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The principle of relativity

Introduction

Special relativity (SR) or the 'special theory of relativilyas discovered by Albert
Einstein and first published in 1905 in the article "On the Electradigsaof Moving
Bodies". It replaced Newtonian notions of space and time and it inctepora
Maxwell's theory of electromagnetism. The theory is callsgetial” because it
applies the principle of relativity to the "restricted"” or 'Sp&€ case of inertial
reference frames in ‘flat' spacetime where the effectganfity can be ignored. Ten
years later, Einstein published his general theory of relatiggneral relativity,
"GR") which incorporated these effects.

Beginners often believe that special relativity is only aboutotbjiat are moving at
high velocities. This is a mistake. Special relativity appditeall velocities but at low
velocity the predictions of special relativity are almost idahtto those of the
Newtonian empirical formulae. Special relativity introduces a deeperstadding of

why physical events happen.

This book is intended for undergraduates but can be used by anyone witea hig
school level of mathematics. It is arranged in two sections, aajetescription and a
mathematical description of the theory. As a "Wikibook" it is not glete and the
next edition can be edited by anyone who feels they have spottetaeror wishes

to add more detail and clarity.

The principle of relativity

Principles of relativity address the problem of how events thatroooone place are
observed from another place. This problem has been a difficult thebiallenge
since the earliest times.

Aristotle argued in his "Physics" that things must eithemimved or be at rest.
According to Aristotle, on the basis of complex and interestingnaegts about the
possibility of a 'void', things cannot remain in a state of motiohowit something
moving them. As a result Aristotle proposed that objects would staglgnti empty

space.

Galileo challenged this idea of movement being due to a continuoigs auft
something that causes the movement. In his " Dialogue Conceh@engwo Chief
World Systems" he considers observations of motion made by peomle aship
who could not see the outside:

"have the ship proceed with any speed you like, so long as the motioifioisn and
not fluctuating this way and that. You will discover not the leashgian all the
effects named, nor could you tell from any of them whether hipevgas moving or
standing still. "

According to Galileo, if the ship moves smoothly someone inside itdaroeilunable
to determine whether they are moving. This concept lea@alitean Relativity in
which it is held that things continue in a state of motion unless acted upon.



Galilean Relativity contains two important principles: firsityis impossible to
determine who is actually at rest and secondly things continue iarmnihotion
unless acted upon. The second principle is known as Galileo’'s Law i lioe
Newton's First Law of Motion.

Reference:

Galileo Galilei (1632). Dialogues Concerning the Two Chief Worlgbt@ns.
Aristotle (350BC). Physicsttp://classics.mit.edu/Aristotle/physics.html

Frames of reference, events and transformations

Physical observers are considered to be surroundeddfgrance framewhich is a
set of coordinate axes in terms of which position or movement mapdwgfied or
with reference to which physical laws may be mathematically stated.

An inertial reference frameis a collection of objects that have no net motion relative
to each other. It is a coordinate system defined by the noresateel motion of
objects with a common direction and speed.

An eventis something that happens independently of the reference franmight
be used to describe it. Turning on a light or the collision of two thjeould
constitute an event.

Suppose there is a small event, such as a light being turned on,dhabmdinates
x,y,Zt in one reference frame. What coordinates would another observer, inranothe
reference frame moving relative to the first at veloesitgissign to the event? This
problem is illustrated below:

Transformation of Coordinates
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The observers are moving at a relative velocity of v and each
observer has their own set of coordinates (x,v,2,13 and
(w2t What coordinates do they assign to the event?
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What we are seeking is the relationship between the second olssen@dinates
X,Y,z,t and the first observer's coordinakgsgzt. According to Newtonian Relativity:

X =X— vt
y =y
z=z2
t =t

This set of equations is known a&alilean coordinate transformation or Galilean
transformation. These equations show how the position of an event in one reference
frame is related to the position of an event in another refereaoee. But what
happens if the event is something that is moving? How do veloctiesfarm from

one frame to another?

The calculation of velocities depends on Newton's formuka:dx / dt. The use of
Newtonian physics to calculate velocities and other physicabhadg has led to
Galilean Relativity being calleNewtonian Relativity in the case where conclusions
are drawn beyond simple changes in coordinates. The velocitjoraasions for the
velocities in the three directions in space are, according to Galileéimitgla

!

u, =uyx —V
!

!

u, = 1,

This result is known as thgassical velocity addition theoremand summarises the
transformation of velocities between two Galilean framesfdrence. It means that
the velocities of projectiles must be determined relative tovéhecity of the source
and destination of the projectile. For example, if a sailor throst®e at 10 km/hr
from Galileo's ship which is moving towards shore at 5 km/hr thesttree will be
moving at 15 km/hr when it hits the shore.

In Newtonian Relativity the geometry of space is assumed t6ulsdian and the
measurement of time is assumed to be the same for all observers.

The derivation of the classical velocity addition t heorem is as
follows:

If the Galilean transformations are differentiated with respect to
time:

X = x - vt

So:

dx / dt = dx/ dt - v

But in Galilean relativity t' = t and so dx / dt = dx / dt
therefore:

dx / dt' = dx/ dt - v

dy / dt' = dy/ dt

dz' / dt = dy/ dt



If we write
!

U, =Uy; — 1
!

uy = uy
?

—dz /dt

etc. then:



Special relativity

In the nineteenth century James Clerk Maxwell discovered thei@ugigthat describe
the propagation of electromagnetic waves such as light. If eseres that both the
Maxwell equations are valid, and that the Galilean transformagidhei appropriate
transformation, then it should be possible to measure velocity abgodutelthere
should be gpreferred reference frame The preferred reference frame could be
considered the true zero point to which all velocity measurements could bedeferr

Special relativity restored a principle of relativity in picgsby maintaining that
although Maxwell's equations are correct Galilean relatiatyviong: there is no
preferred reference frame. Special relativity brought backntieepretation that in all

inertial reference frames the same physics is going onheard ts no phenomenon
that would allow an observer to pinpoint a zero point of velocity. Emsbeiended

the principle of relativity by proposing that the laws of physice the same
regardless of inertial frame of reference. According to Einsteiptivein you are in the
hold of Galileo's ship or in the cargo bay of a space ship goiadaage fraction of

the speed of light the laws of physics will be the same.

The postulates of special relativity

1. First postulate: the principle of relativity

Observation of physical phenomena by more than one inertial obsengéresult in
agreement between the observers as to the nature of realittheOnature of the
universe must not change for an observer if their inertial state chainggry physical
theory should look the same mathematically to every inertial wlsdformally:the
laws of physics are the same regardless of inertial frame of reference

2. Second postulate: invariance of the speed of light

The speed of light in vacuum, commonly denoted c, is the same to dihline
observers, is the same in all directions, and does not depend on they \adldloe
object emitting the light. Formallyhe speed of light in free space is a constant in
all inertial frames of reference.

Using these postulates Einstein was able to calculate how tkevatisn of events
depends upon the relative velocity of observers. He was then able toucbrast
theory of physics that led to predictions such as the equivalénoass and energy
and early quantum theory.

Spacetime

The spacetime interpretation of special relativity

Although the special theory of relativity was first proposed hstein in 1905, the
modern approach to the theory depends upon the concept of a four-dimensional
universe, that was first proposed by Hermann Minkowski in 1908, and further
developed as a result of the contributions of Emmy Noether. This @bpusas the
concept of invariance to explore the types of coordinate systahare required to



provide a full physical description of the location and extent of things.

The modern theory of special relativity begins with the conceptlesfgth”. In
everyday experience, it seems that the length of objectsnerttee same no matter
how they are rotated or moved from place to place. We think thaintipde length of
a thing is "invariant". However, as is shown in the illustrationsweilvhat we are
actually suggesting is that length seems to be invariant in ee-thimensional
coordinate system.

Figure 1: Invariance of length on a Fuclidean plane.
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The length of a thing in a two dimensional  In the ZD plane length is invariant  If a thing rotates out of the plane
coordinate system is given by Pythagoras'  during rotations on the plane, the length it projects on the plane
theorem, h2 - x2 + Sr2 The length is also invariant if the 1z fio longer ecual to the real length
thing iz just mowed from place to of the thing.
place {translational mvariance),

The length of a thing in a two-dimensional coordinate systagivés by Pythagoras's
theorem:

W=+

This two-dimensional length is not invariant if the thing is dilleut of the two-
dimensional plane. In everyday life, a three-dimensional coordinatensyseems to
describe the length fully. The length is given by the threeedsional version of
Pythagoras's theorem:

h?=x%+y* + 7

The derivation of this formula is shown in the illustration below.



Figure 1: Invariance in a 3D Euclidean space.

The length of an object in a three dimensional
coordmate system 15 given by the 3D version of
Pythagoras' theorem:

k2=h2+22 but h2=:n:2+y2

k_2= X2+3r2+z2

In a three dimensional coordinate system it
seems that the real length of a thing stays the
samne (is ITVARIANT) during translations and
rotations. It appears to be always given by

k2= X2+y2+z2

It seems that, provided all the directions in which a thing cdiitbe or arranged are
represented within a coordinate system, then the coordinate syesteiully represent

the length of a thing. However, it is clear that things mag aks changed over a
period of time. We must think of time as another direction in whiamgtghcan be

arranged. This is shown in the following diagram:

Figure 3: The invariant space-time interval.

T - tune

A

Z

Space-tme
nterval

\ I X

Iotions can be represented as lengths spanning both space and time in a coordinate system. These
lengths are called SPACE-TIME INTEEWVALS. Time can be considered to be vet another direction
for arranging things. This suggests that the uiverse could be four dimensional. If the universe 15 truly
four dimensional then space-time mtervals would be mvanant when things move .

The path taken by a thing in both space and time is known as the space-time interval.

Hermann Minkowski realised in 1908 that if things could be rearraimggche, then



the universe might be four-dimensional. He boldly suggested that iBlsastcently-
discovered theory of Special Relativity was a consequence ofotlmslimensional
universe. He proposed that the space-time interval might heddt@aspace and time
by Pythagoras' theorem in four dimensions:

=X +y +7Z + (i)’

Wherei is theimaginary unit(sometimes imprecisely call¢ v —1), c is a constant,
andt is the time interval spanned by the space-time intesvdhe symbol, y andz
represent displacements in space along the corresponding axes. équhtion, the
'second’' becomes just another unit of length. In the same wagnametres and
inches are both units of length related by centimetres = 'coamecsnstant’ times
inches, metres and seconds are related by metres = 'conversioantotstes
seconds. The conversion constanthas a value of about 300,000,000 meters per
second. Now?” is equal to minus one, so the space-time interval is given by:

F=x+y +7—(ct)?

Minkowski's use of the imaginary unit has been superseded by thef aseanced
geometry, that uses a tool known as the "metric tensor”, but lgmalriequation
survives, and the space-time interval is still given by:

S=xX+y +7 —(ct)’

Space-time intervals are difficult to imagine; they extertevéen one place and time
and another place and time, so the velocity of the thing thatdralglg the interval
is already determined for a given observer.

If the universe is four-dimensional, then the space-time interihlbe invariant,
rather than spatial length. Whoever measures a particulee-sipge interval will get
the same value, no matter how fast they are travelling. Theianear of the space-
time interval has some dramatic consequences.

The first consequence is the prediction that if a thing islilag at a velocity ofc
metres per second, then all observers, no matter how fast thésaweting, will
measure the same velocity for the thing. The velaciyill be a universal constant.
This is explained below.

When an object is travelling atthe space time interval zero, this is shown below:
The space-time interval 8 =X +y? + 7 — (ct)?

The distance travelled by an object moving at velogityn the x direction fort
seconds is:

X=wvt

If there is no motion in thg or z directions the space-time intervalsfs= x* + 0 + 0—
(ct)®

So:s” = (vt)? — (ct)?



But when the velocity equalsc:
= (@)~ (o)’
And hence the space time intergak (ct)®> — (ct)> = 0

A space-time interval of zero only occurs when the velocity. i8hen observers
observe something with a space-time interval of zero, thegbakrve it to have a
velocity ofc, no matter how fast they are moving themselves.

The universal constant, is known for historical reasons as the "speed of light". In
the first decade or two after the formulation of Minkowski's apgino many
physicists, although supporting Special Relativity, expectedighatmight not travel

at exactlyc, but might travel at very nearly. There are now few physicists who
believe that light does not propagate.at

The second consequence of the invariance of the space-time lingetlhiat clocks
will appear to go slower on objects that are moving relativeto $uppose there are
two people, Bill and John, on separate planets that are moving awagdidnother.
John draws a graph of Bill's motion through space and time. Thisownsin the
illustration below:

Figure 4: John and Bill - observers moving away from each other.

Bill's path through time and

Tohn's Path space as seen by Joh
through tite Time
- ? _______ llI'I"\\‘_
I |
t I
| |
| I
|
- 1 - Distance Distance
X 1
Johtt's graph of Bill's motion through time and BEill thinks hiz path iz
space. Johh thinks Bill iz going through both just through time (the
titte and space but Bill thinks he's only going dotted line) but John
through time. thinks Bill takes the

golid line.

Being on planets, both Bill and John think they are stationary, and jorgingn
through time. John spots that Bill is moving through what John calls,spaeeell as
time, when Bill thinks he is moving through time alone. Bill wouldbatsaw the
same conclusion about John's motion. To John, it is as if Bill's tkiseisaleaning
over in the direction of travel and to Bill, it is as if John's time axis leans over.

John calculates the length of Bill's space-time interval as:
= (W) - (ct)?
whereas Bill doesn't think he has travelled in space, so writes:

§ = (0Y - (cT)?



The space-time interva¥, is invariant. It has the same value for all observers, no
matter who measures it or how they are moving in a straigét Bill's s> equals
John'ss® so:

(0)* — (cT)? = (W)* — (ct)®
and

—(CT)% = (Wt)* — (ct)’

hence
t= T/\fl — 1'2/09.

So, if John sees Bill measure a time interval of 1 secbémd1) between two ticks of
a clock that is at rest in Bill's frame (modelled by tbadition X = 0), John will find
that his own clock measures between these same ticks an intealéddcoordinate
time, which is greater than one second. It is said that clocks in mdtandeown,
relative to those on observers at rest. This is known as "retatitime dilation of a
moving clock”. The time that is measured in the rest framthefclock (in Bill's
frame) is called thproper time of the clock.

