

Secure Coding and Code Review

Berlin : 2012

Outline

● Overview of top vulnerabilities
● Code review practice
● Secure design / writing secure code
● Write some secure code
● Review a volunteer's code

Top Problems

● Cross-Site Scriptng (xss)
● Cross-Site Request Forgery (csrf)
● Register Globals
● SQL Injection

XSS

● An attacker is able to inject client-side
scripting into a web page, executed by
others. May, or may not, be cross-domain.

● Can result in:
● Authenticated Requests by victim
● Session hijacking
● Click jacking
● Propagation of Script (xss worm)
● Internal network access / portscanning

Reflected XSS

● Javascript in the request is written to the
page

● <input type="text" name="search_term" value="<? echo
$_GET['search_term']; ?>" />

● And if someone sends you a link:
“page.php?search_term=”><script>alert()</script><!--”?

2nd Order (Stored) XSS

● Attacker-controlled data is stored on the
website, and executable scripts are
displayed to the viewer (victim)

●

3rd Order (Dom-based) XSS

● Attacker controls existing DOM
manipulations in a way that generates
attacker-influenced execution of scripts

Cross-Site Script Inclusion (xssi)

● (or “Javascript Hijacking”)
● A script with sensitive data is included and

manipulated from another domain

Preventing XSS

● Validate your input
● Escape your output

● Mediawiki Tools:
● Html, Xml, Sanitizer classes
● jQuery elements
● Jsonp api runs as anonymous

Additional Reading

● For the theories behind XSS, and why
certain filter should be applied, read:
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

● Quick reference of how to escape data in
different html/document contexts:
https://www.owasp.org/index.php/Abridged_XSS_Prevention_Cheat_Sheet

●

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Abridged_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Abridged_XSS_Prevention_Cheat_Sheet

Additional Reading on SOP

● Understanding cross-domain aspects of
xss requires knowledge of the Same Origin
Policy (SOP) you are dealing with

● https://www.owasp.org/index.php/File:SameOriginPolicy.ppt
● http://code.google.com/p/browsersec/wiki/Part2

● The SOP for javascript, XHR, and Flash
are different!

https://www.owasp.org/index.php/File:SameOriginPolicy.ppt
http://code.google.com/p/browsersec/wiki/Part2
https://www.owasp.org/index.php/File:SameOriginPolicy.ppt
http://code.google.com/p/browsersec/wiki/Part2

Cross-Site Request Forgery (csrf)

● If a user has an authenticated session
established to a secure site, a remote site
can reference resources on that site, which
will be requested with the authority of the
logged-in user.

● A page on funnykitties.com can call the
“image”:
<img src='http://en.wikipedia.com/wiki/index.php?
title=some_thing&action=delete' />

Preventing CSRF

● Tokens written into form just prior to editing,
and checked when form is received

● This is in addition to authentication /
authorization checks

● Tokens must be difficult to predict

● Mediawiki uses editToken

Register Globals

● If register_globals is on, then an attacker
can set variables in your script

● If an attacker can control variables in your
script, there is potential for

● Remote File Inclusion
● Altering code execution path

Register Global Vulnerabilities

● include($lang.".php");

● <?php

//MyScript.php

if (authenticate($_POST['username'], $_POST['pass'])) {

 $authenticated = true;

}

if ($authenticated) {

 ...

}

Register Global Protections

● Don't use globals in script paths
● Ensure your script is called in the correct

context
● if (!defined('MEDIAWIKI')) die('Invalid

entry point.');

● Sanitize defined globals before use
● Define security-critical variables before use

as 'false' or 'null'

SQL Injection

● Poorly validated data received from the
user is used as part of a database (SQL)
statement

● Can result in:
● Authentication Bypass
● Data Corruption
● System Compromise

Preventing SQLi

● Use MediaWiki built-in database classes
and pass key=>value pairs to the functions

● select(), selectRow(), insert(),
insertSelect(), update(), delete(),
deleteJoin(), buildLike()

Additional Top Web Vulnerabilities

● OWASP Top 10
● https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Secure Design Principles

● Simplicity
● Secure by Default
● Secure the Weakest Link
● Least Privilege

Secure Coding Checklist

● Avoid eval, create_function
● Regex'es

● Don't use /e
● Escape with preg_quote()

● Filter / Validate your Inputs
● intval(), getInt(), etc
● Use a whitelist of expected values when

possible

Secure Coding Checklist
● Use HTMLForm class, or include/check

$wgUser->editToken
● Defend against register-globals
● Use Html and Xml helper classes
● Use Sanitizer::checkCss to use user's css
● Use database wrapper functions
● Write clean, clearly commented code!

