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Parametric Likelihood Inference3

Xuan Yao4

Maximum likelihood principle is one of the milestones in statistical literature in the past century. Here5

we give a brief review of the parametric likelihood inference. Throughout, we consider the following random6

sample from a known p.d.f. with unknown parameter θ:7

X1, . . . , Xn iid
∼

f(x; θ) (1)

with the actual observations (realizations)8

x1, . . . , xn. (2)

1 Likelihood Function9

A likelihood is defined as follows: the probability of observing the data we observed. Note that in (1),
we are discussing n independent random variables, so we can write the likelihood as

P{X1 = x1, . . . , Xn = xn} = P{X1 = x1} · P{X2 = x2} · · · · · P{Xn = xn} =

n∏
i=1

P{Xi = xi} (3)

To derive the definition of likelihood function, let us discuss it in two cases.10

Case 1 If X1, . . . , Xn is a discrete random sample, then by definition of p.d.f. of discrete random variables,
P{Xi = xi} = f(xi; θ). Then according to (3), the likelihood in this case is

P{X1 = x1, . . . , Xn = xn} =

n∏
i=1

f(xi; θ). (4)

Therefore the likelihood function for a discrete random sample is

L(θ; x) =

n∏
i=1

f(xi; θ). (5)

Case 2 If X1, . . . , Xn is a continuous random sample, then (3) is always 0 because the probability that a con-11

tinuous random variable is equal to a constant is zero. However, we can approximate (3) by calculating12

the probability that Xi, falls into a small neighbourhood of xi, namely, (xi − δ, xi + δ), i = 1, . . . , n.13

P{X1 = x1, . . . , Xn = xn} ≈ P (x1 − δ < X1 < x1 + δ, . . . , xn − δ < Xn < xn + δ)

=

n∏
i=1

P (xi − δ < Xi < xi + δ). (6)

Since P (xi − δ < Xi < xi + δ) = F (xi + δ; θ) − F (xi − δ; θ), i = 1, . . . , n, where F is the c.d.f. of14

X1, . . . , Xn,15

n∏
i=1

P (xi − δ < Xi < xi + δ) =

n∏
i=1

(F (xi + δ; θ)− F (xi − δ; θ)) = (2δ)n
n∏
i=1

F (xi + δ; θ)− F (xi − δ; θ)
2δ

;

n∏
i=1

P (xi − δ < Xi < xi + δ) ∝
n∏
i=1

F (xi + δ; θ)− F (xi − δ; θ)
2δ

. (7)
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Recall that f(x; θ) = F ′(x; θ). Then as δ goes to 0, the right hand side of (7) will approach F ′(xi).
Consequently,

n∏
i=1

P (xi − δ < Xi < xi + δ) ∝
n∏
i=1

f(xi; θ). (8)

Since later we want to maximize the likelihood with respect to the parameter θ (the reason of doing it16

will be discussed in section two), it won’t be harmful to ignore a constant term. Therefore we can use the17

right side of (8) as our definition of likelihood function for the continuous case.18

Definition 1.1. For the set up of (1) and (2), likelihood function is a function of unknown parameter θ
defined as

L(θ;x) =

n∏
i=1

f(xi; θ). (9)

2 Maxium Likelihood Estimator19

In statistics, maximum-likelihood estimator (MLE) is a method of estimating the parameters of a statistical20

model. When applied to a data set and given a statistical model, maximum-likelihood estimator provides21

estimates for the model’s parameters.22

23

In general, the method of maximum likelihood selects values of the model parameters that produce
a distribution that gives the observed data the greatest probability (i.e., parameters that maximize the
likelihood function defined in Section 1). Therefore we define the Maximum Likelihood Estimate (MLE) of
parameter θo as

θ̂ = arg max
θ∈Θ

L(θ; x). (10)

For many applications involving likelihood functions, it is more convenient to work in terms of natural log-
arithm of the likelihood function, called log-likelihood, than in terms of the likelihood function itself. Because
the logarithm is a monotonically increasing function, the logarithm of a function achieves its maximum value
at the same points as the function itself, and hence the log-likelihood can be used in place of the likelihood
in maximum likelihood estimator and related techniques and we can write the MLE as

θ̂ = arg max
θ∈Θ

l(θ; x) = arg max
θ∈Θ

n∑
i=1

l(θ;xi), (11)

where l(θ;xi) = lnL(θ;xi); l(θ; x) = lnL(θ; x).

