2 = (vt)2 − (ct)2



But when the velocity v equals c:

s2 = (ct)2 − (ct)2

And hence the space time interval s2 = (ct)2 − (ct)2 = 0

A space-time interval of zero only occurs when the velocity is c. When observers
observe something with a space-time interval of zero, they all observe it to have a
velocity of c, no matter how fast they are moving themselves.

The universal constant, c, is known for historical reasons as the "speed of light". In
the first decade or two after the formulation of Minkowski's approach many
physicists, although supporting Special Relativity, expected that light might not travel
at exactly c, but might travel at very nearly c. There are now few physicists who
believe that light does not propagate at c.

The second consequence of the invariance of the space-time interval is that clocks
will appear to go slower on objects that are moving relative to you. Suppose there are
two people, Bill and John, on separate planets that are moving away from each other.
John draws a graph of Bill's motion through space and time. This is shown in the
illustration below:

Being on planets, both Bill and John think they are stationary, and just moving
through time. John spots that Bill is moving through what John calls space, as well as
time, when Bill thinks he is moving through time alone. Bill would also draw the
same conclusion about John's motion. To John, it is as if Bill's time axis is leaning
over in the direction of travel and to Bill, it is as if John's time axis leans over.

John calculates the length of Bill's space-time interval as:

s2 = (vt)2 − (ct)2

whereas Bill doesn't think he has travelled in space, so writes:

s2 = (0)2 − (cT)2



The space-time interval, s2, is invariant. It has the same value for all observers, no
matter who measures it or how they are moving in a straight line. Bill's s2 equals
John's s2 so:

(0)2 − (cT)2 = (vt)2 − (ct)2

and

− (cT)2 = (vt)2 − (ct)2

hence

.

So, if John sees Bill measure a time interval of 1 second (T = 1) between two ticks of
a clock that is at rest in Bill's frame (modelled by the condition X = 0), John will find
that his own clock measures between these same ticks an interval t, called coordinate
time, which is greater than one second. It is said that clocks in motion slow down,
relative to those on observers at rest. This is known as "relativistic time dilation of a
moving clock". The time that is measured in the rest frame of the clock (in Bill's
frame) is called the proper time of the clock.

John will also observe measuring rods at rest on Bill's planet to be shorter than his
own measuring rods, in the direction of motion. This is a prediction known as
"relativistic length contraction of a moving rod". If the length of a rod at rest on Bill's
planet is X, then we call this quantity the proper length of the rod. The length x of that
same rod as measured on John's planet, is called coordinate length, and given by

.

See section on the Lorentz transformation below.

The last consequence is that clocks will appear to be out of phase with each other
along the length of a moving object. This means that if one observer sets up a line of
clocks that are all synchronised so they all read the same time, then another observer
who is moving along the line at high speed will see the clocks all reading different
times. In other words observers who are moving relative to each other see different
events as simultaneous. This effect is known as Relativistic Phase or the Relativity
of Simultaneity. Relativistic phase is often overlooked by students of Special
Relativity, but if it is understood then phenomena such as the twin paradox are easier
to understand.

The way that clocks go out of phase along the line of travel can be calculated from the
concepts of the invariance of the space-time interval and length contraction.



The relationship for comparing lengths in the direction of travel is given by:

.

So distances between two points according to Bill are simple lengths in space (X)
whereas John sees Bill's measurement of distance as a combination of a distance (x)
and a time interval:

x2 = X2 − (cT)2

But from : .

x2 = X2 − (v2 / c2)X2

So: (cT)2 = (v2 / c2)X2

And cT = (v / c)X

So: T = (v / c2)X

Clocks that are synchronised for one observer go out of phase along the line of travel
for another observer moving at v metres per second by :(v / c2) seconds for every
metre. This is one of the most important results of Special Relativity and is often
neglected by students.

The net effect of the four-dimensional universe is that observers who are in motion
relative to you seem to have time coordinates that lean over in the direction of motion,
and consider things to be simultaneous, that are not simultaneous for you. Spatial
lengths in the direction of travel are shortened, because they tip upwards and
downwards, relative to the time axis in the direction of travel, akin to a rotation out of
three-dimensional space.



Great care is needed when interpreting space-time diagrams. Diagrams present data in
two dimensions, and cannot show faithfully how, for instance, a zero length space-
time interval appears.



Spacetime

Spacetime diagram showing an event, a world line, and a line of simultaneity

In order to gain an understanding of both Galilean and Special Relativity it is
important to begin thinking of space and time as being different dimensions of a four-
dimensional vector space called spacetime. Actually, since we can't visualize four
dimensions very well, it is easiest to start with only one space dimension and the time
dimension. The figure shows a graph with time plotted on the vertical axis and the one
space dimension plotted on the horizontal axis. An event is something that occurs at a
particular time and a particular point in space. ("Julius X. wrecks his car in Lemitar,
NM on 21 June at 6:17 PM.") A world line is a plot of the position of some object as a
function of time (more properly, the time of the object as a function of position) on a
spacetime diagram. Thus, a world line is really a line in spacetime, while an event is a
point in spacetime. A horizontal line parallel to the position axis (x-axis) is a line of
simultaneity; in Galilean Relativity all events on this line occur simultaneously for all
observers. It will be seen that the line of simultaneity differs between Galilean and
Special Relativity; in Special Relativity the line of simultaneity depends on the state
of motion of the observer.

In a spacetime diagram the slope of a world line has a special meaning. Notice that a
vertical world line means that the object it represents does not move -- the velocity is
zero. If the object moves to the right, then the world line tilts to the right, and the
faster it moves, the more the world line tilts. Quantitatively, we say that

(5.1)

Notice that this works for negative slopes and velocities as well as positive ones. If
the object changes its velocity with time, then the world line is curved, and the
instantaneous velocity at any time is the inverse of the slope of the tangent to the
world line at that time.

The hardest thing to realize about spacetime diagrams is that they represent the past,
present, and future all in one diagram. Thus, spacetime diagrams don't change with
time -- the evolution of physical systems is represented by looking at successive



horizontal slices in the diagram at successive times. Spacetime diagrams represent the
evolution of events, but they don't evolve themselves.

The lightcone
Things that move at the speed of light in our four dimensional universe have
surprising properties. If something travels at the speed of light along the x-axis and
covers x meters from the origin in t seconds the space-time interval of its path is zero.

s2 = x2 − (ct)2

but x = ct so:

s2 = (ct)2 − (ct)2 = 0

Extending this result to the general case, if something travels at the speed of light in
any direction into or out from the origin it has a space-time interval of 0:

0 = x2 + y2 + z2 − (ct)2

This equation is known as the Minkowski Light Cone Equation. If light were
travelling towards the origin then the Light Cone Equation would describe the
position and time of emission of all those photons that could be at the origin at a
particular instant. If light were travelling away from the origin the equation would
describe the position of the photons emitted at a particular instant at any future time
't'.

At the superficial level the light cone is easy to interpret. It's backward surface
represents the path of light rays that strike a point observer at an instant and it's



forward surface represents the possible paths of rays emitted from the point observer
at an instant (assuming the conditions appropriate to a special relativistic treatment
prevail). Things that travel along the surface of the light cone are said to be light- like
and the path taken by such things is known as a null geodesic.

Events that lie outside the cones are said to be space-like or, better still space
separated because their space time interval from the observer has the same sign as
space (positive according to the convention used here). Events that lie within the
cones are said to be time-like or time separated because their space-time interval has
the same sign as time.

However, there is more to the light cone than the propagation of light. If the added
assumption is made that the speed of light is the maximum possible velocity then
events that are space separated cannot affect the observer directly. Events within the
backward cone can have affected the observer so the backward cone is known as the
"affective past" and the observer can affect events in the forward cone hence the
forward cone is known as the "affective future".

The assumption that the speed of light is the maximum velocity for all
communications is neither inherent in nor required by four dimensional geometry
although the speed of light is indeed the maximum velocity for objects if the principle
of causality is to be preserved by physical theories (ie: that causes precede effects).



The Lorentz transformation equations
The discussion so far has involved the comparison of interval measurements (time
intervals and space intervals) between two observers. The observers might also want
to compare more general sorts of measurement such as the time and position of a
single event that is recorded by both of them. The equations that describe how each
observer describes the other's recordings in this circumstance are known as the
Lorentz Transformation Equations. (Note that the symbols below signify coordinates.)

The table below shows the Lorentz Transformation Equations.

y' = y y = y'

z' = z z = z'

See mathematical derivation of Lorentz transformation.



Notice how the phase ( (v/c2)x ) is important and how these formulae for absolute time
and position of a joint event differ from the formulae for intervals.