John will also observe measuring rods at rest on Bill's planie¢ tshorter than his
own measuring rods, in the direction of motion. This is a prediction kn@vn a
"relativistic length contraction of a moving rod". If the lengtha rod at rest on Bill's
planet isX, then we call this quantity the proper length of the rod. The lengthhat
same rod as measured on John's planet, is catedinate length and given by

r= Xh.f'fl —v?/c®

See section on the Lorentz transformation below.

The last consequence is that clocks will appear to be out of phseach other
along the length of a moving object. This means that if one obisssteeup a line of
clocks that are all synchronised so they all read the samee tihen another observer
who is moving along the line at high speed will see the clodkeadling different
times. In other words observers who are moving relative to each se#bedifferent
events asimultaneous This effect is known aRelativistic Phaseor theRelativity

of Simultaneity. Relativistic phase is often overlooked by students of Special
Relativity, but if it is understood then phenomena such as the twidgasae easier

to understand.

The way that clocks go out of phase along the line of travel caridagated from the
concepts of the invariance of the space-time interval and length contraction.



How clocks become out of phase
along the line of travel

Tirme
!
i
!
!
/ )
! y . —— ® axis
woanis
*
T= ><ﬁ.r,f|:2

The relationship for comparing lengths in the direction of travel is given by:
r=X \lr,.-""l —v2/c?

So distances between two points according to Bill are simptghernn space (X)
whereas John sees Bill's measurement of distance as a coarbwfaé distance (x)
and a time interval:

X = X2~ (cT)?

S S T
Butfrom:“r_‘}“'lr"1 ?“/C.

X = X2 — (V] A)X?
So:(cT)? = V* / A)X?
AndcT = (v/ )X
So:T = (v/cAX

Clocks that are synchronised for one observer go out of phase aldimgetbétravel
for another observer moving atmetres per second by:/ c® seconds for every
metre. This is one of the most important results of Specialtiigtaand is often
neglected by students.

The net effect of the four-dimensional universe is that observeosane in motion
relative to you seem to have time coordinates that lean over in theotirettnotion,

and consider things to be simultaneous, that are not simultaneous faBpatial

lengths in the direction of travel are shortened, because theypt@rds and
downwards, relative to the time axis in the direction of traveh tkia rotation out of
three-dimensional space.



Figure 5: How Bill's coordinates appear to John at

the instant Bill passes him.
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Great care is needed when interpreting space-time diagbaaggams present data in
two dimensions, and cannot show faithfully how, for instance, a zerthlspgce-

time interval appears.

Figure &: Space-time diagrams are often misleading
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The path of a ight ray 15 a space-tune mterval of zero but

appears as a long line in the diagram.



Spacetime

Spacetime diagram showing avent, aworld line, and dine of simultaneity

Line of
Simultaneity
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World Line

Past

In order to gain an understanding of both Galilean and SpecialivRglat is
important to begin thinking of space and time as being differergrdirans of a four-
dimensional vector space called spacetime. Actually, sinceaw wsualize four
dimensions very well, it is easiest to start with only oneesplamension and the time
dimension. The figure shows a graph with time plotted on the vertical axis and the one
space dimension plotted on the horizontal axisefemt is something that occurs at a
particular time and a particular point in space. ("Julius X. wrbiksar in Lemitar,
NM on 21 June at 6:17 PM.") world lineis a plot of the position of some object as a
function of time (more properly, the time of the object as a fanatf position) on a
spacetime diagram. Thus, a world line is really a line in $jpaeewhile an event is a
point in spacetime. A horizontal line parallel to the position axax{s) is aline of
simultaneity; in Galilean Relativity all events on this line occur simmstausly for all
observers. It will be seen that the line of simultaneity diffessveen Galilean and
Special Relativity; in Special Relativity the line of sitameity depends on the state
of motion of the observer.

In a spacetime diagram the slope of a world line has a $pee#aning. Notice that a
vertical world line means that the object it represents doesmoe -- the velocity is
zero. If the object moves to the right, then the world line tdtshe right, and the
faster it moves, the more the world line tilts. Quantitatively, we say that

1
slope of world .Eme'(5_1)

velocity =

Notice that this works for negative slopes and velocities asasgeflositive ones. If
the object changes its velocity with time, then the world lineus/ed, and the
instantaneous velocity at any time is the inverse of the slopleeofangent to the
world line at that time.

The hardest thing to realize about spacetime diagrams ishthatdpresent the past,
present, and future all in one diagram. Thus, spacetime diagrams ftlmecwith
time -- the evolution of physical systems is represented byHrgolt successive



horizontal slices in the diagram at successive times. Spacdiagrams represent the
evolution of events, but they don't evolve themselves.

The lightcone

Things that move at the speed of light in our four dimensional univease
surprising properties. If something travels at the speed of diging the x-axis and
covers x meters from the origin in t seconds the space-time interval of its patb.is

& =% — (ct)?
butx = ct so:
&= (ct)>—(ct)>’=0

Extending this result to the general case, if somethinglsrate¢he speed of light in
any direction into or out from the origin it has a space-time interval of O:

0=X+y +7—(ct)®

This equation is known as the Minkowski Light Cone Equation. If lightewer
travelling towards the origin then the Light Cone Equation would desthbe
position and time of emission of all those photons that could be at tie atia
particular instant. If light were travelling away from thegari the equation would
describe the position of the photons emitted at a particular irettamy future time
't

. Time
A sphere of events A Slice of the
sphere
- L, ==\
I
Light Cone

t
Future

Currently observable X Space-Like

events are on this

surface

. Path of a photon
Affective Past

Ewvents that were once
observable are mside this
wolume

A Shice of a Sphere of Events Eepresented by a Light Cone (Solution of 0= x2+ 22— (ct}zj

At the superficial level the light cone is easy to interptés backward surface
represents the path of light rays that strike a point observan atstant and it's



forward surface represents the possible paths of rays emitedlHie point observer
at an instant (assuming the conditions appropriate to a spectalisétatreatment
prevail). Things that travel along the surface of the light @eesaid to béght- like
and the path taken by such things is known rasllageodesic

Events that lie outside the cones are said tospece-like or, better stillspace
separatedbecause their space time interval from the observer hasithe sign as
space (positive according to the convention used here). Events thathie the
cones are said to lene-like ortime separatedbecause their space-time interval has
the same sign as time.

However, there is more to the light cone than the propagationhtf ligthe added
assumption is made that the speed of light is the maximum possiblaty then

events that are space separated cannot affect the observty.direents within the

backward cone can have affected the observer so the backward kopevnsas the
"affective past" and the observer can affect events in the fora@me hence the
forward cone is known as the "affective future”.

The assumption that the speed of light is the maximum velocity afbr
communications is neither inherent in nor required by four dimensiomeheajey
although the speed of light is indeed the maximum velocity for olifettis principle
of causality is to be preserved by physical theories (ie: that causes precedé.effects



The Lorentz transformation equations

The discussion so far has involved the comparison of interval measuseiime
intervals and space intervals) between two observers. The obsmigbtsalso want
to compare more general sorts of measurement such as thanimgosition of a
single event that is recorded by both of them. The equations tlatbéesow each
observer describes the other's recordings in this circumstam@cé&nown as the
Lorentz Transformation Equations. (Note that the symbols below signify coordjnates

Joht's time
coordinate

Bill's time cootrdinate

Bill's space

— =7 coordinate (x' axg)

JToht's space
coorditiate (3 axs)

8]

The Lorentz Transformation: How obzervers with tao
different coordinate systems view the same event. In this
case Joht and Bill ate in space vehicles travelling past
each other at "0 where they synchronise clocks.

The objective iz to calculate what the other
chzerver reports as the time and position of the event

The table below shows the Lorentz Transformation Equations.

. r + ot
S r—ut yf(l — 22 /c?)
1I!flfl — 2 /c?)
y =y y=y
z' =7 Z=i
y_ t—(v/c*)x L t 4+ (v/et)r
b.flfl — 2 /c?) 1L!f.flfl —v?/c?)

Seemathematical derivation of Lorentz transformation




Notice how the phase (/€’)x ) is important and how these formulae for absolute time
and position of a joint event differ from the formulae for intervals.



Simultaneity, time dilation and length
contraction

More about the relativity of simultaneity and the
Andromeda paradox

If two observers who are moving relative to each other syncleraher clocks in
their own frames of reference they discover that the clocks dogne¢ aetween the
reference frames. This is illustrated below:

The Belativity of Simultaneity and Phase

t
| .
ey Titne
@ @ - @ differenice

H

Fhase describes how events that one
observer measures to be stnultaneous are
not surltaneous for another observer,

The effect of the relativity of simultaneity, or "phase"faseach observer to consider
that a different set of events is simultaneous. Phase meansbg&ters who are

moving relative to each other have different sets of thingsatieasimultaneous, or in

their "present moment".



Figure 5: How Bill's coordinates appear to John at

the instant Bill passes him.
Toht's titme
coordinate
Bill's time coordinate
xl Bill's space
f coordinate (3 axis)
—_— =
/-
— )ﬁ: I nhn'g space
K coorditiate (% awis)
Phase at xmetres
from origin

How Johh wiews Bill's coordinate system

The amount by which the clocks differ between two observers depgts the
distance of the clock from the observer(xv / ¢?). Notice that if both observers are
part of inertial frames of reference with clocks that arekyonised at every point in
space then the phase difference can be obtained by simply rehdirdifference
between the clocks at the distant point and clocks at the origindiffeigence will
have the same value for both observers.

Relativistic phase differences have the startling consequatattdistances as large

as our separation from nearby galaxies an observer who is drivitite agarth can
have a radically different set of events in her "present monfient’ another person
who is standing on the earth. The classic example of this edfephase is the
"Andromeda Paradox”, also known as the "Rietdijk-Putnam-Penrose" argument
Penrose described the argument:

"Two people pass each other on the street; and according to ongwbtpeople, an

Andromedean space fleet has already set off on its journey whihe other, the
decision as to whether or not the journey will actually take phesenot yet been
made. How can there still be some uncertainty as to the outcothat afecision? If

to either person the decision has already been made, then therelycannot be any
uncertainty. The launching of the space fleet is an inevitabi{ehrose 1989).

The argument is illustrated below:



The Andromeda Paradox

T

TUESDAY
il all humans 11

e==!E;EiiiEEEEEE;;ES‘-—""-"-":K
A car moving past a stationary person will have a different set of
things that are simultanecus. At the distance of the Andromeda
galaxy the present instant for the stationary person might contain a
meeting where a space-admiral is deciding whether to invade

earth. Inthe present instant for the person inthe car the
Andromedian fleet is already on the way! Shall we invade 7?7

MONDAY

This "paradox" has generated considerable philosophical debate onuteeafdime
and free-will. A result of the relativity of simultaneitytlsat if the car driver launches
a space rocket towards the Andromeda galaxy it might haveesaseays head start
compared with a space rocket launched from the ground. This is bélcaupeesent
moment" for the moving car driver is progressively advanced aifitance compared
with the present moment on the ground. The present moment for theivaar isgr
shown in the illustration below:

Tirne

TUESDAY
Eill all humans 1

¥ o =0 .

For the car driver the stationary man and the invasion fleet are all events in the
present rnarment.

The twin paradox

The "Andromeda paradox” is, in part, the origin of the "twin paradaoxthé twin
paradox there are twins, Bill and Jim. Jim is on Earth. Bi#tsflpast Jim in a
spaceship, goes to a distant point, turns round and flies back again. It is foundl that Bi
records fewer clock ticks over the whole journey than Jim records on earth. Why?



Suppose Jim has synchronised clocks on Earth and on the distant point. fAssBil
past Jim he synchronises his clock with Jim's clock. When he deekettobserves
the clocks on the distant point and immediately detects that teayasynchronised
with his or Jim's clocks. To Bill it appears that Jim has Byodsed his clocks
incorrectly. There is a time difference, or "gap”, betweeanchlocks and those at the
distant point even when he passes Jim. Bill flies to the distantgruantliscovers that
the clock there is reading a later time than his own clockuhkhs round to fly back
to Earth and observes that the clocks on Earth seem to have jumpaddfoyet
another "time gap" appears. When Bill gets back to Earth the gaps and time
dilations mean that people on Earth have recorded more clock ticks that he did.

For ease of calculation suppose that Bill is moving at a trubneshing velocity of
0.8c in the direction of a distant point that is 10 light seconds aaeu{ 3 million
kilometres). The illustration below shows Jim and Bill's observations:

The Time {(ap Explanation of the Twin "Paradox

The outward journey Bill travels 10 light secs at 0.8c so takes
12.5 secs to get to the destination according
to Jimn.

4.5 secs Bill observes the distance to be 6 light

SECS IE1
- 10.ft - 0.62

o Bill takes 7.5 secs to make the journey
o~ accarding ta his own clocks. ie! »/v = /0.8

7.5 secs

3 secs Bill observes ONLY 4.5 secs elapsed time on
the clock at the destination.

Bill's x-axis at _ The other & secs on the clock are due to

start. - 10 light secs distance for Jim the initial time gap. Even when Bill is next to
(simultaneous & light dist for Bill Jirn he sees that the destination is already &
events) Ight secs distance Tor Bl secs inta Jim's future,
The overall journey
The return journey 4.5 secs
7.5 secs
- -
- —_
e
H4.5 Secs 8 secs ‘Hﬁhhﬁ
— i —_
™ 25 secs
4.5 secs
8 secs 7.5 secs T
e
— S - - 7
T 8
10 light secs distance for Jim T secs
6 light secs distance for Bill o=

10 light secs distance for Jim
6 light secs distance for Bill

The time dilation in the twin paradox is symmetrical. Jim observes Bill's clocks go slow, reading only 15 secs change on
Bill's clocks when his own read that 25 secs have passed. Bill observes only 9 secs elapse on Jim's clocks when his
own show 15 secs have passed. However Bill also observes Jim's clocks jump by 16 secs as a result of phase making a
total 25 secs for Jim's clocks.

From Bill's viewpoint there is both a time dilation and a phascefft is the added
factor of "phase" that explains why, although the time dilationurscdor both
observers, Bill observes the same readings on Jim's clocks ewahtie journey as
does Jim.

To summarise the mathematics of the twin paradox using the example:

Jim observes the distance as 10 light seconds and the distant poihisdsrame of



reference. According to Jim it takes Bill the following time to make the journey
Time taken = distance / velocity therefore according to Jim:
t=10/0.8 =12.5 seconds

Again according to Jim, time dilation should affect the observed time on Billlsscloc
_ {1 _ 22 )2
T=t*y1-2?/c_.