If Θ is open, l(θ; x) is differentiable in θ and θ̂ exists then θ̂ must satisfy the estimating equation

Oθl(θ̂; x) = 0. (12)

This is known as the likelihood equation. If the Xi are independent with densities fi(x, θ) the likelihood
equation simplifies to

n∑
i=1

Oθ ln fi(xi, θ̂) = 0, (13)

which again enables us to analyse the behaviour of θ̂ using known properties of sums of independent random24

variables. Evidently, there may be solutions of (13) that are not maxima or only local maxima, thus we need25

to refer to other properties of the likelihood function.26

Example 2.1. Suppose Xi, i = 1, . . . , n is a i.i.d. sample from normal distribution with p.d.f. f(x, µ) =27

exp{−(x− µ)2/2}/
√

2π. Find the MLE of µ.28

2



Sol 2.1. Since we have a continuous i.i.d. sample, by Definition (1.1),29

l(µ;x) = lnL(µ;x) =

n∑
i=1

ln f(xi, µ)

= −n
2

ln(2π)− 1

2

n∑
i=1

(xi − µ)2. (14)

To maximize the log-likelihood, we differentiate (14) w.r.t. µ and set it to be zero,30

∂l(µ;x)

∂µ
=

n∑
i=1

(xi − µ) = 0. (15)

and get µ̂ =
∑n
i=1 xi/n = x̄. Now, let us take the second derivative of (14),31

∂2l(µ;x)

∂µ2
= −n < 0. (16)

By (16), we conclude that the first derivative of likelihood is a decreasing function. Since it attains 0 if and32

only if µ = x̄, the first derivative will be positive on (−∞, 0) and negative on )(0,∞). This suffice to show33

that the likelihood function will increase on (−∞, 0) whereas decrease on (0,∞), which means the likelihood34

function get its maximum at µ = x̄. Hence by definition of MLE, the maximum likelihood estimator of µ is35

µ̂ = x̄36

In some cases, the differentiating method is not applicable. This often happens when the domain of37

random variable is depend on parameter.38

Example 2.2. Suppose Xi, i = 1, 2, . . . , n is a i.i.d. sample from uniform distribution on (0, θ). Find the39

MLE of θ.40

Sol 2.2. Since f(x, θ) = 1
θ I(0 ≤ x ≤ θ), we can write the log-likelihood function of the sample as

l(θ;x) = −n ln θ · I(0 ≤ xi ≤ θ)ni=1. (17)

However, since −n ln θ is a unbounded decreasing function, we cannot maximize it by setting the derivative41

to be 0. However, note that θ ≥ xi, i = 1, 2, . . . , n, we can maximize the likelihood function by picking up the42

smallest possible θ. Hence we get the MLE θ̂ = X(n)43

MLE holds a nice “Plug-in” property, which means that MLEs are unaffected by re-parametrization, i.e.,44

MLEs are equivariant under one-to-one transformations.45

Theorem 2.1. Let X ∼ Pθ, θ ∈ Θ and let θ̂ denote the MLE of θ. Suppose that h is a one-to-one function46

from Θ onto h(Θ). Define η = h(θ) and let f(x, η) denote the density or frequency function of X in terms of47

η (i.e., reparametrize the model using η). Then the MLE of η is h(θ̂).48

Proof: Since h is onto and one-to-one, it is also invertible. Define L?(η) = L(θ) where θ = h−1(η). So for49

any η, L?(η̂) = L(θ̂) ≥ L(θ) = L?(η) and hence η̂ = h(θ̂) maximizes L?(η̂).50

3 Asymptotic Property of MLE51

We expect a good estimator holds several nice properties. For example, we hope that the estimator will52

approximate the true value of parameter as sample size grows large. We are also interested in the distribution53

to calculate confidence intervals. Efficiency, another important value, will describe the accuracy of our54

statistic. In this section, we will discuss those properties of MLE.55
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1 Asymptotic Distribution56

