
Introduction to Physical Chemistry – Supplemental Lecture

I. LECTURE OVERVIEW

This supplemental lecture covers some additional ma-
terial that is not normally part of an introductory phys-
ical chemistry course. Specifically, I will derive the ideal
gas law using statistical mechanics, discuss some philo-
sophical issues related to entropy, the connection between
thermodynamics and other branches of science, and pro-
vide some references for further reading.

None of this material will be on the final. I am in-
cluding this lecture in order to give you a taste of what
is studied in more advanced courses in thermodynamics
and statistical mechanics, and also to discuss some philo-
sophical issues related to entropy. Unfortunately, I will
not have time during the remainder of the course to ac-
tually give this lecture in class. Nevertheless, I do hope
you read it, and if you have any questions, you should
feel free to come to me with any questions.

II. DERIVATION OF THE IDEAL GAS LAW

The Boltzmann formula for entropy, S = k lnΩ, de-
rived in Lecture 6, may be used to derive the ideal gas
law.

Suppose we can derive an expression for the entropy of
N ideal gas particles with internal energy E occupying a
volume V (we are using E instead of U now, following the
convention in statistical mechanics). That is, suppose we
can derive a formula S = S(E, V, N). The question is,
what is the connection between P , V , N , and T for this
gas?

From the First Law of Thermodynamics for a reversible
process, we have, for fixed N ,

dE = TdS − PdV (1)

so that,

P = −∂E

∂V
(2)

We also, have, for fixed N ,

dS = (
∂S

∂E
)V,NdE + (

∂S

∂V
)E,NdV (3)

Setting dS = 0 gives,

dE

dV
= −

( ∂S
∂V )E,N

( ∂S
∂E )V,N

(4)

which gives, from the definition of P and 1/T =
(∂S/∂E)V,N , that,

P = T (
∂S

∂V
)E,N (5)

This equation is completely general. It is true for any
material, not just an ideal gas. However, we will now
proceed to compute (∂S/∂V )E,N for an ideal gas.

From the Boltzmann formula, we have that
S(E, V, N) = k lnΩ(E, V,N), where Ω denotes the
degeneracy of the most probable state at energy E,
V , and particle number N . However, remember that,
as E, V , and N become large, the degeneracy of the
most probable state becomes so much larger than
the degeneracies of all other states combined that the
maximal degeneracy becomes essentially equal to the
total degeneracy (if you’re confused by this statement,
go back to Lecture 6, and read the example of the gas
spreading throughout the box). This means that we can
replace the maximal degeneracy by the total degeneracy
when computing S, which is good because this will
ease the computation (I should point out that because
the ratio of the degeneracy of the most probable state
to the total degeneracy approaches 1 as the system
size becomes infinite, when computing entropy it is
equivalent to use the total degeneracy or the maximal
degeneracy).

Now, in an ideal gas, the particles do not interact,
so there is no potential energy term for the interparticle
interactions. Therefore, if the ideal gas has a total energy
E, then numbering the particles 1, . . . , N gives that the
particles have energies E1, . . . , EN consistent with the
constraint E = E1 + · · · + EN . In principle, the energy
E may be distributed in any way we like among the N
particles (and in any mode we like for a given particle),
giving a total energy degeneracy of ΩEnergy(E,N).

We are not done yet, however, because we have only
considered the particle energy (this includes particle ve-
locity, rotation, vibration, etc.), but not the particle po-
sition. To calculate the total degeneracy of the system
consistent with the total energy E, we have to now in-
clude the degeneracy associated with particle position.

Each particle has a volume V in which to spread out
and “choose” its location. Therefore, we expect the posi-
tion degeneracy of each particle to be proportional to V .
Since there are N particles, we multiply V N times to
get a total position degeneracy proportional to V N (see
Figure 1). Again, multiplying this position degeneracy
by the degeneracy in energy, gives a total degeneracy of,

Ω(E, V, N) = γV NΩEnergy(E,N) (6)

where γ is some proportionality constant.
Therefore,

S = k lnΩ(E, V, N) = k ln γ+kN lnV +k lnΩEnergy(E,N)
(7)

and so,

(
∂S

∂V
)E,N =

kN

V
(8)
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FIG. 1: A particle in a box has a position degeneracy propor-
tional to the total volume V .