Simultaneity, time dilation and length
contraction
More about the relativity of simultaneity and the
Andromeda paradox
If two observers who are moving relative to each other synchronise their clocks in
their own frames of reference they discover that the clocks do not agree between the
reference frames. This is illustrated below:

The effect of the relativity of simultaneity, or "phase", is for each observer to consider
that a different set of events is simultaneous. Phase means that observers who are
moving relative to each other have different sets of things that are simultaneous, or in
their "present moment".



The amount by which the clocks differ between two observers depends upon the
distance of the clock from the observer (t = xv / c2). Notice that if both observers are
part of inertial frames of reference with clocks that are synchronised at every point in
space then the phase difference can be obtained by simply reading the difference
between the clocks at the distant point and clocks at the origin. This difference will
have the same value for both observers.

Relativistic phase differences have the startling consequence that at distances as large
as our separation from nearby galaxies an observer who is driving on the earth can
have a radically different set of events in her "present moment" from another person
who is standing on the earth. The classic example of this effect of phase is the
"Andromeda Paradox", also known as the "Rietdijk-Putnam-Penrose" argument.
Penrose described the argument:

"Two people pass each other on the street; and according to one of the two people, an
Andromedean space fleet has already set off on its journey, while to the other, the
decision as to whether or not the journey will actually take place has not yet been
made. How can there still be some uncertainty as to the outcome of that decision? If
to either person the decision has already been made, then surely there cannot be any
uncertainty. The launching of the space fleet is an inevitability." (Penrose 1989).

The argument is illustrated below:



This "paradox" has generated considerable philosophical debate on the nature of time
and free-will. A result of the relativity of simultaneity is that if the car driver launches
a space rocket towards the Andromeda galaxy it might have a several days head start
compared with a space rocket launched from the ground. This is because the "present
moment" for the moving car driver is progressively advanced with distance compared
with the present moment on the ground. The present moment for the car driver is
shown in the illustration below:

The twin paradox
The "Andromeda paradox" is, in part, the origin of the "twin paradox". In the twin
paradox there are twins, Bill and Jim. Jim is on Earth. Bill flies past Jim in a
spaceship, goes to a distant point, turns round and flies back again. It is found that Bill
records fewer clock ticks over the whole journey than Jim records on earth. Why?



Suppose Jim has synchronised clocks on Earth and on the distant point. As Bill flies
past Jim he synchronises his clock with Jim's clock. When he does this he observes
the clocks on the distant point and immediately detects that they are not synchronised
with his or Jim's clocks. To Bill it appears that Jim has synchronised his clocks
incorrectly. There is a time difference, or "gap", between his clocks and those at the
distant point even when he passes Jim. Bill flies to the distant point and discovers that
the clock there is reading a later time than his own clock. He turns round to fly back
to Earth and observes that the clocks on Earth seem to have jumped forward, yet
another "time gap" appears. When Bill gets back to Earth the time gaps and time
dilations mean that people on Earth have recorded more clock ticks that he did.

For ease of calculation suppose that Bill is moving at a truly astonishing velocity of
0.8c in the direction of a distant point that is 10 light seconds away (about 3 million
kilometres). The illustration below shows Jim and Bill's observations:

From Bill's viewpoint there is both a time dilation and a phase effect. It is the added
factor of "phase" that explains why, although the time dilation occurs for both
observers, Bill observes the same readings on Jim's clocks over the whole journey as
does Jim.

To summarise the mathematics of the twin paradox using the example:

Jim observes the distance as 10 light seconds and the distant point is in his frame of



reference. According to Jim it takes Bill the following time to make the journey:

Time taken = distance / velocity therefore according to Jim:

t = 10 / 0.8 = 12.5 seconds

Again according to Jim, time dilation should affect the observed time on Bill's clocks:

so:

seconds

So for Jim the round trip takes 25 secs and Bill's clock reads 15 secs.

Bill measures the distance as:

light seconds.

For Bill it takes X / v = 6 / 0.8 = 7.5 seconds.

Bill observes Jim's clocks to appear to run slow as a result of time dilation:

so:

seconds

But there is also a time gap of vx / c2 = 8 seconds.

So for Bill, Jim's clocks register 12.5 secs have passed from the start to the distant
point. This is composed of 4.5 secs elapsing on Jim's clocks plus an 8 sec time gap
from the start of the journey. Bill sees 25 secs total time recorded on Jim's clocks over
the whole journey, this is the same time as Jim observes on his own clocks.

It is sometimes dubiously asserted that the twin paradox is about the clocks on the
twin that leaves earth being slower than those on the twin that stays at home, it is then
argued that biological processes contain clocks therefore the twin that travelled away
ages less. A more accurate explanation is that when we travel we travel in time as
well as space.

The Pole-barn paradox
this is a stub and requires completion



Addition of velocities
How can two observers, moving at v km/sec relative to each other, compare their
observations of the velocity of a third object?

Suppose one of the observers measures the velocity of the object as u' where:

The coordinates x' and t' are given by the Lorentz transformations:

and



but

x' = u't'

so:

and hence:

x − vt = u'(t − vx / c2)

Notice the role of the phase term vx / c2. The equation can be rearranged as:

given that x = ut:

This is known as the relativistic velocity addition theorem, it applies to velocities
parallel to the direction of mutual motion.

The existence of time dilation means that even when objects are moving
perpendicular to the direction of motion there is a discrepancy between the velocities
reported for an object by observers who are moving relative to each other. If there is

any component of velocity in the x direction (ux, ) then the phase affects time
measurement and hence the velocities perpendicular to the x-axis. The table below
summarises the relativistic addition of velocities in the various directions in space.

Notice that for an observer in another reference frame the sum of two velocities (u



and v) can never exceed the speed of light.



Dynamics
Introduction
The way that the velocity of a particle can differ between observers who are moving
relative to each other means that momentum needs to be redefined as a result of
relativity theory.

The illustration below shows a typical collision of two particles. In the right hand
frame the collision is observed from the viewpoint of someone moving at the same
velocity as one of the particles, in the left hand frame it is observed by someone
moving at a velocity that is intermediate between those of the particles.

If momentum is redefined then all the variables such as force (rate of change of
momentum), energy etc. will become redefined and relativity will lead to an entirely
new physics. The new physics has an effect at the ordinary level of experience
through the relation E = mc2 whereby it is the tiny changes in relativistic mass that are
expressed as everyday kinetic energy so that the whole of physics is related to
"relativistic" reasoning rather than Newton's empirical ideas.

Momentum
In physics momentum is conserved within a closed system, the law of conservation
of momentum applies. Consider the special case of identical particles colliding
symmetrically as illustrated below:



The momentum change by the red ball is:

The momentum change by the blue ball is:

The situation is symmetrical so the Newtonian conservation of momentum law is
demonstrated:

Notice that this result depends upon the y components of the velocities being equal ie:
.

The relativistic case is rather different. The collision is illustrated below, the left hand
frame shows the collision as it appears for one observer and the right hand frame
shows exactly the same collision as it appears for another observer moving at the
same velocity as the blue ball:

The configuration shown above has been simplified because one frame contains a
stationary blue ball (ie: uxB = 0) and the velocities are chosen so that the vertical



velocity of the red ball is exactly reversed after the collision ie: . Both
frames show exactly the same event, it is only the observers who differ between
frames. The relativistic velocity transformations between frames is:

given that uxB = 0.

Suppose that the y components are equal in one frame, in Newtonian physics they will
also be equal in the other frame. However, in relativity, if the y components are equal
in one frame they are not necessarily equal in the other frame. For instance if

then:

So if then in this case .

If the mass were constant between collisions and between frames then although

it is found that:

So momentum would not appear to be conserved between frames if the mass is
constant. Notice that the discrepancy is very small if uxR and v are small. However, the
principle of relativity states that the laws of physics are the same in all inertial
systems, so to preserve this principle there must be something happening to the mass
as observed between frames.

The velocities in the y direction are related by the following equation when the
observer is travelling at the same velocity as the blue ball ie: when uxB = 0:

If we write mB for the mass of the blue ball) and mR for the mass of the red ball as
observed from the frame of the blue ball then, if the principle of relativity applies:

2mRuyR = 2mBuyB

So:



But:

Therefore:

This means that, if the principle of relativity is to apply then the mass must change by
the amount shown in the equation above for the conservation of momentum law to be
true.

The reference frame was chosen so that and hence . This
allows v to be determined in terms of uxR:

and hence:

So substituting for v in :

The blue ball is at rest so its mass is its rest mass, and is given the symbol m0. As the
balls were identical at the start of the boost the mass of the red ball is the mass that a
blue ball would have if it were in motion relative to an observer; this mass is known
as the relativistic mass symbolised by m. The discussion given above was related to
the relative motions of the blue and red balls, as a result uxR corresponds to the speed
of the moving ball relative to an observer who is stationary with respect to the blue
ball. These considerations mean that the relativistic mass is given by:

The relativistic momentum is given by the product of the relativistic mass and the
velocity .