T =125%+v1— 0.82 = 7.553C()nds

So for Jim the round trip takes 25 secs and Bill's clock reads 15 secs.

Bill measures the distance as:
X=z2#/1-22/?=10%V1-08 =6

For Bill it takesX/v=6/0.8 = 7.5 seconds.

light seconds.

Bill observes Jim's clocks to appear to run slow as a result of time dilation:
t=Tx1—22/c
v " so:

£ =75%v1—0.82 = 4.550conds

But there is also a time gapwf/ ¢® = 8 seconds.

So for Bill, Jim's clocks register 12.5 secs have passed fromtdheto the distant
point. This is composed of 4.5 secs elapsing on Jim's clocks plus antiheegap
from the start of the journey. Bill sees 25 secs total tirnerded on Jim's clocks over
the whole journey, this is the same time as Jim observes on his own clocks.

It is sometimes dubiously asserted that the twin paradox is #@t®wocks on the
twin that leaves earth being slower than those on the twin that at home, it is then
argued that biological processes contain clocks therefore thehat travelled away
ages less. A more accurate explanation is that when we twavetvel in time as
well as space.

The Pole-barn paradox

thisisa stub and requires completion



Addition of velocities

How can two observers, moving at v km/sec relative to each othepacerntheir
observations of the velocity of a third object?

Addition of velocities

Tirme Time'

The wvelocity for one observer is given by:
u=x/t

For the other observer it is given by:
==/t

FProbem: find u in terms of u' and the relative
velocity of the observers, v,

Suppose one of the observers measures the velocity of the ohjeshase:

’ I
u = F
The coordinates andt are given by the Lorentz transformations:
’ r—1t
r = —/——————
\k,.-"( 1—22/c?)
and

p 1= (v/e?)x
,,F.-"'(l — 2 /c?)




but

X = ut
so:
r —ut s t—(v/eP)x
=
\f[l — 22 [e?) Mflfl — 2 /c?)
and hence:

X—vt=u(t—vx/cd
Notice the role of the phase temn/ c®. The equation can be rearranged as:
e (u + )

(1+u'v/c?)

given thatx = ut:

"= (u' +2)
(14 u'v/e?)

This is known as theelativistic velocity addition theorem, it applies to velocities
parallel to the direction of mutual motion.

The existence of time dilation means that even when objects asgngn

perpendicular to the direction of motion there is a discrepancy betthe velocities

reported for an object by observers who are moving relative toatheh If there is
ki

any component of velocity in the x direction, (Y =) then the phase affects time
measurement and hence the velocities perpendicular to the x-arigafile below
summarises the relativistic addition of velocities in the various directioqpaoes

" — (v +7)
b (e —v) 14/
LA u v /c?)
) uyh.fl —?/e? uijfl — 2 /c?
v T u v/ c?) A u v /c?)
, uwfl —v?/c? ujwfl — 2 /c?
YeT T C u v/ c?) T +u' v /c?)

Notice that for an observer in another reference frame the suwoofelocities (u



and v) can never exceed the speed of light.



Dynamics

Introduction

The way that the velocity of a particle can differ betweerenless who are moving
relative to each other means that momentum needs to be redefiredesslt of

relativity theory.
The illustration below shows a typical collision of two particlesthe right hand
frame the collision is observed from the viewpoint of someone movitigeasame

velocity as one of the particles, in the left hand frame mhserved by someone
moving at a velocity that is intermediate between those of the particles.

Relativistic particle collisions

y
A A
9 99— o o—
- ¥
4, .4 | \J/I )
X
O

«— «—
Yiew of observer who is travelling at a Yiew of observer travelling at same velocity as the
velocity intermediate between that of the blue ball.

balls. (Red = +v Blue = -v Observer =0 m/s)

If momentum is redefined then all the variables such as foate @f change of
momentum), energy etc. will become redefined and relativitylealtl to an entirely
new physics. The new physics has an effect at the ordinagy tdvexperience
through the relatio = mc* whereby it is the tiny changes in relativistic mass #hat
expressed as everyday kinetic energy so that the whole of phgsiedated to
"relativistic" reasoning rather than Newton's empirical ideas.

Momentum

In physics momentum is conserved within a closed systeniawhef conservation
of momentum applies. Consider the special case of identical particlegdiogll
symmetrically as illustrated below:



A symmetrical Newtonian collision

y Hyr
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u

The momentum change by the red ball is:

2uyrm

The momentum change by the blue ball is:

2u,pm

,Tu
B ,o_}'uxR
>

®

The situation is symmetrical so tidewtonian conservation of momentum law is

demonstrated:

2muyr = 2muypg

Notice that this result depends upon the y components of the veloeitgsdnual ie:

UFR = llyB.

The relativistic case is rather different. The collisiorllissirated below, the left hand
frame shows the collision as it appears for one observer andgtitehand frame
showsexactly the same collisionas it appears for another observer moving at the

same velocity as the blue ball:

Relativistic particle collisions

' u

u

i yR' y ¥R
1 T u *
°—}UXR 2’0—} UXRI —_— xR ;°_}UXR
- VRI‘L . il ' u ':I’% - y
. - ‘ - I\ #VBI I_,IVB I _UVB
UXBI ? uXBI °
_UVBI

Yiew of observer who is travelling at a
velocity intermediate between that of the
balls. {Red = +v Blug = -v Ohserver =0 m/s)

Yiew of observer travelling at same velocity as the
blue ball,

The uppercase letters (U} represent velocities after the callision.

The configuration shown above has been simplified because one framagant
stationary blue ball (ieug = 0) and the velocities are chosen so that the vertical



! !

velocity of the red ball is exactly reversed after thdisioh ielvr = ~UyB pBoth
frames show exactly the same event, it is only the observersdiffeo between
frames. The relativistic velocity transformations between frames is:

) uyﬁhfl — 22 /c?

1 —uzgr/c

U = uyB\fl — 2 /c?

y given thatu,s = 0.

Suppose that the y components are equal in one frame, in Newtonian physggl they
also be equal in the other frame. However, in relativity, if tkerpponents are equal

in one frame they ar@ot necessarily equal in the other frame. For instance if
! !

Uyr = YyB then:
u R
B ==
J 1 — uygr/c?
! !
U =1 o
Soif “vA yE then in this cas “¥R 7 UyB

If the mass were constant between collisions and between frdmaesalthough
! !

2muyg = 2MUyj e tound that:

2muyr # 2muyg

So momentum would not appear to be conserved between frames if theismas
constant. Notice that the discrepancy is very smajkibndv are small. However, the
principle of relativity states thahe laws of physics are the same in all inertial
systems so to preserve this principle there must be something happenimg noatss
as observed between frames.

The velocities in the y direction are related by the followiggiadion when the
observer is travelling at the same velocity as the blue ball ie: when0:

1 —uggr/c?

uyB

If we write mg for the mass of the blue ball) ang for the mass of the red ball as
observed from the frame of the blue ball then, if the principle of relativity applies

2MgUyr = 2Mglyg
So:

uyB
Mp=Mg—

HH'R



But:

7 R
B ==
J 1 — uygr/c?
Therefore:
nig
Mg

1 Uz gt/ c?

This means that, if the principle of relativity is to apply the:mass must change by
the amount shown in the equation above for the conservation of momentumbdaw t
true.

’ ’ ;

The reference frame was chosen so ~“¥E vEBand hencezr = V' This
allowsv to be determined in terms ofk:

! Upg — T
(IA — = 1
R
¥ 1 —u,gr/c?

and hence:

v=cfu.g(1 — 1”-“"1 —ulg/c?

Mg

g

- ] 2
So substituting fov in 1 —uzge/c?.

meg

Mg = —_—
N

The blue ball is at rest so its mass igést mass and is given the symbat,. As the
balls were identical at the start of the boost the mass akthball is the mass that a
blue ball would have if it were in motion relative to an observes; itiiss is known
as therelativistic masssymbolised byn. The discussion given above was related to
the relative motions of the blue and red balls, as a ragutiorresponds to thepeed

of the moving ball relative to an observer who is stationary wipeet to the blue
ball. These considerations mean that the relativistic mass is given by:

Mp
v 1—u?/c?

The relativistic momentum is given by the product of the rekdtovimass and the
velocity P = 4,

m =

The overall expression for momentum in terms of rest mass is:

mpu

b= v 1—u?/e?




and the components of the momentum are:

Mgty
Pe= 77—
"vfl —u?/e?

gty
Py= 77—
w.ffl — u?[c?

gl -
pe= —F——
w.ffl —u?/c?

So the components of the momentum depend upon the appropriate velocity
component and the speed.

Force

In Newtonian mechanics force is the rate of change of mome(dp/df . If the
relativistic momentum is used:

dp d(mu)

dt — di

By Leibniz's law wherel(xy) = xdy + ydx:
dp du dm

at ~Mat TV

This shows that part of the force is used to increase the velouityart is used to
increase the relativistic mass. Relativistic force isedéht from Newtonian force

Energy

Energy is defined as the work done in moving a body from one placeotbea.
Energy is given from:

dE = Fdx

so, over the whole path:

E:/ Fdx
0

Kinetic energy (K) is the energy used to move a body from a itxelo€ O to a
velocityu. So:

H:/:Fm
'r.f,=|:|



Using the relativistic force:

B u=u d(mu)
K _/u,:n e

So:
u=1 il
H:f d(mu) =
=0 lf ‘ df
substituting ford(mu) and usingix / dt = u:

H=/ ) (mdu + udm)u

=l

Which gives:

H=/ ) (mudu 4+ u*dm)

=0
The relativistic mass is given by:

My
v 1—u?/c?

Which can be expanded as:

m =

2 2 2 2 2 2
mocT — U = myc
Differentiating:
2mc’dm — mf2udu — u’2mdm = 0
So, rearranging:
mudu + u?dm = c*dm
In which case:
U= 9
K= / (mudu + v dm)
u=0
is simplified to:
=1t 9
K= / c“dm
u=[0
But the mass goes fromy to m so:

H:c?f " dm)

m=mp



and hence:
2 2
K = mc® — mypc

The amountmc? is known as theotal energy of the particle. The amoumhc? is
known as theest energyof the patrticle. If the total energy of the particle igegi the
symbolE:

E= 111.;.'(:2 + K

So it can be seen thatc? is the energy of a mass that is stationary. This energy i
known asmass energyand is the origin of the famous formuta= mc? that is iconic
of the nuclear age.

The Newtonian approximation for kinetic energy can be derived byitsuingt the
rest mass for the relativistic mass ie:

My
m =
v 1—u?/c?
and:

2 2
K = mc® — mypc

So:
i Moc> N
K = 2 mgC
y1-—u?/c?
ie:

K =mac((1 —u?/?)2 — 1)

=

2 2y —
The binomial theorem can be used to exp'[,,l —u /"3 ‘] :

The binomial theorem is:

nin—1)
21

n—=2

2
a .

(a+z)" =a" +na" 'z +

X

1 - t~‘52/'“32:]_%:

1 5 3mgu* Bmgu
j'r:_ 2
V=MW g T g4

So expandim_,,If

6




So ifuis much less thao

K = o
1—2mnu

Which is the Newtonian approximation for low velocities.



Aether

Introduction

Many students confuse Relativity Theory with a theory about the gatipa of light.
According to modern Relativity Theory the constancy of the speeligluf is a
consequence of the geometry of spacetime rather than somethaificalbpe due to
the properties of photons; but the statement "the speed of light isatinsften
distracts the student into a consideration of light propagation. This cmfis
amplified by the importance assigned to interferometry exparis, such as the
Michelson-Morley experiment, in most textbooks on Relativity Theory.

The history of theories of the propagation of light is an intergdtpic in physics
and was indeed important in the early days of Relativity Thdorthe seventeenth
century two competing theories of light propagation were developbhdsti@an
Huygens published wave theory of light which was based oAuygen's principle
whereby every point in a wavelike disturbance can give rise thefudisturbances
that spread out spherically. In contrast Newton considered thairdipagation of
light of light was due to the passage of small particles anptcescles” from the source
to the illuminated object. His theory is known as toepuscular theory of light.
Newton's theory was widely accepted until the nineteenth century.

In the early nineteenth century Thomas Young performed Mosng's slits
experiment and the interference pattern that occurred was reegblam terms of
diffraction due to the wave nature of light. The wave theory acagpted generally
until the twentieth century when quantum theory confirmed that light &a
corpuscular nature and that Huygen's principle could not be applied.

The idea of light as a disturbance of some mediungether, that permeates the
universe was problematical from its inception. The first probles arose was that
the speed of light did not change with the velocity of the obserkdight were
indeed a disturbance of some stationary medium then as the earth timowgh the
medium towards a light source the speed of light should appear &asecrit was
found however that the speed of light did not change as expected. pacimext on
the velocity of light required corrections to existing theory asdltb a variety of
subsidiary theories such as the "aether drag hypothesis". dtbtynit was
experiments that were designed to investigate the propertigheofether that
provided the first experimental evidence for Relativity Theory.

The aether drag hypothesis

The aether drag hypothesiswas an early attempt to explain the way experiments
such as Arago's experiment showed that the speed of light isicbridte aether drag
hypothesis is now considered to be incorrect by mainstream science.

According to the aether drag hypothesis light propagates in Ggakpeedium, the
aether, that remains attached to things as they move. If this case then, no matter
how fast the earth moves around the sun or rotates on its axiprighé surface of
the earth would travel at a constant velocity.



The primary reason the aether drag hypothesis is considered isvaédause of the
occurrence of stellar aberration. In stellar aberration the posdf a star when
viewed with a telescope swings each side of a central positiabdut 20.5 seconds
of arc every six months. This amount of swing is the amount expedien
considering the speed of earth's travel in its orbit. In 1871 ®eBrddell Airy
demonstrated that stellar aberration occurs even when a teleddfss with water.
It seems that if the aether drag hypothesis were true takar stberration would not
occur because the light would be travelling in the aether whmhldvbe moving
along with the telescope.

Stellar Aberration

tanf{a) = vt/ct

If a telescope is travelling at high speed only light that is
arranged at a particular angle can avoid hitting the walls
of the telescope tube

If you visualize a bucket on a train about to enter a tunnel and a dwegtef drips
from the tunnel entrance into the bucket at the very center, thendiamt hit the
center at the bottom of the bucket. The bucket is the tube of adeéeshe drop is a
photon and the train is the earth. If aether is dragged then the dvopiéd be
traveling with the train when it is dropped and would hit the centbuoket at the
bottom.