Theorem 3.1. Xi, i = 1, 2, . . . , n is a i.i.d. sample from f(x, θ). Suppose θ̂n is the MLE of θ and θ0 is57

the true value. Let I(θ) denote the Fisher Information in X. As n goes to infinity,
√
n(θ̂n − θ) goes to58

N(0, I−1(θ0)) in distribution.59

Proof: Let us make Taylor expansion of ∂ ln f(x, θ̂)/∂θ at θ = θ0,60

0 =
∂ ln f(x, θ̂)

∂θ
=
∂ ln f(x, θ0)

∂θ
+
∂2 ln f(x, θ0)

∂θ2
(θ̂ − θ0) + o(‖θ̂ − θ0‖2)

=

n∑
i=1

∂ ln f(xi, θ0)

∂θ
+

n∑
i=1

∂2 ln f(xi, θ0)

∂θ2
(θ̂ − θ0) + o(‖θ̂ − θ0‖2). (18)

By multiplying 1/
√
n on both side of (18) and ignoring the higher order reminders, we obtain

1

n

n∑
i=1

∂2 ln f(xi, θ0)

∂θ2
·
√
n(θ̂ − θ0) = − 1√

n

n∑
i=1

∂ ln f(xi, θ0)

∂θ
. (19)

By L.L.N.,

1

n

n∑
i=1

∂2 ln f(xi, θ0)

∂θ2
→ E

[
∂2 ln f(x, θ0)

∂θ2

]
= I(θ) in probability; (20)

By C.L.T.,

− 1√
n

n∑
i=1

∂ ln f(xi, θ0)

∂θ
→ N

(
0, E

(
∂ ln f(x, θ0)

∂θ

)2
)

= N(0, I(θ0)) in distribution. (21)

Plug (20) and (21) back to (18) and apply Slusky Theorem, we can get
√
n(θ̂n − θ) goes to N(0, I−1(θ0))61

2 Consisitency62

From (3.1) we can see that the MLE is asymptotically normal as sample size goes to infinity. Moreover, we63

can conclude that64

Theorem 3.2. Maximum likelihood estimator is consistent65

Proof: By (3.1),
√
n(θ̂n − θ) ∼ N(0, I−1(θ0)). Therefore asymptotically, Var(

√
n(θ̂n − θ)) = I−1(θ0)66

P (‖θ̂n − θ‖ > ε) = P (
√
n‖θ̂n − θ‖ >

√
nε) = P ((

√
n‖θ̂n − θ‖)2 > nε2). (22)

By Chebyshev Inequality,67

P (‖θ̂n − θ‖ > ε) ≤ E(
√
n‖θ̂n − θ‖2)

nε2
=

Var(
√
n(θ̂n − θ))
nε2

→ I−1(θ0)

nε2
→ 0. (23)

Hence as n goest to infinity, MLE will goes to the true value with probability one. In other words, it’s68

consistent.69

3 Efficiency70

Before we give the definition of efficiency, we give the following theorem without proof.71
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Theorem 3.3. Let T (X) be a unbiased estimator of a function Ψ(θ) of the scalar parameter θ. Then lower
bound of the variance of T (X) is given by

VarT (X) ≥ Ψ2(θ)

I−1(θ)
. (24)

If θ is a k × 1 column vector, the lower bound is

VarCovT (X) ≥ ∂Ψ(θ)

∂θ
· I(θ)−1 ·

(
∂Ψ(θ)

∂θ

)T
(25)

Remark 3.1. In (25), both the left side and right side are matrix. For matrix A and B, A ≥ B means that72

A−B is positive semi-defined.73

If a statistic attains the lower bound denoted in (24) or (25), then it is efficient. We can also give the
definition efficiency, namely,

e(θ) =
Ψ2(θ)I−1(θ)

VarX
, θ ∈ R (26)

(24) implies efficiency is always smaller than one. Since we in Theorem 3.3 is based on unbiased estimator74