The overall expression for momentum in terms of rest mass is:



and the components of the momentum are:

So the components of the momentum depend upon the appropriate velocity
component and the speed.

Force

In Newtonian mechanics force is the rate of change of momentum ( . If the
relativistic momentum is used:

By Leibniz's law where d(xy) = xdy + ydx:

This shows that part of the force is used to increase the velocity and part is used to
increase the relativistic mass. Relativistic force is different from Newtonian force

( ).

Energy
Energy is defined as the work done in moving a body from one place to another.
Energy is given from:

so, over the whole path:

Kinetic energy (K) is the energy used to move a body from a velocity of 0 to a
velocity u. So:



Using the relativistic force:

So:

substituting for d(mu) and using dx / dt = u:

Which gives:

The relativistic mass is given by:

Which can be expanded as:

Differentiating:

2mc2dm − m22udu − u22mdm = 0

So, rearranging:

mudu + u2dm = c2dm

In which case:

is simplified to:

But the mass goes from m0 to m so:



and hence:

The amount mc2 is known as the total energy of the particle. The amount m0c
2 is

known as the rest energy of the particle. If the total energy of the particle is given the
symbol E:

So it can be seen that m0c
2 is the energy of a mass that is stationary. This energy is

known as mass energy and is the origin of the famous formula E = mc2 that is iconic
of the nuclear age.

The Newtonian approximation for kinetic energy can be derived by substituting the
rest mass for the relativistic mass ie:

and:

So:

ie:

The binomial theorem can be used to expand :

The binomial theorem is:

So expanding :



So if u is much less than c:

Which is the Newtonian approximation for low velocities.



Aether
Introduction
Many students confuse Relativity Theory with a theory about the propagation of light.
According to modern Relativity Theory the constancy of the speed of light is a
consequence of the geometry of spacetime rather than something specifically due to
the properties of photons; but the statement "the speed of light is constant" often
distracts the student into a consideration of light propagation. This confusion is
amplified by the importance assigned to interferometry experiments, such as the
Michelson-Morley experiment, in most textbooks on Relativity Theory.

The history of theories of the propagation of light is an interesting topic in physics
and was indeed important in the early days of Relativity Theory. In the seventeenth
century two competing theories of light propagation were developed. Christiaan
Huygens published a wave theory of light which was based on Huygen's principle
whereby every point in a wavelike disturbance can give rise to further disturbances
that spread out spherically. In contrast Newton considered that the propagation of
light of light was due to the passage of small particles or "corpuscles" from the source
to the illuminated object. His theory is known as the corpuscular theory of light.
Newton's theory was widely accepted until the nineteenth century.

In the early nineteenth century Thomas Young performed his Young's slits
experiment and the interference pattern that occurred was explained in terms of
diffraction due to the wave nature of light. The wave theory was accepted generally
until the twentieth century when quantum theory confirmed that light had a
corpuscular nature and that Huygen's principle could not be applied.

The idea of light as a disturbance of some medium, or aether, that permeates the
universe was problematical from its inception. The first problem that arose was that
the speed of light did not change with the velocity of the observer. If light were
indeed a disturbance of some stationary medium then as the earth moves through the
medium towards a light source the speed of light should appear to increase. It was
found however that the speed of light did not change as expected. Each experiment on
the velocity of light required corrections to existing theory and led to a variety of
subsidiary theories such as the "aether drag hypothesis". Ultimately it was
experiments that were designed to investigate the properties of the aether that
provided the first experimental evidence for Relativity Theory.

The aether drag hypothesis
The aether drag hypothesis was an early attempt to explain the way experiments
such as Arago's experiment showed that the speed of light is constant. The aether drag
hypothesis is now considered to be incorrect by mainstream science.

According to the aether drag hypothesis light propagates in a special medium, the
aether, that remains attached to things as they move. If this is the case then, no matter
how fast the earth moves around the sun or rotates on its axis, light on the surface of
the earth would travel at a constant velocity.



The primary reason the aether drag hypothesis is considered invalid is because of the
occurrence of stellar aberration. In stellar aberration the position of a star when
viewed with a telescope swings each side of a central position by about 20.5 seconds
of arc every six months. This amount of swing is the amount expected when
considering the speed of earth's travel in its orbit. In 1871 George Biddell Airy
demonstrated that stellar aberration occurs even when a telesope is filled with water.
It seems that if the aether drag hypothesis were true then stellar aberration would not
occur because the light would be travelling in the aether which would be moving
along with the telescope.

If you visualize a bucket on a train about to enter a tunnel and a drop of water drips
from the tunnel entrance into the bucket at the very center, the drop will not hit the
center at the bottom of the bucket. The bucket is the tube of a telescope, the drop is a
photon and the train is the earth. If aether is dragged then the droplet would be
traveling with the train when it is dropped and would hit the center of bucket at the
bottom.

The amount of stellar aberration, α is given by:

tan(α) = vδt / cδt

So:

tan(α) = v / c

The speed at which the earth goes round the sun, v = 30 km/s, and the speed of light is
c = 300,000,000 m/s which gives α = 20.5 seconds of arc every six months. This
amount of aberration is observed and this contradicts the aether drag hypothesis.

In 1818 Fresnel introduced a modification to the aether drag hypothesis that only



applies to the interface between media. This was accepted during much of the
nineteenth century but has now been replaced by special theory of relativity (see
below).

The aether drag hypothesis is historically important because it was one of the reasons
why Newton's corpuscular theory of light was replaced by the wave theory and it is
used in early explanations of light propagation without relativity theory. It originated
as a result of early attempts to measure the speed of light.

In 1810 François Arago realised that variations in the refractive index of a substance
predicted by the corpuscular theory would provide a useful method for measuring the
velocity of light. These predictions arose because the refractive index of a substance
such as glass depends on the ratio of the velocities of light in air and in the glass.
Arago attempted to measure the extent to which corpuscles of light would be refracted
by a glass prism at the front of a telescope. He expected that there would be a range of
different angles of refraction due to the variety of different velocities of the stars and
the motion of the earth at different times of the day and year. Contrary to this
expectation he found that that there was no difference in refraction between stars,
between times of day or between seasons. All Arago observed was ordinary stellar
aberration.

In 1818 Augustin Jean Fresnel examined Arago's results using a wave theory of light.
He realised that even if light were transmitted as waves the refractive index of the
glass-air interface should have varied as the glass moved through the aether to strike
the incoming waves at different velocities when the earth rotated and the seasons
changed.

Fresnel proposed that the glass prism would carry some of the aether along with it so
that "..the aether is in excess inside the prism". He realised that the velocity of
propagation of waves depends on the density of the medium so proposed that the
velocity of light in the prism would need to be adjusted by an amount of 'drag'.

The velocity of light vn in the glass without any adjustment is given by:

vn = c / n

The drag adjustment vd is given by:

Where ρe is the aether density in the environment, ρg is the aether density in the glass
and v is the velocity of the prism with respect to the aether.

The factor can be written as because the refractive index, n,
would be dependent on the density of the aether. This is known as the Fresnel drag
coefficient.

The velocity of light in the glass is then given by:



This correction was successful in explaining the null result of Arago's experiment. It
introduces the concept of a largely stationary aether that is dragged by substances
such as glass but not by air. Its success favoured the wave theory of light over the
previous corpuscular theory.

The Fresnel drag coefficient was confirmed by an interferometer experiment
performed by Fizeau. Water was passed at high speed along two glass tubes that
formed the optical paths of the interferometer and it was found that the fringe shifts
were as predicted by the drag coefficient.

The special theory of relativity predicts the result of the Fizeau experiment from the
velocity addition theorem without any need for an aether.

If V is the velocity of light relative to the Fizeau apparatus and U is the velocity of
light relative to the water and v is the velocity of the water:

which, if v/c is small can be expanded using the binomial expansion to become:



This is identical to Fresnel's equation.

It may appear as if Fresnel's analysis can be substituted for the relativistic approach,
however, more recent work has shown that Fresnel's assumptions should lead to
different amount of aether drag for different frequencies of light and violate Snell's
law (see Ferraro and Sforza (2005)).

The aether drag hypothesis was one of the arguments used in an attempt to explain the
Michelson-Morley experiment before the widespread acceptance of the special theory
of relativity.

The Fizeau experiment is consistent with relativity and approximately consistent with
each individual body, such as prisms, lenses etc. dragging its own aether with it. This
contradicts some modified versions of the aether drag hypothesis that argue that
aether drag may happen on a global (or larger) scale and stellar aberration is merely
transferred into the entrained "bubble" around the earth which then faithfully carries
the modified angle of incidence directly to the observer.
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The Michelson-Morley experiment
(This article has been copied from Wikipedia)

The Michelson-Morley experiment, one of the most important and famous
experiments in the history of physics, was performed in 1887 by Albert Michelson
and Edward Morley at what is now Case Western Reserve University, and is
considered to be the first strong evidence against the theory of a luminiferous aether.