The amount of stellar aberratianis given by:
tan(a)) = vot / cot

So:

tan(a)=v/c

The speed at which the earth goes round the sun, v = 30 km/s, and the speedsof light i
¢ = 300,000,000 m/s which gives= 20.5 seconds of arc every six months. This
amount of aberration is observed and this contradicts the aether drag hypothesis.

In 1818 Fresnel introduced a modification to the aether drag hypothesisnly



applies to the interface between media. This was accepted durclh of the
nineteenth century but has now been replaced by special theogjabvity (see
below).

The aether drag hypothesis is historically important becawgasione of the reasons
why Newton's corpuscular theory of light was replaced bywtéree theory and it is
used in early explanations of light propagation without relativigoty. It originated
as a result of early attempts to measure the speed of light.

In 1810 Francois Arago realised that variations in the refraatkexi of a substance
predicted by the corpuscular theory would provide a useful method f@unregathe
velocity of light. These predictions arose because the refraotiex of a substance
such as glass depends on the ratio of the velocities of light and in the glass.
Arago attempted to measure the extent to which corpuscles of light wordttdeted
by a glass prism at the front of a telescope. He expected thatwiheic be a range of
different angles of refraction due to the variety of differetbaites of the stars and
the motion of the earth at different times of the day and year.r&@gnto this
expectation he found that that there was no difference in reinabgtween stars,
between times of day or between seasons. All Arago observed waargrdtellar
aberration.

In 1818 Augustin Jean Fresnel examined Arago's results usiagetiheory of light.

He realised that even if light were transmitted as wavegetiactive index of the

glass-air interface should have varied as the glass moved thiwiglether to strike
the incoming waves at different velocities when the earth rotteldthe seasons
changed.

Fresnel proposed that the glass prism would carry some oftther adong with it so

that "..the aether is in excess inside the prism". He reattssdthe velocity of
propagation of waves depends on the density of the medium so proposed that the
velocity of light in the prism would need to be adjusted by an amount of 'drag'.

The velocity of lightv, in the glass without any adjustment is given by:
Vo=c/n

The drag adjustment; is given by:

)

Pg

Wherepe is the aether density in the environmextis the aether density in the glass
andv is the velocity of the prism with respect to the aether.

(-2 (1-—)
The factor Pg can be written a n?’ because the refractive index, n,
would be dependent on the density of the aether. This is known Esereel drag
coefficient

vy =11 —

The velocity of light in the glass is then given by:



i} c 1
V=—+ vl — —]\'l

N n-
This correction was successful in explaining the null result afy8s experiment. It
introduces the concept of a largely stationary aether thatagged by substances
such as glass but not by air. Its success favoured the wavg tifelght over the
previous corpuscular theory.

The Fresnel drag coefficient was confirmed by an interferameig@eriment
performed by Fizeau. Water was passed at high speed along tssotghes that
formed the optical paths of the interferometer and it was fouridhbdringe shifts
were as predicted by the drag coefficient.

The Fizeau Experiment

>
|
J_I_| —
: + = + : velocity of light in water:
N N v = o/n £ v, (1 - 1/n?)
| | (.
A [
[
Wil ater : : I Wi ater
= I —
|
|

Half
| silvered
I mirror
|

Light
source ®

The special theory of relativity predicts the result of thee&il experiment from the
velocity addition theorem without any need for an aether.

If V is the velocity of light relative to the Fizeau apparatus ldnsd the velocity of
light relative to the water andis the velocity of the water:

=<

n
Vo c/n+v
 14v/nc

which, if v/c is small can be expanded using the binomial expansion to become:



This is identical to Fresnel's equation.

It may appear as if Fresnel's analysis can be substitutedefaelativistic approach,
however, more recent work has shown that Fresnel's assumptions slamllth le
different amount of aether drag for different frequenciesgiftland violate Snell's
law (see Ferraro and Sforza (2005)).

The aether drag hypothesis was one of the arguments used in an aitermidin the
Michelson-Morley experiment before the widespread acceptarite gpecial theory
of relativity.

The Fizeau experiment is consistent with relativity and apprabeiy consistent with
each individual body, such as prisms, lenses etc. dragging itsetiher avith it. This
contradicts some modified versions of the aether drag hypothesiarthst that
aether drag may happen on a global (or larger) scale arat stedrration is merely
transferred into the entrained "bubble" around the earth which théfullgitcarries
the modified angle of incidence directly to the observer.
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The Michelson-Morley experiment

(This article has been copied from Wikipedia)

The Michelson-Morley experiment one of the most important and famous
experiments in the history of physics, was performed in 1887 bgrAMichelson
and Edward Morley at what is now Case Western Reserve Uityyeand is
considered to be the first strong evidence against the theory of a luminifetioels ae

Physics theories of the late 19th century postulated that, justt@s waves must
have a medium to move across (water), and audible sound waves ragedeim to
move through (air), so also light waves require a medium, the "lferonos aether”.
The speed of light being so great, designing an experiment tct tletepresence and
properties of this aether took considerable thought.



Measuring aether

1'11111'111111'1111111;':

A depiction of the concept of the "aether wind".

Each year, the Earth travels a tremendous distance in itsapobihd the sun, at a
speed of around 30 km/second, over 100,000 km per hour. It was reasoned that the
Earth would at all times be moving through the aether and prodacuigtectable
"aether wind". At any given point on the Earth's surface, the tuagnand direction

of the wind would vary with time of day and season. By analysingffieetive wind

at various different times, it should be possible to separate out compahee to
motion of the Earth relative to the Solar System from any dtleetoverall motion of

that system.

The effect of the aether wind on light waves would be like the effect of wisdwmd
waves. Sound waves travel at a constant speed relative to the ntbdiuthey are
travelling through (this varies depending on the pressure, tempert (see sound),
but is typically around 340 m/s). So, if the speed of sound in our conditi@#)is
m/s, when there is a 10 m/s wind relative to the ground, into the wimidl &ppear
that sound is travelling at 330 m/s (340 - 10). Downwind, it will apgestrdound is
travelling at 350 m/s (340 + 10). Measuring the speed of sound compatkd to
ground in different directions will therefore enable us to calculeespeed of the air
relative to the ground.

If the speed of the sound cannot be directly measured, an altermagiied is to
measure the time that the sound takes to bounce off of a refectoreturn to the
origin. This is done parallel to the wind and perpendicular (since tbetion of the
wind is unknown before hand, just determine the time for several difidirections).
The cumulative round trip effects of the wind in the two orientatitightly favors
the sound travelling at right angles to it. Similarly, the é¢ftdcan aether wind on a
beam of light would be for the beam to take slightly longeraeelrround-trip in the
direction parallel to the "wind" than to travel the same roumddrstance at right
angles to it.

"Slightly" is key, in that, over a distance such as a feweraethe difference in time
for the two round trips would be only about a millionth of a millionth eEeond. At
this point the only truly accurate measurements of the speedjhofwere those
carried out by Albert Abraham Michelson, which had resulted in measnts
accurate to a few meters per second. While a stunning achievemenbwn right,
this was certainly not nearly enough accuracy to be able to detect the aether.



The experiments

Michelson, though, had already seen a solution to this problem. His diggn,
known as an interferometer, sent a single source of whitetligiigh a half-silvered
mirror that was used to split it into two beams travelling at right ariglese another.
After leaving the splitter, the beams travelled out to the ehttsng arms where they
were reflected back into the middle on small mirrors. They then recombinée tar t
side of the splitter in an eyepiece, producing a pattern of cotiser and destructive
interference based on the length of the arms. Any slight charige amount of time
the beams spent in transit would then be observed as a shift in thensosi the
interference fringes. If the aether were stationary keat the sun, then the Earth's
motion would produce a shift of about 0.04 fringes.

Michelson had made several measurements with an experimenta devig81, in
which he noticed that the expected shift of 0.04 was not seen, andler shdl of
about 0.02 was. However his apparatus was a prototype, and had experamengal
far too large to say anything about the aether wind. For a nesasot of the aether
wind, a much more accurate and tightly controlled experiment would t@awbe
carried out. The prototype was, however, successful in demonstriaéinthé basic
method was feasible.

Mirror
R

Michelion-Morley
Exparimient

1A Michelson interferometer

He then combined forces with Edward Morley and spent a considexrataant of
time and money creating an improved version with more than enough @cdara
detect the drift. In their experiment the light was repewgtesflected back and forth
along the arms, increasing the path length to 11m. At this lengttirifbevould be
about .4 fringes. To make that easily detectable the apparatuscated in a closed
room in the basement of a stone building, eliminating most themdaliarational
effects. Vibrations were further reduced by building the appamtusp of a huge
block of marble, which was then floated in a pool of mercury. Thewleaéd that
effects of about 1/100th of a fringe would be detectable.

The mercury pool allowed the device to be turned, so that it coulot&ted through

the entire range of possible angles to the "aether wind". Evenacsieort period of

time some sort of effect would be noticed simply by rotatinglthece, such that one
arm rotated into the direction of the wind and the other away. [Ouger periods

day/night cycles or yearly cycles would also be easily measurable.



During each full rotation of the device, each arm would be parallélet wind twice
(facing into and away from the wind) and perpendicular to the wiret This effect
would show readings in a sine wave formation with two peaks and twghs.
Additionally if the wind was only from the earth's orbit around the, ghe wind
would fully change directions east/west during a 12 hour period. B itigal
conceptualization, the sine wave of day/night readings would be in opposite phase.

Because it was assumed that the motion of the solar system eeuslel an additional
component to the wind, the yearly cycles would be detectable aseeatiah of the
maginitude of the wind. An example of this effect is a helicofif@éng forward.
While on the ground, a helicopter's blades would be measured asrtpaetiund at
50 MPH at the tips. However, if the helicopter is travellingvend at 50 MPH, there
are points at which the tips of the blades are travelling 0 MRH100 MPH with
respect to the air they are travelling through. This incredmemagnitude of the lift
on one side and decreases it on the other just as it would increhsie@ease the
magnitude of an ether wind on a yearly basis.

The most famous failed experiment

Ironically, after all this thought and preparation, the experimecdrbe what might
be called the most famous failed experiment to date. Instead\watlimg insight into

the properties of the aether, Michelson and Morlég87 articlein the American

Journal of Science reported the measurement to be as small -fwttle of the

expected displacement but "since the displacement is proportioh& sguare of the
velocity” they concluded that the measured velocity was approxymate-sixth of

the expected velocity of the Earth's motion in orbit and "certdedg than one-
fourth”. Although this small "velocity” was measured, it was maTed far too small
to be used as evidence of aether, it was later said to be whihimange of an
experimental error that would allow the speed to actually be zero.

Although Michelson and Morley went on to different experiments dfterr first
publication in 1887, both remained active in the field. Other versions of the
experiment were carried out with increasing sophistication. Kgnaed Illingsworth

both modified the mirrors to include a half-wave "step”, elimimgathe possibility of
some sort of standing wave pattern within the apparatus. lllonjsveould detect
changes on the order of 1/300th of a fringe, Kennedy up to 1/1500th. lei#ebuilt

a non-magnetic device to eliminate magnetostriction, while N8onebuilt one of
non-expanding invar to eliminate any remaining thermal effecteer®from around

the world increased accuracy, eliminated possible side effeckgtlor All of these
with the exception of Dayton Miller also returned what is considered a null.result

Morley was not convinced of his own results, and went on to conduct additional
experiments with Dayton Miller. Miller worked on increasindgyge experiments,
culminating in one with a 32m (effective) arm length at an lilasian at the Mount
Wilson observatory. To avoid the possibility of the aether wind bblogked by
solid walls, he used a special shed with thin walls, mainly of sart¥@ consistently
measured a small positive effect that varied, as expectedewadth rotation of the
device, the sidereal day and on a yearly basis. The low magnitutie oésults he
attributed to aether entrainment (see below). His measurenmeotsted to only ~10

kps instead of the expected ~30 kps expected from the earth's orbital motienté
remained convinced this was duepartial entrainment, though he did not attempt a



detailed explanation.

Though Kennedy later also carried out an experiment at Mount Wilsalng 1/10

the drift measured by Miller, and no seasonal effects, Milléridings were

considered important at the time, and were discussed by Michelsadriki Lorentz

and others at a meeting reported in 1928 (ref below). There wasmbageeement
that more experimentation was needed to check Miller's retoltsntz recognised
that the results, whatever their cause, did not quite tally willerehis or Einstein's
versions of special relativity. Einstein was not present at theting and felt the
results could be dismissed as experimental error (see Shankland ref below).



Arm Fringe Fringe Exrﬁglme Upper
Name Year length shift shift : Limit on
Resolutio
(meters) | expected | measured N V aether
Michelson 1881 1.2 0.04 0.02
Michelson and 1887 11.0 0.4 <0.01 8 km/s
Morley
Morley and Morley | 1902-19(4 32.2 1.13 0.015
Miller 1921 32.0 1.12 0.08
Miller 1923-1924 32.0 1.12 0.03
Miller (Sunlight) 1924 32.0 1.12 0.014
Tomascheck
(Starlight) 1924 8.6 0.3 0.02
Miller 1925-192¢| 32.0 1.12 0.088
Mt Wilson) 1926 2.0 0.07 0.002
lllingworth 1927 2.0 0.07 0.0002 0.0006 1 km/s
Piccard and Stahel |44, 28 0.13 0.006
(Rigi)
Michelson et al. 1929 25.9 0.9 0.01
Joos 1930 21.0 0.75 0.002

In recent times versions of the MM experiment have become commngenlasers
and masers amplify light by repeatedly bouncing it back and foside a carefully
tuned cavity, thereby inducing high-energy atoms in the cavitweodajf more light.
The result is an effective path length of kilometers. Betgrthe light emitted in one
cavity can be used to start the same cascade in anotherrggtt &ngles, thereby
creating an interferometer of extreme accuracy.