Plugging this into our earlier relationship gives,

P = T × kN

V
⇒ PV = kNT (9)

Using the relationship k = R/NA, and n = N/NA gives,
finally,

PV = nRT (10)

which you should all recognize as the Ideal Gas Law.
We can actually go further than this, and compute the

relationship between the energy and temperature of an
ideal gas. This will allow us to compute the heat capacity.

In what follows, we will assume that the gas is
monatomic. This means that there are no vibrational
or rotational modes where the energy of the gas can be
distributed. All of the internal energy of the gas is simply
kinetic energy of the individual gas particles. If (ẋi, ẏi, żi)
denotes the velocity vector of particle i, and if each gas
particle has a mass m, then the total energy E of the
gas is given by the sum of the kinetic energies of the
individual particles, and so,

1
2
m(ẋ2

1 + ẏ2
1 + ż2

1 + · · ·+ ẋ2
N + ẏ2

N + ż2
N ) = E (11)

so that,

(ẋ2
1 + ẏ2

1 + ż2
1 + · · ·+ ẋ2

N + ẏ2
N + ż2

N ) =
2E

m
(12)

Now, notice that the vector (ẋ1, ẏ1, ż1, . . . , ẋN , ẏN , żN )
has a total length (2E/m)1/2 (remember the length for-
mula for vectors), and so it lies on a (3N−1)-dimensional
sphere of radius (2E/m)1/2. Because any vector lying on
this sphere corresponds to an energy distribution among
the particles consistent with the total energy E, intu-
itively we expect that the surface area of the sphere pro-
vides a measure of the total energy degeneracy (see Fig-
ure 2).

FIG. 2: Illustration of the connection between energy degen-
eracy and sphere surface area for an ideal gas.

Now, the circumference of a circle (a one-dimensional
sphere) is 2πr, and the surface area of a sphere (a two-
dimensional sphere) is 4πr2. Following this pattern, we
see that the surface area of an m-dimensional sphere is
proportional to rm, so that the energy degeneracy of the
monatomic ideal gas is given by,

ΩEnergy(E,N) = A(
2E

m
)

3N−1
2 (13)

Notice that we earlier showed that S = k ln γ +
kN lnV + k lnΩEnergy(E,N). But this means that,

(
∂S

∂E
)V,N = k(

∂

∂E
)V,N (lnΩEnergy(E,N)) (14)

so for the monatomic ideal gas,

(
∂S

∂E
)V,N = k(

∂
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)V,N (lnA +

3N − 1
2

ln
2
m

+
3N − 1

2
lnE)

= k
3N − 1

2
1
E

(15)

and so,

1
T

= k
3N − 1

2
1
E
⇒ E = k

3N − 1
2

T (16)

For large N , this simply becomes,

E =
3
2
kNT =

3
2
nRT (17)

Therefore, the internal energy per mole of a monatomic
ideal gas is simply E/n = (3/2)RT , which of course im-
plies that C̄V = (3/2)R.

So, we have just proved that the constant volume heat
capacity of a monatomic ideal gas is (3/2)R. To under-
stand what is going on here, it should be pointed out that
we can show, along similar lines of reasoning to what was
used just now, that every degree of freedom adds a heat
capacity of (1/2)R for an ideal gas.
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For example, in three dimensions, a monatomic gas
particle has three degrees of freedom: Movement in the
x direction, movement in the y direction, and movement
in the z direction. Each degree of freedom adds (1/2)R to
the heat capacity, giving a total heat capacity of (3/2)R.

As an exercise, try going through the above derivation
for a monatomic ideal gas, but now in two dimensions,
instead of three dimensions. You will see that, instead
of computing the surface area of a (3N − 1)-dimensional
sphere, you will need to compute the surface area of a
(2N − 1)-dimensional sphere, giving, finally, a heat ca-
pacity of (1/2)R + (1/2)R = R.

Now, a diatomic molecule, in addition to having trans-
lational degrees of freedom (i.e., movement in the x, y,
and z directions), also has two rotational degrees of free-
dom and a vibrational degree of freedom. However, at
room temperature, vibrational energy spacing are suf-
ficiently large that quantum-mechanical effects are im-
portant. The result of this is that the molecules are
essentially in their vibrational ground states, so the vi-
brational degree of freedom is hidden, and may there-
fore be ignored. This gives a total heat capacity of
5× (1/2)R = (5/2)R.