Physics theories of the late 19th century postulated that, just as water waves must
have a medium to move across (water), and audible sound waves require a medium to
move through (air), so also light waves require a medium, the "luminiferous aether".
The speed of light being so great, designing an experiment to detect the presence and
properties of this aether took considerable thought.



Measuring aether

A depiction of the concept of the "aether wind".

Each year, the Earth travels a tremendous distance in its orbit around the sun, at a
speed of around 30 km/second, over 100,000 km per hour. It was reasoned that the
Earth would at all times be moving through the aether and producing a detectable
"aether wind". At any given point on the Earth's surface, the magnitude and direction
of the wind would vary with time of day and season. By analysing the effective wind
at various different times, it should be possible to separate out components due to
motion of the Earth relative to the Solar System from any due to the overall motion of
that system.

The effect of the aether wind on light waves would be like the effect of wind on sound
waves. Sound waves travel at a constant speed relative to the medium that they are
travelling through (this varies depending on the pressure, temperature etc (see sound),
but is typically around 340 m/s). So, if the speed of sound in our conditions is 340
m/s, when there is a 10 m/s wind relative to the ground, into the wind it will appear
that sound is travelling at 330 m/s (340 - 10). Downwind, it will appear that sound is
travelling at 350 m/s (340 + 10). Measuring the speed of sound compared to the
ground in different directions will therefore enable us to calculate the speed of the air
relative to the ground.

If the speed of the sound cannot be directly measured, an alternative method is to
measure the time that the sound takes to bounce off of a reflector and return to the
origin. This is done parallel to the wind and perpendicular (since the direction of the
wind is unknown before hand, just determine the time for several different directions).
The cumulative round trip effects of the wind in the two orientations slightly favors
the sound travelling at right angles to it. Similarly, the effect of an aether wind on a
beam of light would be for the beam to take slightly longer to travel round-trip in the
direction parallel to the "wind" than to travel the same round-trip distance at right
angles to it.

"Slightly" is key, in that, over a distance such as a few meters, the difference in time
for the two round trips would be only about a millionth of a millionth of a second. At
this point the only truly accurate measurements of the speed of light were those
carried out by Albert Abraham Michelson, which had resulted in measurements
accurate to a few meters per second. While a stunning achievement in its own right,
this was certainly not nearly enough accuracy to be able to detect the aether.



The experiments

Michelson, though, had already seen a solution to this problem. His design, later
known as an interferometer, sent a single source of white light through a half-silvered
mirror that was used to split it into two beams travelling at right angles to one another.
After leaving the splitter, the beams travelled out to the ends of long arms where they
were reflected back into the middle on small mirrors. They then recombined on the far
side of the splitter in an eyepiece, producing a pattern of constructive and destructive
interference based on the length of the arms. Any slight change in the amount of time
the beams spent in transit would then be observed as a shift in the positions of the
interference fringes. If the aether were stationary relative to the sun, then the Earth's
motion would produce a shift of about 0.04 fringes.

Michelson had made several measurements with an experimental device in 1881, in
which he noticed that the expected shift of 0.04 was not seen, and a smaller shift of
about 0.02 was. However his apparatus was a prototype, and had experimental errors
far too large to say anything about the aether wind. For a measurement of the aether
wind, a much more accurate and tightly controlled experiment would have to be
carried out. The prototype was, however, successful in demonstrating that the basic
method was feasible.

A Michelson interferometer

He then combined forces with Edward Morley and spent a considerable amount of
time and money creating an improved version with more than enough accuracy to
detect the drift. In their experiment the light was repeatedly reflected back and forth
along the arms, increasing the path length to 11m. At this length the drift would be
about .4 fringes. To make that easily detectable the apparatus was located in a closed
room in the basement of a stone building, eliminating most thermal and vibrational
effects. Vibrations were further reduced by building the apparatus on top of a huge
block of marble, which was then floated in a pool of mercury. They calculated that
effects of about 1/100th of a fringe would be detectable.

The mercury pool allowed the device to be turned, so that it could be rotated through
the entire range of possible angles to the "aether wind". Even over a short period of
time some sort of effect would be noticed simply by rotating the device, such that one
arm rotated into the direction of the wind and the other away. Over longer periods
day/night cycles or yearly cycles would also be easily measurable.



During each full rotation of the device, each arm would be parallel to the wind twice
(facing into and away from the wind) and perpendicular to the wind twice. This effect
would show readings in a sine wave formation with two peaks and two troughs.
Additionally if the wind was only from the earth's orbit around the sun, the wind
would fully change directions east/west during a 12 hour period. In this ideal
conceptualization, the sine wave of day/night readings would be in opposite phase.

Because it was assumed that the motion of the solar system would cause an additional
component to the wind, the yearly cycles would be detectable as an alteration of the
maginitude of the wind. An example of this effect is a helicopter flying forward.
While on the ground, a helicopter's blades would be measured as travelling around at
50 MPH at the tips. However, if the helicopter is travelling forward at 50 MPH, there
are points at which the tips of the blades are travelling 0 MPH and 100 MPH with
respect to the air they are travelling through. This increases the magnitude of the lift
on one side and decreases it on the other just as it would increase and decrease the
magnitude of an ether wind on a yearly basis.

The most famous failed experiment

Ironically, after all this thought and preparation, the experiment became what might
be called the most famous failed experiment to date. Instead of providing insight into
the properties of the aether, Michelson and Morley's 1887 article in the American
Journal of Science reported the measurement to be as small as one-fortieth of the
expected displacement but "since the displacement is proportional to the square of the
velocity" they concluded that the measured velocity was approximately one-sixth of
the expected velocity of the Earth's motion in orbit and "certainly less than one-
fourth". Although this small "velocity" was measured, it was considered far too small
to be used as evidence of aether, it was later said to be within the range of an
experimental error that would allow the speed to actually be zero.

Although Michelson and Morley went on to different experiments after their first
publication in 1887, both remained active in the field. Other versions of the
experiment were carried out with increasing sophistication. Kennedy and Illingsworth
both modified the mirrors to include a half-wave "step", eliminating the possibility of
some sort of standing wave pattern within the apparatus. Illingsworth could detect
changes on the order of 1/300th of a fringe, Kennedy up to 1/1500th. Miller later built
a non-magnetic device to eliminate magnetostriction, while Michelson built one of
non-expanding invar to eliminate any remaining thermal effects. Others from around
the world increased accuracy, eliminated possible side effects, or both. All of these
with the exception of Dayton Miller also returned what is considered a null result.

Morley was not convinced of his own results, and went on to conduct additional
experiments with Dayton Miller. Miller worked on increasingly large experiments,
culminating in one with a 32m (effective) arm length at an installation at the Mount
Wilson observatory. To avoid the possibility of the aether wind being blocked by
solid walls, he used a special shed with thin walls, mainly of canvas. He consistently
measured a small positive effect that varied, as expected, with each rotation of the
device, the sidereal day and on a yearly basis. The low magnitude of the results he
attributed to aether entrainment (see below). His measurements amounted to only ~10
kps instead of the expected ~30 kps expected from the earth's orbital motion alone. He
remained convinced this was due to partial entrainment, though he did not attempt a



detailed explanation.

Though Kennedy later also carried out an experiment at Mount Wilson, finding 1/10
the drift measured by Miller, and no seasonal effects, Miller's findings were
considered important at the time, and were discussed by Michelson, Hendrik Lorentz
and others at a meeting reported in 1928 (ref below). There was general agreement
that more experimentation was needed to check Miller's results. Lorentz recognised
that the results, whatever their cause, did not quite tally with either his or Einstein's
versions of special relativity. Einstein was not present at the meeting and felt the
results could be dismissed as experimental error (see Shankland ref below).



Name Year
Arm

length
(meters)

Fringe
shift

expected

Fringe
shift

measured

Experime
ntal

Resolutio
n

Upper
Limit on

Vaether

Michelson 1881 1.2 0.04 0.02

Michelson and
Morley

1887 11.0 0.4 < 0.01 8 km/s

Morley and Morley 1902–1904 32.2 1.13 0.015

Miller 1921 32.0 1.12 0.08

Miller 1923–1924 32.0 1.12 0.03

Miller (Sunlight) 1924 32.0 1.12 0.014

Tomascheck
(Starlight)

1924 8.6 0.3 0.02

Miller 1925–1926 32.0 1.12 0.088

Mt Wilson) 1926 2.0 0.07 0.002

Illingworth 1927 2.0 0.07 0.0002 0.0006 1 km/s

Piccard and Stahel
(Rigi)

1927 2.8 0.13 0.006

Michelson et al. 1929 25.9 0.9 0.01

Joos 1930 21.0 0.75 0.002

In recent times versions of the MM experiment have become commonplace. Lasers
and masers amplify light by repeatedly bouncing it back and forth inside a carefully
tuned cavity, thereby inducing high-energy atoms in the cavity to give off more light.
The result is an effective path length of kilometers. Better yet, the light emitted in one
cavity can be used to start the same cascade in another set at right angles, thereby
creating an interferometer of extreme accuracy.