E(T (X)− θ)2 = V ar(T (X)− θ) = V arT (X). In other words, the variance of a unbiased statistic shows the75

mean square error. The less the variance is, the more accurate and precise the statistic is. (3.3) shows that76

we can never have an ideal statistic with 0 variance. An statistic with larger Fisher Information offers a lower77

bound closer to 0, which implies a better chance to attain preciseness. On the other hand, the best statistic78

in terms of MSE can be obtained when variance reaches the lower bound, or in other words, when efficiency79

is one. Efficiency, in this sense, tells how accurate our statistic is.80

Theorem 3.4. Maximum likelihood estimator is asymptotically efficient.81

Proof: From (3.1) and (3.2), we can conclude that asymptotically, MLE is unbiased with variance I−1(θ),82

which is the the lower bound presented in (25) (or (24). So when n is large enough, MLE is efficient.83

4 Disadvantages of MLE84

Although MLE does hold some convenient mathematical properties (plug-in) and good asymptotic behaviour85

(asymptotic normal, consistency and efficiency), it also has some disadvantages.86

1. All the good statistical behaviour are based on sufficiently large sample size. Actually, for small sample,87

MLE may be significantly biased. We may also lose efficiency when sample size is small.88

2. We need to assume the distribution of random sample according to prior experience or knowledge. All89

the calculation, no matter for large sample or small sample, is based on that f(x, θ). However, in90

practice, it is quite possible that the f(x, θ) we propose is not close to the real distribution, which will91

cause a vital damage to the whole process.92

3. To derive a convenient way to calculate MLE, we assumed independence among X1, . . . , Xn. This93

assumption may also be violated in practise.94

4. In some cases, maximum likelihood estimator is not necessary exist. Even it does exist and can be95

calculated by differentiating the likelihood function, the calculation might be very complex and will not96

lead to a explicit answer.97

5. Sometimes we apply Newton-Raphson, EM and etc. to give a numerical solution to MLE. This calls for98

more regulation on parameter space and p.d.f.. These methods may also sensitive to the initial point99

for iteration100
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4 Likelihood Ratio Test101

In statistics, a likelihood ratio test is a statistical test used to compare the fit of two models, one of which (the102

null model) is a special case of the other (the alternative model). The test is based on the likelihood ratio,103

which expresses how many times more likely the data are under one model than the other. This likelihood104

ratio, or equivalently its logarithm, can then be used to compute a p-value, or compared to a critical value105

to decide whether to reject the null model in favour of the alternative model. When the logarithm of the106

likelihood ratio is used, the statistic is known as a log-likelihood ratio statistic, and the probability distribution107

of this test statistic, assuming that the null model is true, can be approximated using Wilks’ theorem.108

1 Two-Sided Tests109

First let us concentrate on the most simple case. Suppose parameter H0 : θ = θ0 vs H1 : θ 6= θ0. Likelihood110

ratio can be defined as follows,111

Definition 4.1. Suppose we wish to test H0 : θ = θ0 vs H1 : θ 6= θ0. Then the likelihood ratio, denoted as
Λ(x) is definded as

Λ(x) =
supθ=θ0 f(x, θ)

supθ∈Θ f(x, θ)
=

f(x, θ0)

supθ∈Θ f(x, θ)
(27)

Furthermore, if the MLE of θ exists, we can write likelihood ratio as

Λ(x) =
f(x, θ0)

f(x, θ̂)
. (28)

Remark 4.1. .112

113

1. Since the numerator of (27) is maximized over a smaller region compared to the denominator, we can114

conclude that likelihood ratio is always smaller than one.115

2. An optimized case is when null hypothesis is true. Recall that if we have a large sample the MLE is116

approximately equal to the true value. Hence the likelihood ratio will approach one.117

3. If θ0 is far away from the true value of θ, then the difference between numerator and denominator in118

(27) will also be large, which will make Λ(x) close to 0.119

Consequently, we should reject null hypothesis if likelihood ratio is significantly small. For a test of level
α,

α = P (reject H0|H0) = Pθ0(Λ(θ) < cα), (29)

where cα is a constant decided by the distribution of the likelihood ratio and level α; and the rejection region120

is (0, cα), which means that if the likelihood ratio is smaller than cα, we should reject the null hypothesis121

with probability 1− α.122

123

For the more complex null hypothesis, namely H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1 with Θ0 ∪ Θ1 = Θ, we can
define the likelihood ratio in the same way,