Finally, for a monatomic ideal gas, we can compute
the average kinetic energy of a particle. This is simply
E/N = (3/2)kT . But, since the average kinetic energy
is also, (1/2)m〈v〉2, we have that,

vrms =
√
〈v〉2 =

√
3kT

m
=

√
3RT

µg
(18)

where vrms denotes the root mean square velocity and µg

denotes the molar mass of the gas. The root mean square
velocity provides a measure of the average speed of the
gas particles as a function of temperature and particle
mass. Note that the heavier the particles, the slower
they move on average, and the higher the temperature,
the faster they move.

For helium we have µg = 4g/mol = 0.004kg/mol, so
that at 25◦C = 298 K we have,

vrms(He, 298K) =

√
3× 298K × 8.314

J

Kmol
× mol

0.004kg

= 473m/s = 1702km/hr (19)

As a final note for this section, the derivations done
here are only a taste of the full power of statistical me-
chanics. It is possible to dissect the ideal gas even further
and derive the actual distribution of particle velocities for
an ideal gas.

III. ENTROPY, THE UNIVERSE, AND THE
ARROW OF TIME

The discovery of the Second Law of Thermodynamics
in the 19th century led to all kinds of philosophical spec-
ulations regarding the ultimate fate of the universe, and

the arrow of time. We will explore these issues here, and
attempt to address them within one framework.

A. The “heat death” of the universe

We have already shown that the Second Law of Ther-
modynamics implies that entropy is always increasing
in an isolated system. This has led to speculation that
the Second Law implies that the universe as a whole is
increasing in entropy, and therefore, that the universe
will gradually become more and more disordered, until it
eventually undergoes a so-called “heat death.”

There is a lot of controversy surrounding this idea. It
may very well be true, but it may turn out to be nonsense
as well. The central reason for the idea that the universe
will undergo a heat death is the association of entropy
and disorder. Therefore, as a system goes to states of
higher entropy, it becomes more “disordered.” Applying
this to the universe, we could imagine that the most dis-
ordered state of the universe is where all the matter has
decayed, and energy is simply dispersed throughout the
vacuum of space, so that the universe, at its end, consists
of a diffuse, cold, matter-energy distribution.

It makes sense that entropy and disorder would be as-
sociated with one another. After all, the entropy of a
system is simply the maximal degeneracy, and is there-
fore the degeneracy of the most probable state. In the
context of an ideal gas, this means that maximal entropy
is attained when the gas is spread throughout its con-
tainer. In the context of temperature, this means that
maximal entropy is attained when the temperature is the
same throughout a system. Therefore, it is natural to as-
sociate maximal degeneracy with maximal disorder.

However, we have to keep in mind that the Second Law
is true by definition, because it is nothing more than a
statement from probability theory. Therefore, while in
some cases the maximally degenerate configuration of a
system fits well with our subjective notions of disorder,
in other cases it may not.

Applying this to the universe, we should note that the
“Big Bang” theory of the universe argues that the uni-
verse began as a singularity that spread out and formed
all the matter and energy we see today. One of the major
research efforts in cosmology is to determine exactly how
much matter and energy is in the universe. If there is
too little, then the universe will expand forever, and the
universe will ultimately face the predicted “heat death.”
However, above a critical mass-energy density, the gravi-
tational attractions between the various parts of the uni-
verse will be enough to eventually stop and then reverse
the expansion. The result will be the ultimate collapse
of all the matter-energy of the universe into a singularity.
This end for the universe is called the “Big Crunch.” It is
possible that this singularity could expand again in a new
“Big Bang,” and so, like a ball bouncing elastically and
without friction, it is possible that our universe is stuck
in an endless cycle of “Big Bangs” and “Big Crunches,”
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FIG. 3: Two possible scenarios for the ultimate fate of our
universe. Either the expansion reverses and the universe col-
lapses in a “big crunch,” or the universe expands forever.

so that there is no heat death at all.
Currently, evidence is suggesting that the expansion

of the universe is actually accelerating, due to the pres-
ence of a kind of negative energy of the vacuum whose
strength is defined by a term called the cosmological con-
stant. However, all of this is still largely speculative. In
any event, there are theories that universes are constantly
being created and destroyed, and that our particular uni-
verse, whatever its fate, is but one particular instantia-
tion of this process (all of this is intimately connected to
quantum mechanics and quantum measurement theory).