The first such experiment was led by Charles H. Townes, one of the co-creators of the
first maser. Their 1958 experiment put an upper limit on drift, including any possible
experimental errors, of only 30 m/s. In 1974 a repeat with accurate lasers in the
triangular Trimmer experiment reduced this to 0.025 m/s, and included tests of
entrainment by placing one leg in glass. In 1979 the Brillet-Hall experiment put an
upper limit of 30 m/s for any one direction, but reduced this to only 0.000001 m/s for
a two-direction case (ie, still or partially entrained aether). A year long repeat known



as Hils and Hall, published in 1990, reduced this to 2x10-13.

Fallout

This result was rather astounding and not explainable by the then-current theory of
wave propagation in a static aether. Several explanations were attempted, among
them, that the experiment had a hidden flaw (apparently Michelson's initial belief), or
that the Earth's gravitational field somehow "dragged" the aether around with it in
such a way as locally to eliminate its effect. Miller would have argued that, in most if
not all experiments other than his own, there was little possibility of detecting an
aether wind since it was almost completely blocked out by the laboratory walls or by
the apparatus itself. Be this as it may, the idea of a simple aether, what became known
as the First Postulate, had been dealt a serious blow.

A number of experiments were carried out to investigate the concept of aether
dragging, or entrainment. The most convincing was carried out by Hamar, who placed
one arm of the interferometer between two huge lead blocks. If aether were dragged
by mass, the blocks would, it was theorised, have been enough to cause a visible
effect. Once again, no effect was seen.

Walter Ritz's Emission theory (or ballistic theory), was also consistent with the results
of the experiment, not requiring aether, more intuitive and paradox-free. This became
known as the Second Postulate. However it also led to several "obvious" optical
effects that were not seen in astronomical photographs, notably in observations of
binary stars in which the light from the two stars could be measured in an
interferometer.

The Sagnac experiment placed the MM apparatus on a constantly rotating turntable.
In doing so any ballistic theories such as Ritz's could be tested directly, as the light
going one way around the device would have different length to travel than light
going the other way (the eyepiece and mirrors would be moving toward/away from
the light). In Ritz's theory there would be no shift, because the net velocity between
the light source and detector was zero (they were both mounted on the turntable).
However in this case an effect was seen, thereby eliminating any simple ballistic
theory. This fringe-shift effect is used today in laser gyroscopes.

Another possible solution was found in the Lorentz-FitzGerald contraction
hypothesis. In this theory all objects physically contract along the line of motion
relative to the aether, so while the light may indeed transit slower on that arm, it also
ends up travelling a shorter distance that exactly cancels out the drift.

In 1932 the Kennedy-Thorndike experiment modified the Michelson-Morley
experiment by making the path lengths of the split beam unequal, with one arm being
very long. In this version the two ends of the experiment were at different velocities
due to the rotation of the earth, so the contraction would not "work out" to exactly
cancel the result. Once again, no effect was seen.

Ernst Mach was among the first physicists to suggest that the experiment actually
amounted to a disproof of the aether theory. The development of what became
Einstein's special theory of relativity had the Fitzgerald-Lorentz contraction derived
from the invariance postulate, and was also consistent with the apparently null results
of most experiments (though not, as was recognised at the 1928 meeting, with Miller's



observed seasonal effects). Today relativity is generally considered the "solution" to
the MM null result.

The Trouton-Noble experiment is regarded as the electrostatic equivalent of the
Michelson-Morley optical experiment, though whether or not it can ever be done with
the necessary sensitivity is debatable. On the other hand, the 1908 Trouton-rankine
experiment that spelled the end of the Lorentz-FitzGerald contraction hypothesis
achieved an incredible sensitivity.
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Mathematical approach

Introduction
The teaching of Special Relativity on undergraduate physics courses involves a
considerable mathematical background knowledge. Particularly important are the
manipulation of vectors and matrices and an elementary knowledge of curvature. The
background mathematics is given below and can be skipped by those who are familiar
with these techniques.

Vectors
Physical effects involve things acting on other things to produce a change of position,
tension etc. These effects usually depend upon the strength, angle of contact,
separation etc of the interacting things rather than on any absolute reference frame so
it is useful to describe the rules that govern the interactions in terms of the relative
positions and lengths of the interacting things rather than in terms of any fixed
viewpoint or coordinate system. Vectors were introduced in physics to allow such
relative descriptions.

The use of vectors in elementary physics often avoids any real understanding of what
they are. They are a new concept, as unique as numbers themselves, which have been
related to the rest of mathematics and geometry by a series of formulae such as linear
combinations, scalar products etc.

Vectors are defined as "directed line segments" which means they are lines drawn in a
particular direction. The introduction of time as a geometric entity means that this
definition of a vector is rather archaic, a better definition might be that a vector is
information arranged as a continuous succession of points in space and time. Vectors
have length and direction, the direction being from earlier to later.

Vectors are represented by lines terminated with arrow symbols to show the direction.
A point that moves from the left to the right for about three centimetres can be
represented as:

If a vector is represented within a coordinate system it has components along each of
the axes of the system. These components do not normally start at the origin of the
coordinate system.



The vector represented by the bold arrow has components a, b and c which are lengths
on the coordinate axes. If the vector starts at the origin the components become
simply the coordinates of the end point of the vector and the vector is known as the
position vector of the end point.

Addition of Vectors

If two vectors are connected so that the end point of one is the start of the next the
sum of the two vectors is defined as a third vector drawn from the start of the first to
the end of the second:

c is the sum of a and b:

c = a + b

If a components of a are a, b, c and the components of b are d, e, f then the
components of the sum of the two vectors are (a+d), (b+e) and (c+f). In other words,
when vectors are added it is the components that add numerically rather than the
lengths of the vectors themselves.

Rules of Vector Addition



1. Commutativity a + b = b + a

2. Associativity (a + b) + c = a + (b + c)

If the zero vector (which has no length) is labelled as 0

3. a + (-a) = 0

4. a + 0 = a

Rules of Vector Multiplication by a Scalar

The discussion of components and vector addition shows that if vector a has
components a,b,c then qa has components qa, qb, qc. The meaning of vector
multiplication is shown below:

The bottom vector c is added three times which is equivalent to multiplying it by 3.

1. Distributive laws q(a + b) = qa + qb and (q + p)a = qa + pa

2. Associativity q(pa) = qpa

Also 1 a = a

If the rules of vector addition and multiplication by a scalar apply to a set of elements
they are said to define a vector space.

Linear Combinations and Linear Dependence

An element of the form:

is called a linear combination of the vectors.

The set of vectors multiplied by scalars in a linear combination is called the span of
the vectors. The word span is used because the scalars (q) can have any value - which
means that any point in the subset of the vector space defined by the span can contain
a vector derived from it.

Suppose there were a set of vectors (<math \mathbf{a_1,a_2,.... ,a_m</math>) , if it is
possible to express one of these vectors in terms of the others, using any linear
combination, then the set is said to be linearly dependent. If it is not possible to
express any one of the vectors in terms of the others, using any linear combination, it
is said to be linearly independent.



In other words, if there are values of the scalars such that:

(1). 

the set is said to be linearly dependent.

There is a way of determining linear dependence. From (1) it can be seen that if q1 is
set to minus one then:

So in general, if a linear combination can be written that sums to a zero vector then

the set of vectors (  are not linearly independent.

If two vectors are linearly dependent then they lie along the same line (wherever a and
b lie on the line, scalars can be found to produce a linear combination which is a zero
vector). If three vectors are linearly dependent they lie on the same line or on a plane
(collinear or coplanar).

Dimension

If n+1 vectors in a vector space are linearly dependent then n vectors are linearly
independent and the space is said to have a dimension of n. The set of n vectors is said
to be the basis of the vector space.

Scalar Product

Also known as the 'dot product' or 'inner product'. The scalar product is a way of
removing the problem of angular measures from the relationship between vectors and,
as Weyl put it, a way of comparing the lengths of vectors that are arbitrarily inclined
to each other.

Consider two vectors with a common origin:

The projection of on is:



Where is the length of .

The scalar product is defined as:

(2) 

Notice that cos q is zero if and are perpendicular. This means that if the scalar
product is zero the vectors composing it are orthogonal (perpendicular to each other).

(2) also allows cos q to be defined as:

The definition of the scalar product also allows a definition of the length of a vector in
terms of the concept of a vector itself. The scalar product of a vector with itself is:

cos 0 (the cosine of zero) is one so:

which is our first direct relationship between vectors and scalars. This can be
expressed as:

(3) 

where a is the length of .