The first such experiment was led by Charles H. Townes, ot @b-creators of the
first maser. Their 1958 experiment put an upper limit on drift, includmgpossible

experimental errors, of only 30 m/s. In 1974 a repeat with acclasées in the
triangular Trimmer experiment reduced this to 0.025 m/s, and inclucktsl o€

entrainment by placing one leg in glass. In 1979 the Brillet-edgberiment put an
upper limit of 30 m/s for any one direction, but reduced this to only 0.00009)fom
a two-direction case (ie, still or partially entrained aeth&ryear long repeat known



as Hils and Hall, published in 1990, reduced this to 2%10

Fallout

This result was rather astounding and not explainable by the themictheory of
wave propagation in a static aether. Several explanations atterapted, among
them, that the experiment had a hidden flaw (apparently Michelsidres belief), or
that the Earth's gravitational field somehow "dragged" thkeaearound with it in
such a way as locally to eliminate its effect. Miller wohld/e argued that, in most if
not all experiments other than his own, there was little posgilafitdetecting an
aether wind since it was almost completely blocked out by thedtdrgrwalls or by
the apparatus itself. Be this as it may, the idea of a siagpheer, what became known
as theFirst Postulate, had been dealt a serious blow.

A number of experiments were carried out to investigate the pborafeaether
dragging, oentrainment. The most convincing was carried out by Hamar, who placed
one arm of the interferometer between two huge lead blocksthiéraeere dragged

by mass, the blocks would, it was theorised, have been enough to ceisdaea
effect. Once again, no effect was seen.

Walter Ritz's Emission theory (or ballistic theory), wa® @snsistent with the results
of the experiment, not requiring aether, more intuitive and paradex-This became
known as theSecond Postulate. However it also led to several "obvious" optical
effects that were not seen in astronomical photographs, notably in atisesvof
binary stars in which the light from the two stars could be medsun an
interferometer.

The Sagnac experiment placed the MM apparatus on a constaatipgdturntable.

In doing so any ballistic theories such as Ritz's could bedeftectly, as the light
going one way around the device would have different length to traael light
going the other way (the eyepiece and mirrors would be movingddaveay from
the light). In Ritz's theory there would be no shift, because theehatity between
the light source and detector was zero (they were both mounted ourrtheble).
However in this case an effeatas seen, thereby eliminating any simple ballistic
theory. This fringe-shift effect is used today in laser gyroscopes.

Another possible solution was found in the Lorentz-FitzGerald cordracti
hypothesis. In this theory all objects physically contract alihvegline of motion
relative to the aether, so while the light may indeed trarsaes] on that arm, it also
ends up travelling a shorter distance that exactly cancels out the drift.

In 1932 the Kennedy-Thorndike experiment modified the Michelson-Morley
experiment by making the path lengths of the split beam uneqiialpme arm being
very long. In this version the two ends of the experiment were fatalit velocities
due to the rotation of the earth, so the contraction would not "work ouaicily
cancel the result. Once again, no effect was seen.

Ernst Mach was among the first physicists to suggest thaéxperiment actually
amounted to a disproof of the aether theory. The development of what ébecam
Einstein's special theory of relativity had the Fitzgerabdelntz contraction derived
from the invariance postulate, and was also consistent with theeafiparull results

of most experiments (though not, as was recognised at the 1928 medtingjlier's



observed seasonal effects). Today relativity is generally dere the "solution” to
the MM null result.

The Trouton-Noble experiment is regarded as the electrostativadent of the
Michelson-Morley optical experiment, though whether or not it can leyelone with
the necessary sensitivity is debatable. On the other hand, the 1908nTrankine
experiment that spelled the end of the Lorentz-FitzGerald cdiotmabypothesis
achieved an incredible sensitivity.
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Mathematical approach

Introduction

The teaching of Special Relativity on undergraduate physicsse®unvolves a
considerable mathematical background knowledge. Particularly impoara the
manipulation of vectors and matrices and an elementary knowledgevafurer The
background mathematics is given below and can be skipped by thoseenbmdiar

with these techniques.

Vectors

Physical effects involve things acting on other things to produteiage of position,
tension etc. These effects usually depend upon the strength, dnglentact,
separation etc of the interacting things rather than on anyusdseference frame so
it is useful to describe the rules that govern the interactionerims of the relative
positions and lengths of the interacting things rather than in tefremy fixed
viewpoint or coordinate system. Vectors were introduced in physieldw such
relative descriptions.

The use of vectors in elementary physics often avoids any reaistartiding of what

they are. They are a new concept, as unique as numbers themnsbicashave been
related to the rest of mathematics and geometry by a sdériesmulae such as linear
combinations, scalar products etc.

Vectors are defined as "directed line segments” which meayatbdines drawn in a
particular direction. The introduction of time as a geometric yentiégans that this
definition of a vector is rather archaic, a better definitioghhbe that a vector is
information arranged as a continuous succession of points in spacenan¥dictors

have length and direction, the direction being from earlier to later.

Vectors are represented by lines terminated with arrow syndsltsow the direction.
A point that moves from the left to the right for about three cesites can be
represented as:

N
-~

Syrmbol for a vectar

If a vector is represented within a coordinate system it tigponents along each of
the axes of the system. These components do not normally sthet atigin of the
coordinate system.



The vector represented by the bold arrow has components a, b and ¢ wherlgtire |
on the coordinate axes. If the vector starts at the origin the comtgohecome

simply the coordinates of the end point of the vector and the vedtapven as the

position vector of the end point.

Addition of Vectors

If two vectors are connected so that the end point of one is theoktae next the
sum of the two vectors is defined as a third vector drawn fromsténeof the first to
the end of the second:

cis the sum o& andb:
c=a+b

If a components of are a, b, ¢ and the componentshofare d, e, f then the
components of the sum of the two vectors are (a+d), (b+e) and licefher words,

when vectors are added it is the components that add numerically tizhethe

lengths of the vectors themselves.

Rules of Vector Addition



1. Commutativitya+b =b +a

2. Associativity @ +b) +c=a+ (b +¢)

If the zero vector (which has no length) is labelled as 0
3.a+(-a)=0

4.a+0=a

Rules of Vector Multiplication by a Scalar

The discussion of components and vector addition shows that if vactas
componentsa,b,c then @ has components ga, gb, qc. The meaning of vector
multiplication is shown below:

c

The bottom vector c is added three times which is equivalent to multiplying it by 3.
1. Distributive laws g+ b) =ga+goand (Q + pA=ga + pa

2. Associativity g(p) = gm

Also la=a

If the rules of vector addition and multiplication by a scalar afiply set of elements
they are said to define a vector space.

Linear Combinations and Linear Dependence
An element of the form:

g1a1 + a2 + @3az + ... + GmaAm

is called a linear combination of the vectors.

The set of vectors multiplied by scalars in a linear combinasiaalled the span of
the vectors. The word span is used because the scalars (qyeamigavalue - which
means that any point in the subset of the vector space definbd bgan can contain
a vector derived from it.

Suppose there were a set of vectors (<math \mathbf{a_1,a 2,.... ,a_m</mbihis)

possible to express one of these vectors in terms of the otherg, amgmlinear
combination, then the set is said to be linearly dependent. If it ipossdible to
express any one of the vectors in terms of the others, usynignaar combination, it
is said to be linearly independent.



In other words, if there are values of the scalars such that:
Q). &1 = ©a2 + 383 + ... + mdm
the set is said to be linearly dependent.

There is a way of determining linear dependence. From (&nhibe seen that tf; is
set to minus one then:

gra1 + pas + gzaz + ... + gmam =0

So in general, if a linear combination can be written that suraszero vector then

dj, d3, ...

the set of vectors "7 am:] are not linearly independent.

If two vectors are linearly dependent then they lie along the sam@vmezever a and
b lie on the line, scalars can be found to produce a linear combination isla zero

vector). If three vectors are linearly dependent they lie osadhee line or on a plane
(collinear or coplanar).

Dimension

If n+1 vectors in a vector space are linearly dependent then nrvext linearly
independent and the space is said to have a dimension of n. The set of n vectbrs is sai
to be the basis of the vector space.

Scalar Product

Also known as the 'dot product' or ‘inner product’. The scalar prodactvay of

removing the problem of angular measures from the relationshigéetvectors and,
as Weyl put it, a way of comparing the lengths of vectorsataarbitrarily inclined
to each other.

Consider two vectors with a common origin:

(=)

P

The projection oaon bis:

P = |a|cosq



where 12| is the length oAa.
The scalar product is defined as:

(2) a-b = |al|b|cosg

Notice that cos q is zero aand b are perpendicular. This means that if the scalar
product is zero the vectors composing it are orthogonal (perpendicular to each other).

(2) also allows cos q to be defined as:
cosq = a.b/(|a||b]|)

The definition of the scalar product also allows a definition of the lengihvettor in
terms of the concept of a vector itself. The scalar product of a vector witlsitse

a.a = |a||a|cos0
cos 0 (the cosine of zero) is one so:

2
d.a =

which is our first direct relationship between vectors and scaldis can be
expressed as:

3)a = (a.a)l/2
where a is the length @.

Properties:

1. Linearity[Ga + Hbl.c =Ga.c+ Hb.c

2. symmetnna.b = b.a
3. Positive definitene<a.ais greater than or equal to 0

4. Distributivity for vector addition(a + b).c = a.c+ b.c

a.b| < ab

5. Schwarz inequalit

7

Ja+b[* +[a—b|* =2(a]* +|b[*)

6. Parallelogram equalit

From the point of view of vector physics the most important propErthe scalar
product is the expression of the scalar product in terms of coordinates.

7. a.b = ayb; + azb; 4 aszb;

This gives us the length of a vector in terms of coordinateghdBgras' theorem)
from:

2 2 2
g a.a=a; =aj +a;+ a;



The derivation of 7 is:
a=ai+ aj+ ak

L],k

where are unit vectors along the coordinate axes. From (4)

ab =(aqi+ axj+ ask).b=aib+4ajb+ a:kb
but B = b1l + baj + bk
so:

ab = bl ﬂ-li.i—l-bg EI-li.j—I-bg ﬂ-li.k—l-bl ﬂ-gj i+bg ﬂ-gj j+ bg EI-gj k—l—bl s k. i+bg s kj—l—bg g kk

Lj, 1.k, j.K etc. are all zero because the vectors are orthogonal,1-11J-J and
k.k are all one (these are unit vectors defined to be 1 unit in length).

Using these results:

a.b = ﬂ-lbl + ﬂ-gbg + ﬂ-gbg
Matrices

Matrices are sets of numbers arranged in a rectangulay. arhey are especially
important in linear algebra because they can be used to represeslieiments of
linear equations.

lla+2b=c
5a+7b=d

The constants in the equation above can be represented as a matrix:

11 2]

A=[5 7

The elements of matrices are usually denoted symbolically using lowdetiase

A — [ﬂ-ll a‘l?]

a1 das

Matrices are said to be equal if all of the corresponding elements are equal

Eg: if a;j = by
ThenA =B
Matrix Addition

Matrices are added by adding the individual elements of oneixmitr the
corresponding elements of the other matrix.



Cij = aj + b

aoC=A+B

Matrix addition has the following properties:

1. CommutativiyA + B =B+ A
A+B)+C=A+(B+C)

2. Associativity':

and
4 A+0=A

From matrix addition it can be seen that the product of a m A@nd a number p is
simplypAwhere every element of the matrix is multiplied individually by p.

Transpose of a Matrix

A matrix is transposed when the rows and columns are interchanged:

11 12 di3
A= |ay axn axn

Q31 @3z Q33

11 a1 Az

T
A" = |app apn asxp
i1z Qa3 Qa3

Notice that the principal diagonal elements stay the same after traisposit

A matrix is symmetric if it is equal to its transpose &g= aj.

T
It is skew symmetric AT = —Aeg:akj = — ay. The principal diagonal of a skew
symmetric matrix is composed of elements that are zero.

Other Types of Matrix

Diagonal matrix: all elements above and below the principal diagonal are zer

4 0 O
0 -1 0
0O 0 2

Unit matrix: denoted by I, is a diagonal matrix where alhmaets of the principal
diagonal are 1.



1
0
0

o R

0
0
1

Matrix Multiplication

Matrix multiplication is defined in terms of the problem of deteing the
coefficients in linear transformations.

Consider a set of linear transformations between 2 coordinatensyshat share a
common origin and are related to each other by a rotation of the coordinate axes

Two Coordinate Systems Rotated Relative to Each Other

If there are 3 coordinate systems, X, y, and z these can b#tmaed from one to
another:

X1 = au1yr + aidy»

X = o1y + a3y

Y1 =b11z3 + b2,

Yo = 02121 + D52,

X1 = Cuzy + Ci22

Xo = C121 + C22p

By substitution:

X1 = a11(D1121 + D1520) + Q15(D2121 + 02025)

Xp = ap1(01124 + D122) + 8x(D2121 + b222y)

X1 = (11011 + @12(021)z1 + (@11012 + A12020) 2

Xo = (821011 + 822(021) 21 + (B21012 + A22027) 2

Therefore:

C11 = (Quabr1 + a12(b21)
C12 = (Quab12 + a1202)
Co1 = (@21011 + @2021)

Co2 = (821012 + @p202))



The coefficient matrices are:

11 12
A =

a1 22

b1 bis
B =

ba1 Do

€11 Ci2
=

Ca1  Cao

From the linear transformation the product of A and B is defined as:

(@21b11 + a2abay)  (@21b12 + asabas)

_____

C =AB = ['fallbll + ay2byy ) (@11b12 + ayabss)

In the discussion of scalar products it was shown that, for a glarszalar product is

calculated as@-b = @161 + asba\where a and b are the coordinates of the vectors
a and b.

Now mathematicians define the rows and columns of a matrix as vectors:

b
b _ [bll]
A Column vector i< 21

And a Row vecto® — [a'“ ﬂ'”]

Matrices can be described as vectors eg:

11 43 a
A= [f fz) |3

dz1 a2 az
and

by b
B= [bﬂ bgg] = [Pab2]

Matrix multiplication is then defined as the scalar products of the vectorstso tha

C = [a]_.bl E.l.b2]

o .bl da .bg

From the definition of the scalar produ’f!l-bl = a11b11 + a13b91 etc.

In the general case:



_al.bl El]_.bg .ody .bn
B_g.bl az.bg . da b

am.b1 ambs . am.bay

This is described as the multiplication of rows into columns (eg: vectors into
column vectors). The first matrix must have the same number whaosl as there are
rows in the second matrix or the multiplication is undefined.

After matrix multiplication the product matrix has the same nundbegows as the
first matrix and columns as the second matrix:

2
[1 3 4] 3 [39]
6 3 2 times 7 hasZrowsandlcqun,,aJ

ie: firstrowis1*2+3*3+4*7=39andsecondrowis6*2+3*3+2*7=35

2 3 4
AB — [1 3 2] 3 2 1
2 -13 times 5> 13 has 2 rows and 3
[21 11 13]
16 7 16
columne

Notice that B A cannot be determined because rienber of columns in the first
matrix must equal the number of rows in the second matrixo perform matrix
multiplication.