Λ(x) =
supθ∈Θ0

f(x, θ)

supθ∈Θf(x, θ)
, (30)

and the rejection. With the same reason for the simple case, we reject null hypothesis if Λ(x) is significantly
small. The level probability of making type one error can be calculated using and the rejection region (0, cα).
As for the power of the test, we can obtain it by

p = P (reject H0|H1) = Pθ∈Θ1
{Λ(x) > cα}. (31)

6



Example 4.1. Suppose X1, . . . , Xn are samples from N(µ, σ2). Find the test statistic for H0: µ = µ0. vs124

H1: µ 6= µ0.125

Sol 4.1. By Definition 4.1, we can write

Λ(x) =
supσ2(2πσ2)−n/2 exp{−

∑n
i=1(xi − µ0)2/(2σ2)}

supµ,σ2(2πσ2)−n/2 exp{−
∑n
i=1(xi − µ)2/(2σ2)}

. (32)

Note that the MLE for the numerator are

σ̂2 =
1

n

n∑
i=1

(xi − µ0)2; (33)

and the MLE for the denominator are

µ̂ = x̄, ˆ̂σ2 =
1

n

n∑
i=1

(xi − x̄)2. (34)

Therefore we can calculate Λ(x) by plugging (33) and (34) back to (32)

ln
1

Λ(x)
∝ σ̂2

ˆ̂σ2
=

∑n
i=1(xi − µ0)2/n∑n

i=1(xi − x̄)2/(n− 1)
(35)

To simplify our test rule further we use the following equation, which can be established by expanding both
sides.

σ̂2 = ˆ̂σ2 + (x̄− µ0)2 (36)

Therefore,

ln
1

Λ(x)
∝ 1 + (x̄− µ0)2/ˆ̂σ2 (37)

Because s2 = (n− 1)−1
∑n
i=1(xi − x̄)2 = nˆ̂σ2, σ̂2/ˆ̂σ2 is a monotone increasing function of |Tn| where

Tn =

√
n(x− µ0)

s
. (38)

Therefore the likelihood ratio tests reject for small values of Λ(x), or equivalently, large values of |Tn|. Because
Tn has a T distribution under H0, the size α critical value is tn−1,1−α/2. We should reject null hypothesis if
|Tn| ≥ tn−1,1−α/2.

To discuss the power of these tests, we need to introduce the non-central t distribution with k degrees of
freedom and non-centrality parameter δ. This distribution, denoted by Tk,δ is by definition the distribution

of Z/
√
V/K where Z and V are independent and have N(δ, 1) and χ2

k distribution respectively. Note that√
n(X̄ − µ)/σ and (n − 1)s2/σ2 are independent and that (n − 1)s2/σ2 has a χ2

n−1 distribution. Because
E[(
√
n(X̄ − µ0))/σ] =

√
n(µ− µ0)/σ and Var(

√
n(X̄ − µ0))/σ)=1,

√
n(X̄ − µ0))/σ has N(δ, 1) distribution,

with δ =
√
n(µ− µ0))/σ. Thus the ratio

Tn =

√
n(X̄ − µ0))/σ√

(n− 1)s2/[(n− 1)σ2]
(39)

has a Tn−1,δ distribution, and the power can be obtained from non-central t distribution. Note that the126

distribution of Tn depends on θ = (µ, σ2) only through δ.127
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2 One-Sided Tests128

Example 4.2. (continue) Suppose we are interested in testing H0 : µ ≤ µ0 vs H1 : µ > µ0. Note that µ = x̄
if x̄ ≤ µ0 and = µ0 otherwise. Thus ln Λ(x) = 0 if Tn ≤ 0 and = (n/2) ln(1 + T 2

n/(n − 1)) for Tn > 0. We
also argue that Pδ[Tn > t] is increasing in δ. Therefore the test that rejects H0 for

Tn ≥ tn−1,1−α, (40)

is of size α for H0 : µ ≤ µ0. Similarly, the size α likelihood ratio test for H0 : µ ≥ µ0 vs H1 : µ < µ0 rejects
null hypothesis if and only if

Tn ≤ tn−1,1−α. (41)

The power function is Φ(zα + µ
√
n/σ) and is mnontone in

√
nµ/σ.129

We can control both probabilities of error by selecting the sample size n large provided we consider130

alternatives of the form |δ| ≥ δ1 > 0 in the two-sided case and δ ≤ δ1 or δ ≥ δ1 in the one-sided cases.131