Properties:

1. Linearity 

2. symmetry 

3. Positive definiteness is greater than or equal to 0

4. Distributivity for vector addition 

5. Schwarz inequality 

6. Parallelogram equality 

From the point of view of vector physics the most important property of the scalar
product is the expression of the scalar product in terms of coordinates.

7. 

This gives us the length of a vector in terms of coordinates (Pythagoras' theorem)
from:

8. 



The derivation of 7 is:

where are unit vectors along the coordinate axes. From (4)

but 

so:

etc. are all zero because the vectors are orthogonal, also and
are all one (these are unit vectors defined to be 1 unit in length).

Using these results:

Matrices
Matrices are sets of numbers arranged in a rectangular array. They are especially
important in linear algebra because they can be used to represent the elements of
linear equations.

11a + 2b = c

5a + 7b = d

The constants in the equation above can be represented as a matrix:

The elements of matrices are usually denoted symbolically using lower case letters:

Matrices are said to be equal if all of the corresponding elements are equal.

Eg: if aij = bij

Then 

Matrix Addition

Matrices are added by adding the individual elements of one matrix to the
corresponding elements of the other matrix.



cij = aij + bij

or 

Matrix addition has the following properties:

1. Commutativity 

2. Associativity 

and

3. 

4. 

From matrix addition it can be seen that the product of a matrix and a number p is

simply where every element of the matrix is multiplied individually by p.

Transpose of a Matrix

A matrix is transposed when the rows and columns are interchanged:

Notice that the principal diagonal elements stay the same after transposition.

A matrix is symmetric if it is equal to its transpose eg: akj = ajk.

It is skew symmetric if eg: akj = − ajk. The principal diagonal of a skew
symmetric matrix is composed of elements that are zero.

Other Types of Matrix

Diagonal matrix: all elements above and below the principal diagonal are zero.

Unit matrix: denoted by I, is a diagonal matrix where all elements of the principal
diagonal are 1.



Matrix Multiplication

Matrix multiplication is defined in terms of the problem of determining the
coefficients in linear transformations.

Consider a set of linear transformations between 2 coordinate systems that share a
common origin and are related to each other by a rotation of the coordinate axes.

Two Coordinate Systems Rotated Relative to Each Other

If there are 3 coordinate systems, x, y, and z these can be transformed from one to
another:

x1 = a11y1 + a12y2

x2 = a21y1 + a22y2

y1 = b11z1 + b12z2

y2 = b21z1 + b22z2

x1 = c11z1 + c12z2

x2 = c21z1 + c22z2

By substitution:

x1 = a11(b11z1 + b12z2) + a12(b21z1 + b22z2)

x2 = a21(b11z1 + b12z2) + a22(b21z1 + b22z2)

x1 = (a11b11 + a12(b21)z1 + (a11b12 + a12b22)z2

x2 = (a21b11 + a22(b21)z1 + (a21b12 + a22b22)z2

Therefore:

c11 = (a11b11 + a12(b21)

c12 = (a11b12 + a12b22)

c21 = (a21b11 + a22b21)

c22 = (a21b12 + a22b22)



The coefficient matrices are:

From the linear transformation the product of A and B is defined as:

In the discussion of scalar products it was shown that, for a plane the scalar product is

calculated as: where a and b are the coordinates of the vectors
a and b.

Now mathematicians define the rows and columns of a matrix as vectors:

A Column vector is 

And a Row vector 

Matrices can be described as vectors eg:

and

Matrix multiplication is then defined as the scalar products of the vectors so that:

From the definition of the scalar product etc.

In the general case:



This is described as the multiplication of rows into columns (eg: row vectors into
column vectors). The first matrix must have the same number of columns as there are
rows in the second matrix or the multiplication is undefined.

After matrix multiplication the product matrix has the same number of rows as the
first matrix and columns as the second matrix:

times has 2 rows and 1 column 

ie: first row is 1 * 2 + 3 * 3 + 4 * 7 = 39 and second row is 6 * 2 + 3 * 3 + 2 * 7 = 35

times has 2 rows and 3

columns

Notice that cannot be determined because the number of columns in the first
matrix must equal the number of rows in the second matrix to perform matrix
multiplication.

Properties of Matrix Multiplication

1. Not commutative 

2. Associative 

3. Distributative for matrix addition

matrix multiplication is not commutative so is a
separate case.

4. The cancellation law is not always true:

does not mean or 



There is a case where matrix multiplication is commutative. This involves the scalar
matrix where the values of the principle diagonal are all equal. Eg:

In this case . If the scalar matrix is the unit matrix:
.

Linear Transformations

A simple linear transformation such as:

x1 = a11y1 + a12y2

x2 = a21y1 + a22y2

can be expressed as:

eg:

and

y1 = b11z1 + b12z2

y2 = b21z1 + b22z2

as: 

Using the associative law:

and so:

as before.



Indicial Notation
Consider a simple rotation of coordinates:

xµ is defined as x1 , x2

xν is defined as , 

The scalar product can be written as:

Where:

and is called the metric tensor for this 2D space.

Now, g11 = 1, g12 = 0, g21 = 0, g22 = 1 so:

If there is no rotation of coordinates the scalar product is:

Which is Pythagoras' theorem.

The Summation Convention

Indexes that appear as both subscripts and superscripts are summed over.



by promoting n to a superscript it is taken out of the summation ie:.

where ν = 1

Matrix Multiplication in Indicial Notation

Consider:

Columns times rows:

times = 

Matrix product Where i = 1, 2 j = 1, 2

There being no summation the indexes are both subscripts.

Rows times columns: times = 

Matrix product 

Where δij is known as Kronecker delta and has the value 0 when and 1 when i
= j. It is the indicial equivalent of the unit matrix:

There being summation one value of i is a subscript and the other a superscript.

A matrix in general can be specified by any of:

, Mij , , Mij depending on which subscript or superscript is being summed
over.

Vectors in Indicial Notation

A vector can be expressed as a sum of basis vectors.

In indicial notation this is: x = aiei



Linear Transformations in indicial notation

Consider where is a coefficient matrix and and are coordinate
matrices.

In indicial notation this is:

which becomes:

The Scalar Product in indicial notation

In indicial notation the scalar product is:

Analysis of curved surfaces and transformations
It became apparent at the start of the nineteenth century that issues such as Euclid's
parallel postulate required the development of a new type of geometry that could deal
with curved surfaces and real and imaginary planes. At the foundation of this
approach is Gauss's analysis of curved surfaces which allows us to work with a
variety of coordinate systems and displacements on any type of surface.

Elementary geometric analysis is useful as an introduction to Special Relativity
because it suggests the physical meaning of the coefficients that appear in coordinate
transformations.

Suppose there is a line on a surface. The length of this line can be expressed in terms
of a coordinate system. A short length of line ∆s in a two dimensional space may be
expressed in terms of Pythagoras' theorem as:

∆s2
 = ∆x2

 + ∆y2

Suppose there is another coordinate system on the surface with two axes: x1, x2, how
can the length of the line be expressed in terms of these coordinates? Gauss tackled
this problem and his analysis is quite straightforward for two coordinate axes:



Figure 1:

It is possible to use elementary differential geometry to describe displacements along
the plane in terms of displacements on the curved surfaces:

The displacement of a short line is then assumed to be given by a formula, called a
metric, such as Pythagoras' theorem

∆S2
 = ∆Y2

 + ∆Z2

The values of ∆Y and ∆Z can then be substituted into this metric:

Which, when expanded, gives the following:

∆S2 =

This can be represented using summation notation:



Or, using indicial  notation:

∆S2 = gik∆xi
∆xk

Where:

If the coordinates are not merged then ∆s is dependent on both sets of coordinates. In
matrix notation:

becomes:

times times 

Where a, b, c, d stand for the values of gik.

Therefore:

times 

Which is:

So:

∆s2 is a bilinear form  that depends on both ∆x1 and ∆x2. It can be written in matrix
notation as:

Where A is the matrix containing the values in gik. This is a special case of the
bilinear form known as the quadratic form because the same matrix ( ) appears

twice; in the generalised bilinear form (the matrices and are
different).

If the surface is a Euclidean plane then the values of gik are:



Which become:

So the matrix A is the unit matrix I and:

and:

Which recovers Pythagoras' theorem yet again.

If the surface is derived from some other metric such as ∆s2 = − ∆Y2
 + ∆Z2 then the

values of gik are:

Which becomes:

Which allows the original metric to be recovered ie: .