Properties of Matrix Multiplication

AB -+ BA

1. Not commutativ

2. AssociativeA'fBC:' = (AB:]C
Ifch:]B = E{AB:] = A{kBj

3. Distributative for matrix addition
(A+ B)C =AC+ BC
C(A+B)=CA +CBg ,

matrix multiplication is not commutative s
separate case.

4. The cancellation law is not always true:

AB = 0doesnotmeaA =0orB=10



There is a case where matrix multiplication is commutatives involves the scalar
matrix where the values of the principle diagonal are all equal. Eg:

E 0 O
S=1|0 £ O
D 0 k

In this case AS = SA =LA . If the scalar matrix is the unit matrix:

AI=TA=A.

Linear Transformations

A simple linear transformation such as:
X1 = any1 T ady»

Xo = apy1 T axy»

can be expressed as:

X = Ay

eg:

and
Y1 = D112y + D122,

Yo = 02123 + D22,

as:y = Bz

Using the associative law:
x=A(Bz)=ABz=Cz
and so:

o (@b + agabay ) (@11bya + agabss)
C=AB-= (@a1bi1 + azabay) (@101 + azabas)

_____

as before.



Indicial Notation

Consider a simple rotation of coordinates:

x" is defined ag; , %o

E E
X" is defined af1, L2

The scalar product can be written as:
5.5 = gy riz”

Where:

1 0
9w =g 1

and is called the metric tensor for this 2D space.

! ! ! !
8.8 = 1 X1T) + G12T1Ty + §21 722 + 227214
Now, g11=1,012= 0,021 = 0,022 = 1 so:
! !
5.8 =TT, + I,
If there is no rotation of coordinates the scalar product is:

S.s =111 + T219

2

5 = If + r%
Which is Pythagoras' theorem.
The Summation Convention

Indexes that appear as both subscripts and superscripts are summed over.



v ) ¥ ! !
Gu'T" = g1, + GraT175 + g1 TaTy + goaTa T,

by promoting n to a superscript it is taken out of the summation ie:.

HE

K ! !
QLI#I = g1 11 + +021 7214
wherev = 1
Matrix Multiplication in Indicial Notation

Consider:

Columns times rows:

[I1] [1“13!1 Illﬁ;’z]
2| times [yl Q’z]: Taly Tl

XY =

Matrix product Tiliwnherei=1,2j=1,2

There being no summation the indexes are both subscripts.
Rows times column [Il IE] times LY2] = [Ilyl rgyg]

XY = §;;2'y

Matrix product

=]. Itis the indicial equivalent of the unit matrix:

o

There being summation one value of i is a subscript and the other a superscript.
A matrix in general can be specified by any of:

My MG

over.

M’ depending on which subscript or superscript is being summed

Vectors in Indicial Notation
A vector can be expressed as a sum of basis vectors.
X = ae; + ae; + aze;

In indicial notation this isx = aie.



Linear Transformations in indicial notation

Consider X = A3"'Where Ais a coefficient matrix ancand ¥ are coordinate
matrices.

In indicial notation this is:
= Afx”
which becomes:

! i !
Iy = a1 ry + Aoy + a3y

! ! !
Ty = A1 Xy + ATy 4 Aoz Xy

! i !
T3 = a3 T + A3oT5 + A3314
The Scalar Product in indicial notation

In indicial notation the scalar product is:
-
x.y = &;r'y’

Analysis of curved surfaces and transformations

It became apparent at the start of the nineteenth centuryssugsi such as Euclid's
parallel postulate required the development of a new type of ggothat could deal
with curved surfaces and real and imaginary planes. At the foundatidhisof
approach is Gauss's analysis of curved surfaces which allows werk with a
variety of coordinate systems and displacements on any type of surface.

Elementary geometric analysis is useful as an introduction taigbpRelativity
because it suggests the physical meaning of the coeffitctattappear in coordinate
transformations.

Suppose there is a line on a surface. The length of this linkecarpressed in terms
of a coordinate system. A short length of Ilk®in a two dimensional space may be
expressed in terms of Pythagoras' theorem as:

AS = A + Ay

Suppose there is another coordinate system on the surface witResio¢ax,, how
can the length of the line be expressed in terms of thesdicatms? Gauss tackled
this problem and his analysis is quite straightforward for two coordinate axes:



Figure 1:

A curved surface with a set of A plane with a set of Cartesian The plane set at a tangent to the surface so
coordinates on the surface coordinates that the coordinates can be compared

It is possible to use elementary differential geometry to desdisplacements along
the plane in terms of displacements on the curved surfaces:

oY oY
AY = Ary— 4+ Azry—
(S.Tl (SIE
0Z 04
&Z = &.Tl— + &I‘g
51‘1 {S.Tg

The displacement of a short line is then assumed to be givendrynald, called a
metric, such as Pythagoras' theorem

AS = AY* + AZ

The values oAY andAZ can then be substituted into this metric:

AS = (Azior 4 Az oX P 4 (A2 22 4 Azy o2y

oxy dxrs’ dxy by’

Which, when expanded, gives the following:

AS =

8Y 0Y YVAYA

ory dry  Ory o1y
OY &Y b2 6Z
drs dry  drs b1y
oY &Y WYARYA
dry dry Oy d1s

Y &Y 62 67
—I— 51‘ :]&Ig&.l’“g

|l( j&rlﬂrl

:]&Ig&.l’“l

:]&I‘l.&:{'g

+(

drs drs  Ors

This can be represented using summation notation:



oY &Y 63 07

;; dx; dxp 61‘,: :51*;;:]&%&“
Or, usingindicial notation:
AF = gi AX AXE
Where:
oY &Y 67 6Z
g =\t vx + 5%/

Sridxrk  Srt dxk’

If the coordinates are not merged thenis dependent on both sets of coordinates. In
matrix notation:

As® = gAxAx

becomes:

e
[&Il &IE] times L° d times Az
Where a, b, ¢, d stand for the valuegjipf
Therefore:

[&:rl]
[&Ila. + Arse Arb+ &rgd] fimes Axs
Which is:
(Arya+ Azrsc)Azxy + (Axib+ Azyd)Azy = Azy a4+ 2821 Azs(c+b) + Azy’d
So:
As® = ArPa 4+ 2Ax A xs(e + b) + Axy’d

AS is abilinear form that depends on botkx, andAx,. It can be written in matrix
notation as:

As? = AxTAAx

Where A is the matrix containing the valuesgir This is a special case of the
bilinear form known as the quadratic form because the same ntAX) appears

T
twice; in the generalised bilinear forB =X Ay(the matricesXand ¥ are
different).

If the surface is a Euclidean plane then the values of gik are:



85Y [52.6Y 6z, + 8Z/62.6Z /53, SY [6258Y /811 + 62/62562 /524
8Y [5206Y /82y + 8262462 /53, SY [6258Y /81 + 62/62562 /525

Which become:

1 0
I =g 1
So the matrix A is the unit matrix | and:
As? = AxTTIAx
and:

As? = Azx? + Ary®
Which recovers Pythagoras' theorem yet again.

If the surface is derived from some other metric suchsas: — AY? + AZ? then the
values of gik are:

_8Y/52,6Y /821 + 62/52:6Z /511 —8Y[8258Y 621 + 52 /62462 /52,
_8Y [52,8Y /821 + 62 /52562 /521 —8Y/85258Y 825 + 52 /52962 /52

Which becomes:

10
9w =19 1

2 2 2
Which allows the original metric to be recoverecﬁs = —Ar;" 4+ Az, :

It is interesting to compare the geometrical analysis wighttansformation based on
matrix algebra that was derived in the section on indicial notation above:

! g ! !
8.8 = 1 X1T) + G12T1Ty + §21 722 + 227214

Now,

1 0
9w =g 1

ie:011=1,012= 0,021 = 0,022 =1 so:
! !
5.8 =TT, + I,
If there is no rotation of coordinates the scalar product is:

Ss =111 + 1225

2 2 2
8" =1 +1I;



Which recovers Pythagoras' theorem. However, the reader maynbéiced that
Pythagoras' theorem had been assumed from the outset in theialeiwyahe scalar
product (see above).

The geometrical analysis shows that if a metric is assumedhee conditions that
allow differential geometry are present then it is possible toveleone set of
coordinates from another. This analysis can also be performed mainig algebra
with the same assumptions.

The example above used a simple two dimensional Pythagorean rsetnie,other
metric such as the metric of a 4D Minkowskian space:

AS =— AT? + AX? + AY? + AZ?

could be used instead of Pythagoras' theorem.



Mathematical transformations

The Lorentz transformation

The Lorentz transformation deals with the problem of observers whomaveng
relative to each other. How are the coordinates of an event rddoydene observer
related to the coordinates of the event recorded by the other et¥sdtvestandard
configuration used in the calculation of the Lorentz transformation is shown below:

Transformation of Coordinates

S s’

¥

hﬁ_

Ewvent
A . ®

o
%

8 .

|
e R
l/ ;/
}

The observers are moving at a relative velocity of v and each
observer has their own set of coordinates (x,v,2,t) and
(a2t what coordinates do they assign to the event?

-

v
-

R

2

There are several ways of deriving the Lorentz transfoomsitiThe usual method is
to work from Einstein's postulates (that the laws of physiedres same between all
inertial reference frames and the speed of light is constdmigt adding assumptions
about isotropy, linearity and homogeneity. The second is to work from the assumpti
of a four dimensional Minkowskian metric.

In mathematics transformations are frequently symbolised with taps'to” symbol:
|{.I‘_, EJ',:, ﬂ = (r)g y),:),fjf]

The linearity and homogeneity of spacetime

Consider a clock moving freely, according to Newton's first lsat objects continue
in a state of uniform motion unless acted upon by a force, the wetddite clock in
any given directiondy; / dt) is a constant.

If the clock is a real clock with readings given byhen the relationship between
these readings and the elapsed time anywhere in an ineatred bf referencelt / dr,
will be a constant. If the clock were to tick at an uneven ratepaced with other
clocks then the universe would not be homogenous in time - at somethienelsck
would appear to accelerate. This would also mean that Newtst'safiv would be
broken and the universe would not be homogenous in space.



If dx /dt anddt / dr are constant thedx,(n = 1,2,3,4) is also constant. This means
that the clock is not accelerating @x, / dt* = 0.

Linearity is demonstrated by the way that the length of thdwss not depend on
position or relative position; for instance xif= ax’ the distance between two points
would depend upon the position of the observer whereas if the relationBhgarsk

= ax) separations are independent of position.

The linearity and homogeneity assumptions mean that the coordafadeégects in
the S inertial frame are related to those in Swmertial frame by:

r, = (Y Ayr,)+ B,

This formula is known as joincare transformation. It can be expressed in indicial
notation as:

r? = AgH + BY

i

If the origins of the frames coincide th&) can be assumed to be zero and the
equation:

!
r, = Z Az,

Those who are unfamiliar with the notation should note that the symibels. mean
X1 = XX2 = Y,X3 = ZX4 =t so the equation above is shorthand for:

X = apX + aggy + ayaZ + ayat
Y = 81X + 8pgy + 8p3Z + apdt
Z = AgiX + agpy + 8gaZ + Aadt
t = auiX + augy + auaZ + udt

In matrix notation the set of equations can be written as:

!
x =Ax

Thestandard configuration (see diagram above) has several properties, for instance:

The spatial origin of both observer's coordinate systems lielseoline of motion so
the x axes can be chosen to be parallel.

The point given by =t is the same as = 0.

The origins of both coordinate systems can coincide so that cloagksbea
synchronised when they are next to each other.

The coordinate planes .y, y' and z,z', can be arranged to be orthajoigtit(angles)
to the direction of motion.

Isotropy means that coordinate planes that are orthogonal ahg=3-8 in one frame
are orthogonal at at y'=0 and z'=0 in the other frame.



According to the relativity principle any transformations be&mwedhe same two
inertial frames of reference must be the same. This is kramsvthereciprocity
theorem.

The Lorentz transformation

From the linearity assumption and given that at the oyginO =y so there is no
constant offset they = Ky andy = Ky, therefore K=1. So:

y =y
and, by the same reasoning:
z=z

Now, considering the x coordinate of the event, the x and y ardsecassumed to be
0 (ie: an arbitrary shift of the coordinates to allow the evelieton the x axes). If
this is done then the linearity consideration and the factxthatt andx = 0 are the
same point gives:

(1)x = y(x— )
wherey is a constant. According to the reciprocity theorem we also have:
(2) x=7(X +t)

Einstein's assumption that the speed of light is a constant canenowrdduced so
thatx = ct and also = ct. So:

ct =vyt(c— V)
and

ct =yt(c +V)
So:

ctt =yt (c® — V)
and

LT p— 1

o v 1—v?*/c?

Therefore the Lorentz transformation equations are:

t =y(t—vx/c)
X =y(X— W)

y =y

z=z

The transformation for the time coordinate can derived from #resfiormation for



the x coordinate assuminge ct andx = ct or directly from equations (1) and (2) with
a similar substitution fox = ct.

The coefficients of the Lorentz transformation can be represented in noatniatf

'l [ 7 —iy 0 0] [ct]
| |=%y o9 0 0f|x
y'| | O 0 1 0|y
z 0 0 0 1|z

A coordinate transformation of this type, that is due to motion, is knowih@gsa

Example: convert LT matrix to linear equation

ct! y — 2 0] [t Matqix multi[ljliclation et = Vet _%f‘;,_r +0+0
¥ c involves multiplying o, )
x _ |77 7 00 I | correspanding row ¥ = _Enl'd +dr
U d calumn L
] 0 0 1 0| |y|2" y =10 +0 +y+0D
| b
N R M R

The Lorentz transformation equations can be used to show that:
c%dt? — dx? — dy? — dz? = c?dt®* — dx® — dy* — dZ

Although whether the assumptions of linearity, isotropy and homogeineitiye
derivation of the Lorentz transformation actually assumed thisitgémm the outset
is a mute point.

Given that:c?dt? — dx? — dy? — dz® also equalg?dt? — dx? — dy? — dz? and a
continuous range of other transformations it is clear that:

As® = A — Ar? — Ay? — A

2
The quantityAs is known as thepacetime intervaland the quantitAs”is known
as thesquared displacement

A given squared displacement is constant for all observers, nerrhaiv fast they
are travelling, it is said to bavariant.