Figure 3 illustrates various theories surrounding the
origins and evolution of the universe.

B. Entropy and the arrow of time

It is also said that the increase of entropy is what de-
fines the arrow of time. The reason for this is that the
Second Law of Thermodynamics provides a unidirection-
ality to thermodynamic processes, thereby allowing one
to distinguish between a process that goes forward in
time, and one that does not.

The reason why this is problematic is that the basic
laws of physics do not have a preference for time. Light
can travel forwards or backwards. If we saw of film of
the Earth orbiting the sun, and then saw the film run
backwards, this would not violate any laws of physics. In
principle, the Earth can orbit the sun in either direction.
A ball hitting the ground in reverse is a ball leaving the
ground with some initial velocity. This is also fine.

But, with thermodynamics, things are different. Ice at
ten degrees celsius will melt into water. If you ran the
film of the melting ice backwards, you would know that
you were watching the film in the reverse direction.

How is this to be reconciled with the law of physics?
After all, the ice is nothing more than a huge collection
of water molecules, moving under the action of Newton’s

laws of motion. If there is enough total energy inside the
ice, then the dynamics is such that the water molecules
will break their bonds and start to flow. But again, since
we are dealing with a deterministic system, why isn’t the
reverse film correct?

The answer is that the reverse film is correct. The
apparent discrepancy comes from our applying the laws
of probability to a deterministic system. I will explain
what I mean by this:

For a small number of particles, the time behavior of a
dynamical system can be determined by solving Newton’s
laws of motion. The result is a trajectory giving us the
positions and velocities of all the particles as a function
of time.

Now suppose we have a large number of particles, say
a mole’s worth. The time behavior of the dynamical sys-
tem is again determined by solving Newton’s laws of mo-
tion. However, there is a problem here: For such a large
number of particles, it generally not practical to deter-
mine the collective motion of a system (imagine trying to
track Avogadro’s number worth of particles!). Also, even
if it were possible to determine the collective motion of
all the particles, it may not be necessary. For example,
to compute the pressure that a gas exerts on the walls
of a container, it is not necessary to know the position
and velocity of every single particle in the container. We
simply need to know what the particles are doing on av-
erage. Finally, to accurately determine the motions of a
large collection of particles over a meaningful period of
time would require such high precision in the initial state
of the system that such a task is essentially impossible
(there is therefore a strong connection between statistical
mechanics and chaos theory).

The result of all this is that we replace a deterministic
description of a system with a large number of particles
with a probabilistic description, one that uses a small
number of variables to determine what the particles are
doing on average, and not what any specific particle is
doing at any given time.

As the number of particles becomes infinite, this prob-
abilistic description becomes increasingly accurate (be-
cause then the hypothesis of most probable states will be
more likely to hold, as Lecture 6 discussed). However, for
any finite system, the principle of most probable states
will be violated from time to time. This is not a problem
with classical mechanics or thermodynamics, however. It
is simply a consequence of the fact that we were using a
theory that is strictly correct in the limit of infinite sys-
tem size to describe a finite system.

So, in the case of the water-ice system, at a system en-
ergy corresponding to a temperature of ten degrees cel-
sius, the number of configurations corresponding to an
ice structure is far, far smaller than the number of con-
figurations corresponding to a water structure. However,
because there are a finite number of water molecules,
there will be a finite, though small, fraction of all config-
urations that will be consistent with an ice configuration.

So, regarding the ice-water system as a classical system
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FIG. 4: The number of configurations corresponding to an
ice structure versus a liquid water structure. A classical tra-
jectory passes through the ice region, so that running the
trajectory forward or backwards from within that ice region
will always show ice melting. However, if we only record the
forward trajectory starting from the ice region, and then view
the film backwards, it will appear as if the liquid water freezes
to ice and stays there. This is misleading, as the full configu-
ration diagram shows.

of particles, let us assume that we start with ice, and now
run the dynamics forward it time. As Figure 4 shows, the
number of configurations corresponding to liquid water
is far greater than the number of configurations corre-
sponding to ice. Therefore, as time goes forward, the
dynamics of the particles will most likely follow a trajec-
tory that will bring them to what we call a liquid state
(the chances that the particles won’t do this is so small
that we would have to wait much longer than the age of
the universe to observe it).