It is interesting to compare the geometrical analysis with the transformation based on
matrix algebra that was derived in the section on indicial notation above:

Now,

ie: g11 = 1, g12 = 0, g21 = 0, g22 = 1 so:

If there is no rotation of coordinates the scalar product is:



Which recovers Pythagoras' theorem. However, the reader may have noticed that
Pythagoras' theorem had been assumed from the outset in the derivation of the scalar
product (see above).

The geometrical analysis shows that if a metric is assumed and the conditions that
allow differential geometry are present then it is possible to derive one set of
coordinates from another. This analysis can also be performed using matrix algebra
with the same assumptions.

The example above used a simple two dimensional Pythagorean metric, some other
metric such as the metric of a 4D Minkowskian space:

∆S2 = − ∆T2
 + ∆X2

 + ∆Y2
 + ∆Z2

could be used instead of Pythagoras' theorem.



Mathematical transformations
The Lorentz transformation
The Lorentz transformation deals with the problem of observers who are moving
relative to each other. How are the coordinates of an event recorded by one observer
related to the coordinates of the event recorded by the other observer? The standard
configuration used in the calculation of the Lorentz transformation is shown below:

There are several ways of deriving the Lorentz transformations. The usual method is
to work from Einstein's postulates (that the laws of physics are the same between all
inertial reference frames and the speed of light is constant) whilst adding assumptions
about isotropy, linearity and homogeneity. The second is to work from the assumption
of a four dimensional Minkowskian metric.

In mathematics transformations are frequently symbolised with the "maps to" symbol:

The linearity and homogeneity of spacetime

Consider a clock moving freely, according to Newton's first law, that objects continue
in a state of uniform motion unless acted upon by a force, the velocity of the clock in
any given direction (dxi / dt) is a constant.

If the clock is a real clock with readings given by τ then the relationship between
these readings and the elapsed time anywhere in an inertial frame of reference, dt / dτ,
will be a constant. If the clock were to tick at an uneven rate compared with other
clocks then the universe would not be homogenous in time - at some times the clock
would appear to accelerate. This would also mean that Newton's first law would be
broken and the universe would not be homogenous in space.



If dxi / dt and dt / dτ are constant then dxµ(µ = 1,2,3,4) is also constant. This means
that the clock is not accelerating ie: d2xµ / dτ

2 = 0.

Linearity is demonstrated by the way that the length of things does not depend on
position or relative position; for instance, if x' = ax2 the distance between two points
would depend upon the position of the observer whereas if the relationship is linear (x'

= ax) separations are independent of position.

The linearity and homogeneity assumptions mean that the coordinates of objects in
the S' inertial frame are related to those in the S inertial frame by:

This formula is known as a poincare transformation. It can be expressed in indicial
notation as:

If the origins of the frames coincide then Bν can be assumed to be zero and the
equation:

Those who are unfamiliar with the notation should note that the symbols x1 etc. mean
x1 = x,x2 = y,x3 = z,x4 = t so the equation above is shorthand for:

x' = a11x + a12y + a13z + a14t

y' = a21x + a22y + a23z + a24t

z' = a31x + a32y + a33z + a34t

t' = a41x + a42y + a43z + a44t

In matrix notation the set of equations can be written as:

The standard configuration (see diagram above) has several properties, for instance:

The spatial origin of both observer's coordinate systems lies on the line of motion so
the x axes can be chosen to be parallel.

The point given by x = vt is the same as x' = 0.

The origins of both coordinate systems can coincide so that clocks can be
synchronised when they are next to each other.

The coordinate planes ,y, y' and z,z', can be arranged to be orthogonal (at right angles)
to the direction of motion.

Isotropy means that coordinate planes that are orthogonal at y=0 and z=0 in one frame
are orthogonal at at y'=0 and z'=0 in the other frame.



According to the relativity principle any transformations between the same two
inertial frames of reference must be the same. This is known as the reciprocity
theorem.

The Lorentz transformation

From the linearity assumption and given that at the origin y = 0 = y' so there is no
constant offset then y' = Ky and y = Ky', therefore K=1. So:

y' = y

and, by the same reasoning:

z' = z

Now, considering the x coordinate of the event, the x and y axes can be assumed to be
0 (ie: an arbitrary shift of the coordinates to allow the event to lie on the x axes). If
this is done then the linearity consideration and the fact that x = vt and x' = 0 are the
same point gives:

(1) x'
 = γ(x − vt)

where γ is a constant. According to the reciprocity theorem we also have:

(2) x = γ(x' + vt')

Einstein's assumption that the speed of light is a constant can now be introduced so
that x = ct and also x' = ct'. So:

ct' = γt(c − v)

and

ct = γt'(c + v)

So:

c2tt' = γ2tt'(c2 − v2)

and

Therefore the Lorentz transformation equations are:

t' = γ(t − vx / c2)

x'
 = γ(x − vt)

y' = y

z' = z

The transformation for the time coordinate can derived from the transformation for



the x coordinate assuming x = ct and x' = ct' or directly from equations (1) and (2) with
a similar substitution for x = ct.

The coefficients of the Lorentz transformation can be represented in matrix format:

A coordinate transformation of this type, that is due to motion, is known as a boost.

The Lorentz transformation equations can be used to show that:

c2dt'2 − dx'2 − dy'2 − dz'2 = c2dt2 − dx2 − dy2 − dz2

Although whether the assumptions of linearity, isotropy and homogeneity in the
derivation of the Lorentz transformation actually assumed this identity from the outset
is a mute point.

Given that: c2dt'2 − dx'2 − dy'2 − dz'2 also equals c2dt''2 − dx''2 − dy''2 − dz''2 and a
continuous range of other transformations it is clear that:

The quantity ∆s is known as the spacetime interval and the quantity is known
as the squared displacement.

A given squared displacement is constant for all observers, no matter how fast they
are travelling, it is said to be invariant .

The equation:

ds2 = c2dt2 − dx2 − dy2 − dz2

is known as the metric of spacetime.

The geometry of space-time

The discussion above was simplified by assuming that the symbols x,y,z,t were to be
understood as intervals. The treatment given below is suitable for an undergraduate
level of presentation. SR uses a 'flat' 4-dimensional Minkowski space, which is an
example of a space-time. This space, however, is very similar to the standard 3
dimensional Euclidean space, and fortunately by that fact, very easy to work with.



The differential of distance(ds) in cartesian 3D space is defined as:

where (dx1,dx2,dx3) are the differentials of the three spatial dimensions. In the
geometry of special relativity, a fourth dimension, time, is added, with units of c, so
that the equation for the differential of distance becomes:

In many situations it may be convenient to treat time as imaginary (e.g. it may
simplify equations), in which case t in the above equation is replaced by i.t', and the
metric becomes

If we reduce the spatial dimensions to 2, so that we can represent the physics in a 3-D
space

We see that things such as light which move at the speed of light lie along a dual-
cone:

defined by the equation

or

Which is the equation of a circle with r=c*dt. The path of something that moves at
the speed of light is known as a null geodesic. If we extend the equation above to
three spatial dimensions, the null geodesics are continuous concentric spheres, with
radius = distance = c×(±time).



This null dual-cone represents the "line of sight" of a point in space. That is, when we
look at the stars and say "The light from that star which I am receiving is X years
old.", we are looking down this line of sight: a null geodesic. We are looking at an

event meters away and d/c seconds in the past. For this
reason the null dual cone is also known as the 'light cone'. (The point in the lower left
of the picture below represents the star, the origin represents the observer, and the line
represents the null geodesic "line of sight".)

The cone in the -t region is the information that the point is 'receiving', while the cone
in the +t section is the information that the point is 'sending'.

Length contraction, time dilation and phase

Consider two inertial frames in standard configuration. There is a rigid rod moving
along in the second frame at v m/s. The length of the rod is determined by observing
the positions of the end points of the rod simultaneously - if the rod is moving it
would be nonsense to use any other measure of length. An observer who is moving at
the same velocity as the rod measures its "rest length". The Lorentz transformation for
coordinates along the x axis is:

x'
 = γ(x − vt)

Suppose the positions, x1,x2, of the two ends of the rod are determined simultaneously
(ie: t is constant):

Or, using for the rest length of the rod and L = (x1 − x2) for the
length of the rod that is measured by the observer who sees it fly past at v m/s:

Or, elaborating γ:

In other words the length of an object moving with velocity v is contracted in the

direction of motion by a factor in the direction of motion.

The Lorentz transformation also affects the rate at which clocks appear to change
their readings. The Lorentz transformation for time is:



t' = γ(t − vx / c2)

This transformation has two components:

t' = γt − γvx / c2

and is a straight line graph (ie: t' = mt + c).

The gradient of the graph is γ so:

∆t' = γ∆t

or:

Therefore clocks in the moving frame will appear to go slow, if T0 is a time interval in
the rest frame and T is a time interval in the moving frame:

T = γT0

Or, expanding:

The intercept of the graph is:

γvx / c2

This means that if a clock at point x is compared with a clock that was synchronised
between frames at the origin it will show a constant time difference of γvx / c2

seconds. This quantity is known as the relativistic phase difference or "phase".