3 Asymptotic Distribution of Λ(x)132

Unfortunately, this significance is not always easy to measure because it is difficult to calculate the exact133

distribution of the likelihood ratio, which lead to the curiosity in its asymptotic distribution.134

Theorem 4.1. (Wilk’s) Let θ ∈ Θ ⊂ Rk and H0: θi = ai, i = 1, 2, . . . , s, s < k vs the general alternative.135

As n goes to infinity, −2 ln Λ(x) goes to χ2
m in distribution under H0.136

Proof: Set a = (a1, . . . , as) and θ̂ to be the MLE under H1. By Definition 4.1, we can write ln Λ(x) as

ln Λ(x) =

n∑
i=1

ln f(xi,a)−
n∑
i=1

ln f(xi, θ̂n). (42)

Now, take Taylor expansion for the first term at θ̂n in (42)137

ln Λ(x) =

n∑
i=1

ln f(xi, θ̂n) +

n∑
i=1

s∑
r=1

∂

∂θ̂n,r
ln f(xi, θ̂n)(ar − θ̂n,r)

− 1

2

n∑
i=1

s∑
r,q

∂2

∂θ̂n,r∂θ̂n,q
ln f(xi, θ̂n)(ar − θ̂n,r)(ar − θ̂n,q)

+ o(‖θ̂n − a‖2)−
n∑
i=1

ln f(xi, θ̂n). (43)

Recall that θ̂n,r is the MLE which minimizes the likelihood function, so the second term in (43) is 0. Next,138

take ln on both side of (43) and multiply by -2, we obtain139

−2 ln Λ(x) =

n∑
i=1

s∑
r,q

∂2

∂θ̂n,r∂θ̂n,q
ln f(xi, θ̂n)(ar − θ̂n,r)(ar − θ̂n,q) + o(‖θ̂n − a‖2)

= (θ̂n − a)TM(θ̂n − a) =
√
n(θ̂n − a)T · 1

n
M ·
√
n(θ̂n − a), (44)

where M is an s× s matrix, with entries mr,q =
∑n
i=1

∂2

∂θ̂n,r∂θ̂n,q
ln f(xi, θ̂n), i, j = 1, . . . n140

By L.L.N, M/n goes to Fisher Information I(θ) in probability; by C.L.T.
√
n(θ̂n− a) goes to N(0, I−1(θ)) in141

distribution. Using Slusky again, we finish our proof.142
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A natural question is when to reject null hypothesis using the statistic in Wilk’s theorem. We have shown
that we should reject H0 when the likelihood ratio is significantly small, i.e. Λ(x) < c. This is equivalent to
−2 ln Λ(x) > c. Using Wilk’s theorem, the level α test is

α = P (−2 ln Λ(x) > χ2
k,α/2) (45)

with rejection region (χ2
k,α/2,∞). .143

144

Example 4.3. Continue with Example (4.1). If we assume n is large, for the same Λ(x) shown in (35)145

and level α, we should reject H0 when Λ(x) > cα where cα is decided by α = P (−2 ln Λ(x) > χ2
1,α); and the146

rejection region is (χ2
1,α,∞).147

Although likelihood ratio test is not necessarily unbiased, we can approach the unbiasness by increasing148

sample size. In other words, likelihood ratio test is consistent. We give the proof of a very special case,H0:149

θ = θ0.150

Theorem 4.2. The likelihood ratio test in Theorem 4.1 is consistent.151

Proof: We need to show that if true value θ 6= θ0, we reject H0 with probability one as n goes to infinity.
We reject the null hypothesis if Λ(x) < c, or equivalently, if

− ln Λ(x) =

n∑
i=1

ln f(xi, θ̂n)−
n∑
i=1

ln f(xi, θ0) > c. (46)

Expand the first term in (46) at true value θ, we can re-write it as152

− ln Λ(x) =

n∑
i=1

ln f(xi, θ) +

n∑
i=1

s∑
r=1

∂ ln f(xi, θ)

∂θr
(θ̂n,r − θr) + nop(|θ̂n − θ|)−

n∑
i=1

ln f(xi, θ0)