The equation:

ds” = ¢’dt® — dx* — dy’ — dZ°

is known as thenetric of spacetime.
The geometry of space-time

The discussion above was simplified by assuming that the symlyats were to be
understood as intervals. The treatment given below is suitabknfondergraduate
level of presentation. SR uses a 'flat'" 4-dimensional Minkowski spddeh is an
example of a space-time. This space, however, is very sitoiléne standard 3
dimensional Euclidean space, and fortunately by that fact, very easy to wiork wit



The differential of distancd§) in cartesian 3D space is defined as:
ds® = drf + dr% + drg

where (dx;,dx,,dx3) are the differentials of the three spatial dimensions. In the
geometry of special relativity, a fourth dimension, time, is adad&t, units of ¢, so
that the equation for the differential of distance becomes:

ds® = dx; + dxs + dr: — *dt?

In many situations it may be convenient to treat time as iimaag (e.g. it may
simplify equations), in which cagen the above equation is replacediliy and the
metric becomes

ds* = dr] + dx; + dx; 4 c*(dt')’

If we reduce the spatial dimensions to 2, so that we can reptheepttysics in a 3-D
space

2

ds® = dr? +dr: — Fdt’

We see that things such as light which move at the speed ofiéghliong a dual-
cone:

Tt miteat=t?

defined by the equation

o

ds® =0 = dr] +dr; — dt?

or

2

drf + drg = c2dt?

Which is the equation of a circle witlsc*dt. The path of something that moves at
the speed of light is known asnall geodesic If we extend the equation above to
three spatial dimensions, the null geodesics are continuous concentriessplith
radius = distance = cx(xtime).

ds® = 0 = dx] + dr3 + drs — c*dt’



dr? + dr; + dxs = cdt’

This null dual-cone represents the "line of sight” of a point inespHeat is, when we
look at the stars and say "The light from that star which Iregeiving is X years
old.”, we are looking down this line of sight: a null geodesic. Wedaaiking at an
2 2 2

event d= frl T T2+ T3 eters away andl/c seconds in the past. For this
reason the null dual cone is also known as the 'light cone'. (The pding iower left
of the picture below represents the star, the origin reprebentdbserver, and the line
represents the null geodesic "line of sight".)

Xz

L4

Tt widea=t?

The cone in thet region is the information that the point is 'receiving’, while theecon
in the+t section is the information that the point is 'sending'.

Length contraction, time dilation and phase

Consider two inertial frames in standard configuration. Thererigiéi rod moving
along in the second frame at v m/s. The length of the rod isndatd by observing
the positions of the end points of the rod simultaneously - if the rodoigng it
would be nonsense to use any other measure of length. An observes mwwbaing at
the same velocity as the rod measures its "rest length”. Tleatzdransformation for
coordinates along the x axis is:

X =y(X W)

Suppose the positions,,x,, of the two ends of the rod are determined simultaneously
(ie: t is constant):

(21 — xy) = (21 — 13)

! !
Or, using‘[’EI - ':11 - IEjfor the rest length of the rod amd= (x; — xp) for the
length of the rod that is measured by the observer who sees it fly past at v m/s:

Lo =1L

Or, elaborating:

L=Lopy1—v?2/c?

In other words the length of an object moving with velogitis contracted in the

o . .f'fl—t'?/c?. o .
direction of motion by a factc V in the direction of motion.

The Lorentz transformation also affects the rate at which clapkgar to change
their readings. The Lorentz transformation for time is:



t =y(t—vx/c)

This transformation has two components:
t =yt—yvx/c?

and is a straight line graph (ie= mt + ).
The gradient of the graphysso:

At =yAt

or:

!

) — sz = [ty —t3)

Therefore clocks in the moving frame will appear to go slow is a time interval in
the rest frame and@lis a time interval in the moving frame:

T= 'YT()
Or, expanding:
To

v 1—v?/c?

The intercept of the graph is:

T =

yx / ¢

This means that if a clock at poixis compared with a clock that was synchronised
between frames at the origin it will show a constant time rdiffee ofyvx / c?
seconds. This quantity is known as the relativistic phase difference or "phase”.



Time dilation and phase

!

t

i
The graph of; The graph of;
t =yt—7 t'r/cg £ =7yt —7 1'r/r:2
For clocks synchronised at For clocks synchronised at
==0 {the origin?. ®=5,

A comparison of the ¥x and t axes in the
standard configuration.

t t

The relativistic phase is as important as the length comraend time dilation
results. It is the amount by which clocks that are synchroniste atrigin go out of
synchronisation with distance along the direction of travel. PaHisets all clocks
except those at the point where clocks are syncronised and theegsimal y and z
planes that cut this point. All clocks everywhere else will beodugynchronisation
between the frames. The effect of phase is shown in the illustration below:



The Belativity of Simultaneity and Phase

Fhase describes how events that one
observer measures to be stnultaneous are
not surltaneous for another observer,

If the inertial frames are each composed of arrays of clockadmver space then the
clocks will be out of synchronisation as shown in the illustration above.

Hyperbolic geometry

In the flat spacetime of Special Relativity:

S=ct-xX-y-7
Considering the x-axis alone:
=~ %

The standard equation of a hyperbola is:

Spacetime intervals separate one place or event in spadaetimeanother. So, for a
given motion from one place to another or a given fixed length in deeenee
frame, given time interval etc. the metric of spacetime rde=s a hyperbolic space.
This hyperbolic space encompasses the coordinates of all thevailmses made of
the given interval by any observers.



Hyperbolic spacetime
t
t

x

The general form of a hyperbola & plot of the hyperbola that represents all values of
t and x that observers might measure for a given
spacetime interval.

It is possible to conceive of rotations in hyperbolic space in gasimay to rotations
in Euclidean space. The idea of a rotation in hyperbolic spaeanmarised in the
illustration below:



Euclidean and hyperbolic geometry

Euclidean triangle The circle Euclidean rotation
r A
rsin a
'!,I' 1
rcosa B T
H 1
oy
5
3
4 ¥ =T sin a ! cos b -sin b b
42+32=52 =1 Cosa = |
! s=in b cos bl |
Hyperbolic triangle Hyperbaola Hyperbolic rotation
S .
s sinh &

t==zsinha
52— 322 42 w =15 rcosh a y! sinh b cosh b| |y

A rotation in hyperbolic space is equivalent to changing from aaraedrof reference
to another whilst observing the same spacetime interval. Itnawing from
coordinates that give:

(ct)2—x=¢
to coordinates that give:
{cf}‘}i =4

The formula for a rotation in hyperbolic space provides an alteen&drm of the
Lorentz transformation ie:

ct cosh ¢ sinha| |ct’
T sinh ¢ cosha| |z
From which:

X = Xcoshg + Ctsinhg

ct = Xsinhg + ctcoshe



The value ofp can be determined by considering the coordinates assigned to a
moving light that moves along the x axis from the origitvrasec* flashes on fott
seconds then flashes off.

The coordinates assigned by an observer on the lightt'#@.,0, the coordinates
assigned by the stationary observertate= vt,0,0. The hyperbola representing these
observations is illustrated below:

The value of t;D from the equation

(et)? — 2% = §2

c*time

Wt

I:tt;t':l

v

W oaHis

N\

tanh t;D = vt/ct = w/c

The equation of the hyperbola is:
(ct)? —x¢ =& = (ct)?
but x=vt for the end of the flash so:

v
tanh ¢ = —
[

Now, from hyperbolic trigonometry:

1 cosh?® ¢

f 1 — tanh® ¢ ~ \ cosh? ¢ — sinh® ¢

= cosh @

B
tanh ¢ = —
But C so:

. 1
CDS].]. I!;D = e = ’“lr'

Mfl — 22 /c? B

and, from the hyperbolic trigonometric formuiahe = tanhgcoshe:



sinh ¢ = Ef‘,-
c
Inserting these values into the equations for the hyperbolic rotation:
X = X'cosh(p + Ct'sinh(p
X=yX +ctyv/c
Which gives the standard transform for x:
X=y(X + W)
In a similar wayct = xsinho + ctcoshg is equivalent to:
t=y(t +vx/c)

So the Lorentz transformations can also be derived from the assontipdit boosts
are equivalent to rotations in hyperbolic space with a m&trc’t? — x* — y* — 7.

The quantityp is known as theapidity of the boost.

Addition of velocities

Suppose there are three observers 1, 2, and 3 who are moving at difétoerties
along the x-axis. Observers 1 and 2 are moving at a relative velaity observers 2
and 3 are moving at a relative velocityunfThe problem is to determine the velocity
of observer 3 as observed by observar)1 (

It turns out that there is a very convenient relationship betweeditrapithat solves
this problem:

If v/ ¢ =tanhe andu / ¢ = tanha then:

u/c=tanh(p + a)

In other words the rapidities can be simply added from one observer to another ie:
c=0¢+o

Hence:

tanh(c) = tanh(¢ + )

So the velocities can be added by simply adding the rapiditiesg Usiperbolic
trigonometry:

tanha 4+ tanhg u fe+ufc
14+ tanhatanhe 1 4+u'v /€ Therefore:

u/e =tanh(a + ¢) =

0 — uj—l—v
B 14+u'v/c?

Which is the relativistic velocity addition theorem.



The relationship / ¢ = tanl{e + ) is shown below:

Relative velocities

tirme
Lt 1
ot Ut 2 .;3
)

W oaxis

A

AN

ufe = tanh{a +¢)

Fraom the wiewpoint of observer 3
observer 2 is separated by angle
C¥ and observer 1 is separated
from observer 2 by angle :;D .

Velocity transformations can be obtained without referring to reqadity. The
general case of the transformation of velocities in any direction is deas/éllows:

' ' ' !
u = lfu’l! u?! U‘Ej

!
where U1 etc. are the components of the velocity in the X, y, z directions.
Writing out the components of velocity:

Ufl = dr / dt

u, = dy /di

u; =d- / dt

But from the Lorentz transformations:
dx = y(dx — vdt)

dy =dy

dz = dz

dt = y(dt — vdx / ¢?)



Therefore:

v(dr — vdt)

ul — dr /dff =

dy

y(dt —vdx/c?)

Uy = dyj/dfj =

! } } dZ
Uy =dz /dt =

~v(dt — vdr [c?)

’ ";{dr/df — 1':]

V7 A1 —vdx/dt/c?)

27 (1 Zvde/dt/ )
! dZ/df
HS =

Y1 —vdx/dt/c?)

Substituting® = (21, Ua, us)

b ou—v
T ue [ c?
) Us
Y2 = V(1 —ur /c?)
) U
Uy =

(1 —un fe?)

~v(dt —vdx/c?)

Dividing top and bottom of each fraction i

The full velocity transformations are tabulated below:

" — (v +7)
b (e —v) 14/
He= (1 —uzv/c?)
11— 2 /2 1 — a2/
) Uy v?/c T v? /e
w1 o I

(1 —upr/c?)

(14 u'v/c?)

, uwfl — 2 /c?

(1 —ugr/c?)

ujwfl —v2/c?

(14 u'pv/c?)




Having calculated the components of the velocity vector it it now Iplestsi calculate
the magnitudes of the overall vectors between frames:

u=ﬁu%—|—u%—|—u%

Y IL 'L IL
u = Hful- + U5 + Uy
Acceleration transformation
It was seen above that:

u/c =tanhg

and, ifv / c = tanho andu / ¢ = tanhe the velocity addition theorem can be expressed
as the sum of the rapidities:

¢o=o0+e

If we differentiate this equation with respect ttdo investigate acceleration, then
assuming is constant:

d¢  dedt
1ydt  df dt

d¢
But E is also equal to:
d¢  dodu
dt — dudt

But =tanh™ '(u/ c) and the derivative of an arctangent is given by:

dtanh™!(x) 1
dr T 122
and hence:
do 1 1
du " c(1-w2/P)
But:
1

=" (u)

ie: y(u) is gamma for observers moving at a relative velocity. of



d _ 1 5 du
at ¢!\t

But from the length contraction formula
dt ()

dt ()

Therefore, substituting these two equations in (1):

L-?(m@ de y(u')
¢! Vdt T dt y(u)

de
Applying the differential of arctanh as before to detern?f;:
du’ du
v 7 )=
St dt

This is a different result from the Newtonian formula in whiety dt = du / dt. The
proper acceleration o is defined as the acceleration of an object in its rest fréme
is the instantaneous change in velocity for an observer for whend ando = du /
dt. In these circumstances:

du
0 = {U‘JE

Mathematical Appendix

Mathematics of the Lorentz Transformation Equations

Consider two observe® andO, moving at velocityv relative to each other, who
observe the same event such as a flash of light. How will thelicates recorded by
the two observers be interrelated?

These can be derived using linear algebra on the basis of the f@sstflaelativity
and an extra homogeneity and isotropy assumption.

The homogeneity and isotropy assumptionspace is uniform and homogenous in all
directions. If this were not the case then when comparing lebgtiageen coordinate
systems the lengths would depend upon the position of the measurement. For
instance, ifx = ax® the distance between two points would depend upon position.

The linear equations relating coordinates in the primed and unprimed frames are
X = apiX + aggy + ayaZ + ayat

Y = 81X + 8pgy + 8p3Z + apdt



Z = agiX + agzy + agsZ + Aadt
t = QX + auzy + auaZ + audt

There is no relative motion in theor z directions so, according to the 'relativity’
postulate:

z=z

y =y
Henceaz =1
agz=1
and:ay;; =0
a3=0
as=0
az1=0
az2=0
ag=0

So the following equations remain to be solved:
X = apX + aggy + ayaZ + ayat
t = QX + auzy + auaZ + audt

If space is isotropic (the same in all directions) then theamaif clocks should be
independent of the y and z axes (otherwise clocks placed symiheticaund the x-
axis would appear to disagree. Heagge= a,3 = 0 so:

t = ayaX + agdt

It is also the case that when= 0 thenx = — vt. So:

0 =apvt + apy + ajsz + aigt

and

—anvt =agy + ayZ + a4t

Given that the equations are linear tlagsy + a;3z = 0 and:
—apvt =ayqt

and

— a1V =au4



Therefore the correct transformation equationxfis:
X = agy(X — vt)
The analysis to date gives the following equations:

X = ayy(X — Vt)

y=y
z=z
t = agx + aut

The event is a flash of light that expands as a sphere witloltbeiihg equations in
each coordinate system, assuming that the speed of light is constant:

X +y+ 7 =

X'2 + y'2 + Z'2 — CZt'Z

Substituting the coordinate transformation equationsxftey? + z = ¢’t? gives:
al1’(x — V)2 + y? + 7 = C%(au1X + auat)?

rearranging:

(all® — Fai)z’ + y° + 2° — 2(val, + tapay)rt = (ai, — v?aj) )t
This is equivalent tax® + y* + Z = ¢*t?