The relativistic phase is as important as the length contraction and time dilation
results. It is the amount by which clocks that are synchronised at the origin go out of
synchronisation with distance along the direction of travel. Phase affects all clocks
except those at the point where clocks are syncronised and the infinitessimal y and z
planes that cut this point. All clocks everywhere else will be out of synchronisation
between the frames. The effect of phase is shown in the illustration below:



If the inertial frames are each composed of arrays of clocks spread over space then the
clocks will be out of synchronisation as shown in the illustration above.

Hyperbolic geometry
In the flat spacetime of Special Relativity:

s2 = c2t2 − x2 − y2 − z2

Considering the x-axis alone:

s2 = c2t2 − x2

The standard equation of a hyperbola is:

In the case of spacetime:

Spacetime intervals separate one place or event in spacetime from another. So, for a
given motion from one place to another or a given fixed length in one reference
frame, given time interval etc. the metric of spacetime describes a hyperbolic space.
This hyperbolic space encompasses the coordinates of all the observations made of
the given interval by any observers.



It is possible to conceive of rotations in hyperbolic space in a similar way to rotations
in Euclidean space. The idea of a rotation in hyperbolic space is summarised in the
illustration below:



A rotation in hyperbolic space is equivalent to changing from one frame of reference
to another whilst observing the same spacetime interval. It is moving from
coordinates that give:

(ct)2 − x2 = s2

to coordinates that give:

The formula for a rotation in hyperbolic space provides an alternative form of the
Lorentz transformation ie:

From which:

x = x'
coshφ + ct'sinhφ

ct = x'
sinhφ + ct'coshφ



The value of φ can be determined by considering the coordinates assigned to a
moving light that moves along the x axis from the origin at vmsec1 flashes on for t
seconds then flashes off.

The coordinates assigned by an observer on the light are: t',0,0,0, the coordinates
assigned by the stationary observer are t,x = vt,0,0. The hyperbola representing these
observations is illustrated below:

The equation of the hyperbola is:

(ct)2 − x2 = s2 = (ct')2

but x=vt for the end of the flash so:

Now, from hyperbolic trigonometry:

But so:

and, from the hyperbolic trigonometric formula sinhφ = tanhφcoshφ:



Inserting these values into the equations for the hyperbolic rotation:

x = x'
coshφ + ct'sinhφ

x = γx' + ct'γv / c

Which gives the standard transform for x:

x = γ(x' + vt')

In a similar way ct = x'
sinhφ + ct'coshφ is equivalent to:

t = γ(t' + vx / c2)

So the Lorentz transformations can also be derived from the assumption that boosts
are equivalent to rotations in hyperbolic space with a metric s2 = c2t2 − x2 − y2 − z2.

The quantity φ is known as the rapidity  of the boost.

Addition of velocities

Suppose there are three observers 1, 2, and 3 who are moving at different velocities
along the x-axis. Observers 1 and 2 are moving at a relative velocity v and observers 2
and 3 are moving at a relative velocity of u'. The problem is to determine the velocity
of observer 3 as observed by observer 1 (u).

It turns out that there is a very convenient relationship between rapidities that solves
this problem:

If v / c = tanhφ and u' / c = tanhα then:

u / c = tanh(φ + α)

In other words the rapidities can be simply added from one observer to another ie:

σ = φ + α

Hence:

tanh(σ) = tanh(φ + α)

So the velocities can be added by simply adding the rapidities. Using hyperbolic
trigonometry:

Therefore:

Which is the relativistic velocity addition theorem.



The relationship u / c = tanh(φ + α) is shown below:

Velocity transformations can be obtained without referring to the rapidity. The
general case of the transformation of velocities in any direction is derived as follows:

where etc. are the components of the velocity in the x, y, z directions.

Writing out the components of velocity:

But from the Lorentz transformations:

dx'
 = γ(dx − vdt)

dy' = dy

dz' = dz

dt' = γ(dt − vdx / c2)



Therefore:

Dividing top and bottom of each fraction by dt:

Substituting 

The full velocity transformations are tabulated below:



Having calculated the components of the velocity vector it it now possible to calculate
the magnitudes of the overall vectors between frames:

Acceleration transformation

It was seen above that:

u / c = tanhφ

and, if v / c = tanhα and u' / c = tanhε the velocity addition theorem can be expressed
as the sum of the rapidities:

φ = α + ε

If we differentiate this equation with respect to t to investigate acceleration, then
assuming v is constant:

(1) 

But is also equal to:

But φ = tanh − 1(u / c) and the derivative of an arctangent is given by:

and hence:

But:

ie: γ(u) is gamma for observers moving at a relative velocity of u.



So:

But from the length contraction formula:

Therefore, substituting these two equations in (1):

Applying the differential of arctanh as before to determine :

This is a different result from the Newtonian formula in which du / dt = du' / dt'. The
proper acceleration, α is defined as the acceleration of an object in its rest frame. It
is the instantaneous change in velocity for an observer for whom u' = 0 and α = du' /
dt'. In these circumstances:

Mathematical Appendix
Mathematics of the Lorentz Transformation Equations

Consider two observers O and O', moving at velocity v relative to each other, who
observe the same event such as a flash of light. How will the coordinates recorded by
the two observers be interrelated?

These can be derived using linear algebra on the basis of the postulates of relativity
and an extra homogeneity and isotropy assumption.

The homogeneity and isotropy assumption: space is uniform and homogenous in all
directions. If this were not the case then when comparing lengths between coordinate
systems the lengths would depend upon the position of the measurement. For
instance, if x' = ax2 the distance between two points would depend upon position.

The linear equations relating coordinates in the primed and unprimed frames are:

x' = a11x + a12y + a13z + a14t

y' = a21x + a22y + a23z + a24t



z' = a31x + a32y + a33z + a34t

t' = a41x + a42y + a43z + a44t

There is no relative motion in the y or z directions so, according to the 'relativity'
postulate:

z' = z

y' = y

Hence: a22 = 1

a33 = 1

and: a21 = 0

a23 = 0

a24 = 0

a31 = 0

a32 = 0

a34 = 0

So the following equations remain to be solved:

x' = a11x + a12y + a13z + a14t

t' = a41x + a42y + a43z + a44t

If space is isotropic (the same in all directions) then the motion of clocks should be
independent of the y and z axes (otherwise clocks placed symmetrically around the x-
axis would appear to disagree. Hence a42 = a43 = 0 so:

t' = a41x + a44t

It is also the case that when x' = 0 then x = − vt. So:

0 = a11vt + a12y + a13z + a14t

and

− a11vt = a12y + a13z + a14t

Given that the equations are linear then a12y + a13z = 0 and:

− a11vt = a14t

and

− a11v = a14



Therefore the correct transformation equation for x' is:

x' = a11(x − vt)

The analysis to date gives the following equations:

x' = a11(x − vt)

y' = y

z' = z

t' = a41x + a44t

The event is a flash of light that expands as a sphere with the following equations in
each coordinate system, assuming that the speed of light is constant:

x2 + y2 + z2 = c2t2

x'2 + y'2 + z'2 = c2t'2

Substituting the coordinate transformation equations into x'2 + y'2 + z'2 = c2t'2 gives:

a112(x − vt)2 + y2 + z2 = c2(a41x + a44t)
2

rearranging:

This is equivalent to: x2 + y2 + z2 = c2t2

So: 

Solving these 3 simultaneous equations:



Substituting these values into:

x' = a11(x − vt)

y' = y

z' = z

t' = a41x + a44t

gives:

y' = y

z' = z

The inverse transformations are: 

y = y'

z = z'



License

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002  Free Software Foundat ion, Inc.
51 Franklin St, Fifth Floor, Boston, MA  02110-1301   USA
Everyone is permitted to copy and distribute verbat im copies
of this license document, but changing it is not al lowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially
or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same
sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a
free program should come with manuals providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book.
We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it
can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of
the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or
with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the
notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then
it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that
says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available
to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy
that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input
format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for
output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the
material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title
Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in
parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned



below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section
when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document.
These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License,
the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that
you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than
100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must
also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of
the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-
readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from
which the general network-using public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of
that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that
you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the
Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version
under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license
notice.

H. Include an unaltered copy of this License.

I.  Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified



Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and
likewise the network locations given in the Document for previous versions it was based on. These may be placed in the
"History" section. You may omit a network location for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

K.  For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section
all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L.  Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the
equivalent are not considered part of the section titles.

M.  Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by
various parties--for example, statements of peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the
end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may
be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to
assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above
for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a
single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the
combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section
Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You
must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the
individual copies of this License in the various documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a
copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of
a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one
half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed



covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to
Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any
other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time.
Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered
version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the
Free Software Foundation.