=

n∑
i=1

ln
f(xi, θ)

f(xi, θ0)
+

n∑
i=1

J(xi, θ)
T (θ̂n − θ) + nop(|θ̂n − θ|), (47)

where J is Fisher Score, which is a s× 1 vector. To use L.L.N. and C.L.T., we manipulate (47) into a more153

convenient form and split it into three parts, namely, nA,
√
n · 1

n

∑n
i=1 J(xi, θ)

T ·B, and
√
op(|B|),154

− ln Λ(x) = n · 1

n

n∑
i=1

ln
f(xi, θ)

f(xi, θ0)
+
√
n · 1

n

n∑
i=1

J(xi, θ)
T
√
n(θ̂n − θ) +

√
nop(
√
n|θ̂n − θ|)

= nA+
√
n · 1

n

n∑
i=1

J(xi, θ)
T ·B +

√
op(|B|). (48)

By L.L.N, as n tends to infinity, A tends to

Eθ ln
f(xi, θ)

f(xi, θ0)
= Eθ

(
− ln

f(xi, θ0)

f(xi, θ)

)
with probablility one. Observe that − ln(•) is a convex function, we can apply Jensen’s Inequality to the155

limit of A,156

A→ Eθ

(
− ln

f(xi, θ0)

f(xi, θ)

)
> − lnEθ

f(xi, θ0)

f(xi, θ)
= −

∫
f(xi, θ0)

f(xi, θ)
f(xi, θ)dx = − ln 1 = 0. (49)

Hence we have proved that A → constant > 0 with probability one. Consequently, A → n · constant = ∞157

with probability one.158

As for B and C, under C.L.T., both of them will tend to ininity. Since B is asymptotically normal by159

Theorem 3.1 and
∑n
i=1 J(xi, θ)/n approaches EJ(x, θ) = 0, we conclude that the second and third term in160

(48) is bounded with probability one. This suffice to show that − ln Λ(x) will be greater than any given161

constant as n goes to infinity with probability one. In other words, we reject null hypothesis with probability162

one.163
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5 Likelihood Ration Confidence Interval164

To compute the confidence interval, we need to find xu and xl such that θ ∈ (xl, xu) with probability 1− α
under H0. Assume that we know the distribution of Λ(x), then

1− α = Pθ0(c1−α/2 < Λ(x) < cα/2), (50)

where under H0, both c1−α/2 and cα/2 are in terms of θ0.165

Since

1− α = P

(
Fn,n−1,1−α/2 ≤

∑n
i=1(xi − µ)2/n∑n

i=1(xi − x̄)2/(n− 1)
≤ Fn,n−1,α/2

)
, (51)

the level 1 − α confidence interval of the Λ(x) is (Fn,n−1,1−α/2, Fn,n−1,α/2), meaning that under likelihood166

ratio test we believe that the statistic Λ(x) will fall between Fn,n−1,1−α/2 and Fn,n−1−2,α/2 with probability167

1− α.168

If we rewrite (51) as169

1− α = P

(
Fn,n−1,1−α/2 ≤

∑n
i=1(x2

i − 2µ+ µ2)/n∑n
i=1(xi − x̄)2/(n− 1)

≤ Fn,n−1,α/2

)
= P (xl < µ2 − 2µ < xu), (52)

where170

xl =
Fn,n−1,1−α/2

∑n
i=1(xi − x̄)2

n− 1
−

n∑
i=1

x2
i , (53)

xu =
Fn,n−1,α/2

∑n
i=1(xi − x̄)2

n− 1
−

n∑
i=1

x2
i . (54)

From (52), we can solve for µ and get its confidence interval.is µl < µ < µu, where

µl = max{1−
√

1 + x2
u, 1 +

√
1 + x2

l }, µu = min{1 +
√

1 + x2
u, 1−

√
1 + x2

l }

The double sided confidence interval is (χ2
k,1−α/2, χ

2
k,α/2)171

For the double sided confidence interval for the likelihood ratio is (χ2
1,1−α/2, χ

2
1,α/2). As for the confidence172

interval for µ, we have similar result as shown in (52);only this time we find the critical value according to173

the χ2
1 table.174
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