So: CEG‘L - 1'2'331 =’

all? — cza.il =1

2 2
vay, +capnay =10

Solving these 3 simultaneous equations:

1
i} = —_—
41 J'{l . E.E/CE:]
1
11 1,#,""":1 . 1‘2/1“.2:]
oy = — v/c?

Mflfl —12/e?)



Substituting these values into:

X =ayi(X — t)
y =y
z=z
t = ayaX + agat
gives:

’ r—1t
r =

o t—(v/P)x
Hflfl — 2 /c?)

T =
The inverse transformations a
y=y

z=z

t 4+ (v/et)r

M.flfl —v?/c?)

f:

r + ot

h.flfl — 12 [e?)
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Copyright (C) 2000,2001,2002 Free Software Foundat ion, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbat im copies
of this license document, but changing it is not al lowed.

0. PREAMBLE

The purpose of this License is to make a manugtboek, or other functional and useful documeneéfrin the sense of
freedom: to assure everyone the effective freedooopy and redistribute it, with or without modifg it, either commercially
or noncommercially. Secondarily, this License prese for the author and publisher a way to getitfedtheir work, while not

being considered responsible for modifications nagdethers.

This License is a kind of "copyleft”, which meahat derivative works of the document must themsehe free in the same
sense. It complements the GNU General Public Leemhich is a copyleft license designed for freféveare.

We have designed this License in order to use im@nuals for free software, because free softweeels free documentation: a
free program should come with manuals providingshame freedoms that the software does. But thisnisie is not limited to
software manuals; it can be used for any textuakwegardless of subject matter or whether itublished as a printed book.
We recommend this License principally for works w@@urpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other warlkgny medium, that contains a notice placed byctpyright holder saying it
can be distributed under the terms of this LiceSseh a notice grants a world-wide, royalty-freetise, unlimited in duration,
to use that work under the conditions stated hefiéie "Document”, below, refers to any such mawoualork. Any member of
the public is a licensee, and is addressed as "yl accept the license if you copy, modify ortidisite the work in a way
requiring permission under copyright law.

A "Madified Version" of the Document means any wadntaining the Document or a portion of it, eitikepied verbatim, or
with modifications and/or translated into anotlarduage.

A "Secondary Section" is a named appendix or atfmoatter section of the Document that deals exedigi with the
relationship of the publishers or authors of thecinent to the Document's overall subject (or tateel matters) and contains
nothing that could fall directly within that overaubject. (Thus, if the Document is in part a bextk of mathematics, a
Secondary Section may not explain any mathematidse) relationship could be a matter of historicahrection with the
subject or with related matters, or of legal, corruia, philosophical, ethical or political positisagarding them.

The "Invariant Sections" are certain Secondaryi@estwhose titles are designated, as being thossvafiant Sections, in the
notice that says that the Document is releasedruhdeLicense. If a section does not fit the abdeénition of Secondary then
it is not allowed to be designated as Invariante Trocument may contain zero Invariant Sectionghdf Document does not
identify any Invariant Sections then there are none

The "Cover Texts" are certain short passages othex are listed, as Front-Cover Texts or Back€Zdiexts, in the notice that
says that the Document is released under this &&eh Front-Cover Text may be at most 5 words, aBadck-Cover Text may
be at most 25 words.

A "Transparent” copy of the Document means a machéadable copy, represented in a format whosefadion is available
to the general public, that is suitable for revisithe document straightforwardly with generic textitors or (for images
composed of pixels) generic paint programs or ¢fawings) some widely available drawing editor, #mat is suitable for input
to text formatters or for automatic translationatwariety of formats suitable for input to textrfatters. A copy made in an
otherwise Transparent file format whose markupalmsence of markup, has been arranged to thwarscouwtage subsequent
modification by readers is not Transparent. An immfigmat is not Transparent if used for any sultistbamount of text. A copy
that is not "Transparent” is called "Opaque".

Examples of suitable formats for Transparent copielide plain ASCII without markup, Texinfo inpfdrmat, LaTeX input
format, SGML or XML using a publicly available DTEnd standard-conforming simple HTML, PostScripP&f designed for
human modification. Examples of transparent imagenéts include PNG, XCF and JPG. Opaque formatsdecproprietary
formats that can be read and edited only by prtgpsievord processors, SGML or XML for which the DEDd/or processing
tools are not generally available, and the machererated HTML, PostScript or PDF produced by semel processors for
output purposes only.

The "Title Page" means, for a printed book, thle fitage itself, plus such following pages as aedad to hold, legibly, the
material this License requires to appear in the page. For works in formats which do not have @il page as such, "Title
Page" means the text near the most prominent sgopeaof the work's title, preceding the beginnifithe body of the text.

A section "Entitled XYZ" means a named subunit leé Document whose title either is precisely XYZocontains XYZ in
parentheses following text that translates XYZ mother language. (Here XYZ stands for a specifitise hame mentioned



below, such as "Acknowledgements”, "Dedicationg€hdorsements”, or "History".) To "Preserve the€Titbf such a section
when you modify the Document means that it remaissction "Entitled XYZ" according to this defiloiti.

The Document may include Warranty Disclaimers rtexthe notice which states that this License appitethe Document.
These Warranty Disclaimers are considered to bkided by reference in this License, but only asareég disclaiming
warranties: any other implication that these Wayrddisclaimers may have is void and has no effecth® meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any iomed either commercially or noncommercially, proadtthat this License,
the copyright notices, and the license notice gaifiris License applies to the Document are reprediuc all copies, and that
you add no other conditions whatsoever to thoshisfLicense. You may not use technical measurebstruct or control the
reading or further copying of the copies you makeistribute. However, you may accept compensaticexchange for copies.
If you distribute a large enough number of copies snust also follow the conditions in section 3.

You may also lend copies, under the same condititated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in mediattcommonly have printed covers) of the Documenmbering more than
100, and the Document's license notice requireseCexts, you must enclose the copies in covers daay, clearly and
legibly, all these Cover Texts: Front-Cover Textstle front cover, and Back-Cover Texts on the kamker. Both covers must
also clearly and legibly identify you as the pulisdis of these copies. The front cover must predenfull title with all words of
the title equally prominent and visible. You maydasther material on the covers in addition. Copyiith changes limited to
the covers, as long as they preserve the titlh@iocument and satisfy these conditions, candagel as verbatim copying in
other respects.

If the required texts for either cover are too woious to fit legibly, you should put the first anésted (as many as fit
reasonably) on the actual cover, and continuedbieanto adjacent pages.

If you publish or distribute Opaque copies of thecDment numbering more than 100, you must eithdude a machine-
readable Transparent copy along with each Opaqoyg oo state in or with each Opaque copy a commeerork location from
which the general network-using public has accestotvnload using public-standard network protoeotomplete Transparent
copy of the Document, free of added material. i yse the latter option, you must take reasonahlggnt steps, when you
begin distribution of Opaque copies in quantityetesure that this Transparent copy will remain thosessible at the stated
location until at least one year after the lastketiyou distribute an Opaque copy (directly or thioygur agents or retailers) of
that edition to the public.

It is requested, but not required, that you conthetauthors of the Document well before redistiitquany large number of
copies, to give them a chance to provide you witlugdated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version lo¢ tDocument under the conditions of sections 23ablove, provided that
you release the Modified Version under precisely tlicense, with the Modified Version filling thele of the Document, thus
licensing distribution and modification of the Méidd Version to whoever possesses a copy of idulition, you must do these
things in the Modified Version:

A. Use in the Title Page (and on the covers, if anyjjle distinct from that of the Document, andnfrthose of previous versions
(which should, if there were any, be listed in Htistory section of the Document). You may use tames title as a previous
version if the original publisher of that versiones permission.

B. List on the Title Page, as authors, one or moregmes or entities responsible for authorship of niedifications in the
Modified Version, together with at least five oktprincipal authors of the Document (all of itsngipal authors, if it has fewer
than five), unless they release you from this negmeéent.

C. State on the Title page the name of the publishére Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document

E. Add an appropriate copyright notice for your maifions adjacent to the other copyright notices.

F. Include, immediately after the copyright noticasjcense notice giving the public permission te tise Modified Version
under the terms of this License, in the form shawtihe Addendum below.

G. Preserve in that license notice the full listdrofariant Sections and required Cover Texts givethe Document's license
notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Presétvditle, and add to it an item stating at ledst title, year, new authors, and

publisher of the Modified Version as given on th#elPage. If there is no section Entitled "Histoiry the Document, create one
stating the title, year, authors, and publishehefDocument as given on its Title Page, then axitean describing the Modified



Version as stated in the previous sentence.

J. Preserve the network location, if any, given ia tocument for public access to a Transparent obpglze Document, and
likewise the network locations given in the Docuinér previous versions it was based on. These bmylaced in the
"History" section. You may omit a network locatifor a work that was published at least four yeafote the Document itself,
or if the original publisher of the version it refeo gives permission.

K. For any section Entitled "Acknowledgements" or didations", Preserve the Title of the section, preserve in the section
all the substance and tone of each of the contitadknowledgements and/or dedications given therei

L. Preserve all the Invariant Sections of the Documenaltered in their text and in their titles. 8@e numbers or the
equivalent are not considered part of the sectilast

M. Delete any section Entitled "Endorsements"”. Susbcion may not be included in the Modified Vensio
N. Do not retitle any existing section to be Entitl&hdorsements" or to conflict in title with anyhriant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-mattegcions or appendices that qualify as Secondaryiddscand contain no
material copied from the Document, you may at yaption designate some or all of these sectionsasiant. To do this, add
their titles to the list of Invariant Sections metModified Version's license notice. These titlasst be distinct from any other
section titles.

You may add a section Entitled "Endorsements", iplexV/ it contains nothing but endorsements of yowdifled Version by
various parties--for example, statements of pegeveor that the text has been approved by an argton as the authoritative
definition of a standard.

You may add a passage of up to five words as atfower Text, and a passage of up to 25 wordsBeck-Cover Text, to the
end of the list of Cover Texts in the Modified Viers Only one passage of Front-Cover Text and drigack-Cover Text may
be added by (or through arrangements made by) m@gwtity. If the Document already includes a caegt for the same cover,
previously added by you or by arrangement madeéhbysame entity you are acting on behalf of, you mazyadd another; but
you may replace the old one, on explicit permis$iom the previous publisher that added the old one

The author(s) and publisher(s) of the Documentatdoy this License give permission to use their @sufor publicity for or to
assert or imply endorsement of any Modified Version

5. COMBINING DOCUMENTS

You may combine the Document with other documeelesased under this License, under the terms definedction 4 above
for modified versions, provided that you includetlie combination all of the Invariant Sections lbbéthe original documents,
unmodified, and list them all as Invariant Sectiofigour combined work in its license notice, ahdttyou preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of titense, and multiple identical Invariant Secsiomay be replaced with a
single copy. If there are multiple Invariant Sentawith the same name but different contents, rifadditle of each such section
unique by adding at the end of it, in parenthegespame of the original author or publisher of thection if known, or else a
unique number. Make the same adjustment to théosetitles in the list of Invariant Sections in tfieense notice of the
combined work.

In the combination, you must combine any sectionstled "History" in the various original documenferming one section
Entitled "History"; likewise combine any sectionatiled "Acknowledgements", and any sections EedittDedications". You
must delete all sections Entitled "Endorsements."”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Documemd other documents released under this Licemse,replace the
individual copies of this License in the variousdments with a single copy that is included indb#ection, provided that you
follow the rules of this License for verbatim copgiof each of the documents in all other respects.

You may extract a single document from such a ctida, and distribute it individually under thisdeinse, provided you insert a
copy of this License into the extracted documemd, fallow this License in all other respects regagdrerbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivativegiwother separate and independent documents olswiorkr on a volume of
a storage or distribution medium, is called an faggte" if the copyright resulting from the compida is not used to limit the
legal rights of the compilation's users beyond whatindividual works permit. When the Documeniniduded in an aggregate,
this License does not apply to the other workienaggregate which are not themselves derivativksaaf the Document.

If the Cover Text requirement of section 3 is apgille to these copies of the Document, then ilCtheument is less than one
half of the entire aggregate, the Document's Cawetts may be placed on covers that bracket the meanti within the
aggregate, or the electronic equivalent of covietie Document is in electronic form. Otherwiseytimeust appear on printed



covers that bracket the whole aggregate.
8. TRANSLATION

Translation is considered a kind of modification,ysu may distribute translations of the Documerdar the terms of section 4.
Replacing Invariant Sections with translations mezgguspecial permission from their copyright hosddout you may include
translations of some or all Invariant Sectionsddition to the original versions of these Invari&gctions. You may include a
translation of this License, and all the licenséass in the Document, and any Warranty Disclaimprevided that you also
include the original English version of this Licenand the original versions of those notices amsdlaimers. In case of a
disagreement between the translation and the atigirsion of this License or a notice or disclainke original version will
prevail.

If a section in the Document is Entitled "Acknowdemnents”, "Dedications"”, or "History", the requimm (section 4) to
Preserve its Title (section 1) will typically regeiichanging the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribtlie Document except as expressly provided for wtie License. Any

other attempt to copy, modify, sublicense or distie the Document is void, and will automaticadiyminate your rights under
this License. However, parties who have receiveuiesy or rights, from you under this License widithave their licenses
terminated so long as such parties remain in artliance.

The Free Software Foundation may publish new, eevigersions of the GNU Free Documentation Licensm ftime to time.
Such new versions will be similar in spirit to theesent version, but may differ in detail to addresw problems or concerns.
Seehttp://www.gnu.org/copyleft/

Each version of the License is given a distingmighversion number. If the Document specifies thatagticular numbered

version of this License "or any later version" agplo it, you have the option of following therter and conditions either of that
specified version or of any later version that bagn published (not as a draft) by the Free Softvwkoundation. If the

Document does not specify a version number ofltitisnse, you may choose any version ever publighetlas a draft) by the

Free Software Foundation.