But now, if we start somewhere along this trajectory
where the system is now water and run it backwards,
then the classical system will simply retrace its route,
and eventually return to the ice state. However, this
does not indicate that time has gone backwards. Indeed,
if we keep running the film backwards, then, as Figure 4
shows, the system will again leave the “ice island” and
enter a region corresponding to a liquid configuration. In
other words, if we truly run the film backwards, we will
once again see the ice melt.

The reason why it appears that the film running back-
wards is a contradiction, is because the film starts with
a block of ice, and then initially runs forward to form
liquid water. Therefore, we were never able to record the
what the ice would have done had we been able to go
backwards, before we started with the ice. Had we been
truly been able to extend the dynamics “back in time,”
we would have seen the ice melt in any event.

IV. HOW IS THERMODYNAMICS
CONNECTED TO OTHER BRANCHES OF

SCIENCE?

Thermodynamics is important in almost every branch
of science and engineering. The reason for this is that
thermodynamics is concerned with developing a proba-
bilistic description of many-particle systems that involve
a relatively small number of variables (compared an Avo-
gradro’s number worth of position and momenta versus
temperature, pressure, number of moles, and volume).

The central assumption making this probabilistic de-
scription possible is that the system will go into its most
probable state given a certain set of constraints. By a
constraint, I mean something about the system that we
know. This includes total energy and volume, for exam-
ple. The idea is that, given what you know about the
system, all system possibilities consistent with what you
know are equally likely. The motivation for such an as-
sumption is that without additional information, there is
no reason a priori to assume that the system possibilities
are not equally likely.

Because thermodynamics is in many ways a general
methodology for analyzing the behavior of many-particle
systems, it is a science that is applicable to a wide range
of fields. In this course, we have seen how it is important
for understanding heat engines, chemical reactions, and
phase equilibria.

Thermodynamics may also be used to understand the
collective behavior of light particles, and, when combined
with quantum mechanics, may be used to understand the
structure of materials at any energy. The application of
statistical thermodynamics to materials falls under the
rubric of condensed matter physics. Hard condensed mat-
ter physics is often referred to as solid state physics, and
is concerned with the behavior of semiconductor devices,
crystals, and superconductivity, to name a few applica-
tions. Soft condensed matter physics deals with polymers
dissolved in water, and is therefore particularly relevant
to biology. Applications include protein folding, DNA
and RNA structure, the formation of micelles and mem-
branes, and diffusion processes.

Thermodynamics has been useful in astrophysics, in
understanding the interactions between the matter and
electromagnetic field of the sun. It has been applied to
theoretical studies of black holes, and thermodynamic
and statistical-mechanical ideas have even been used to
study the global structure of the universe itself.

In computer science and engineering, thermodynamics
has found application by way of its generalization, Infor-
mation Theory. Information Theory concerns itself with
the error-prone transmission of data across communica-
tion channels. As a result, probability theory and there-
fore the concepts of uncertainty are essential components
of this theory. What is interesting is that if one takes a
broader view of “data” and “communication channels,”
then any physical system may be seen to be defined by
the transmission of data across a communication channel.
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Therefore, Information Theory has returned to its roots
and has become an incredibly powerful framework for un-
derstanding physical systems (in quantum mechanics, it
is intimately connected to the idea of a measurement and
the nature of consciousness).

V. FURTHER READING

This officially concludes all the lecture material covered
in this course. For those of you interested in learning
more, I highly recommend taking more advanced courses
in thermodynamics and statistical mechanics, if you can.

A course in quantum mechanics is also recommended.
A number of books that you may find useful are:

1. Physical Chemistry, by Ira N. Levine.

2. Introduction to Statistical Mechanics, by David
Chandler.

3. Statistical Mechanics, by Donald A. McQuarrie.

Also, the online encylopedia Wikipedia is a good source
of general information on thermodynamics (including
some of the philosophical issues discussed here).