Write Some Secure Code

● Create a Special Page that allows
searching, and showing results

● Assume you have a database of important
text data:

● CREATE table `myData` (`id` INT, `name` varchar(80),
`body` TEXT);

● Present a search box
● Search the database for matches in `name`

or `body, display matches to user

Review a Volunteer's Code

Secure Coding and Code Review

Berlin : 2012

Outline

● Overview of top vulnerabilities
● Code review practice
● Secure design / writing secure code
● Write some secure code
● Review a volunteer's code

Top Problems

● Cross-Site Scriptng (xss)
● Cross-Site Request Forgery (csrf)
● Register Globals
● SQL Injection

XSS

● An attacker is able to inject client-side
scripting into a web page, executed by
others. May, or may not, be cross-domain.

● Can result in:
● Authenticated Requests by victim
● Session hijacking
● Click jacking
● Propagation of Script (xss worm)
● Internal network access / portscanning

Reflected XSS

● Javascript in the request is written to the
page

● <input type="text" name="search_term" value="<? echo
$_GET['search_term']; ?>" />

● And if someone sends you a link:
“page.php?search_term=”><script>alert()</script><!--”?

2nd Order (Stored) XSS

● Attacker-controlled data is stored on the
website, and executable scripts are
displayed to the viewer (victim)

●

3rd Order (Dom-based) XSS

● Attacker controls existing DOM
manipulations in a way that generates
attacker-influenced execution of scripts

Cross-Site Script Inclusion (xssi)

● (or “Javascript Hijacking”)
● A script with sensitive data is included and

manipulated from another domain

Preventing XSS

● Validate your input
● Escape your output

● Mediawiki Tools:
● Html, Xml, Sanitizer classes
● jQuery elements
● Jsonp api runs as anonymous

Additional Reading

● For the theories behind XSS, and why
certain filter should be applied, read:
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

● Quick reference of how to escape data in
different html/document contexts:
https://www.owasp.org/index.php/Abridged_XSS_Prevention_Cheat_Sheet

●

Additional Reading on SOP

● Understanding cross-domain aspects of
xss requires knowledge of the Same Origin
Policy (SOP) you are dealing with

● https://www.owasp.org/index.php/File:SameOriginPolicy.ppt
● http://code.google.com/p/browsersec/wiki/Part2

● The SOP for javascript, XHR, and Flash
are different!

Cross-Site Request Forgery (csrf)

● If a user has an authenticated session
established to a secure site, a remote site
can reference resources on that site, which
will be requested with the authority of the
logged-in user.

● A page on funnykitties.com can call the
“image”:
<img src='http://en.wikipedia.com/wiki/index.php?
title=some_thing&action=delete' />

Preventing CSRF

● Tokens written into form just prior to editing,
and checked when form is received

● This is in addition to authentication /
authorization checks

● Tokens must be difficult to predict

● Mediawiki uses editToken

Register Globals

● If register_globals is on, then an attacker
can set variables in your script

● If an attacker can control variables in your
script, there is potential for

● Remote File Inclusion
● Altering code execution path

Register Global Vulnerabilities

● include($lang.".php");

● <?php

//MyScript.php

if (authenticate($_POST['username'], $_POST['pass'])) {

 $authenticated = true;

}

if ($authenticated) {

 ...

}

Register Global Protections

● Don't use globals in script paths
● Ensure your script is called in the correct

context
● if (!defined('MEDIAWIKI')) die('Invalid

entry point.');

● Sanitize defined globals before use
● Define security-critical variables before use

as 'false' or 'null'

SQL Injection

● Poorly validated data received from the
user is used as part of a database (SQL)
statement

● Can result in:
● Authentication Bypass
● Data Corruption
● System Compromise

Preventing SQLi

● Use MediaWiki built-in database classes
and pass key=>value pairs to the functions

● select(), selectRow(), insert(),
insertSelect(), update(), delete(),
deleteJoin(), buildLike()

Additional Top Web Vulnerabilities

● OWASP Top 10
● https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Secure Design Principles

● Simplicity
● Secure by Default
● Secure the Weakest Link
● Least Privilege

Secure Coding Checklist

● Avoid eval, create_function
● Regex'es

● Don't use /e
● Escape with preg_quote()

● Filter / Validate your Inputs
● intval(), getInt(), etc
● Use a whitelist of expected values when

possible

Secure Coding Checklist
● Use HTMLForm class, or include/check

$wgUser->editToken
● Defend against register-globals
● Use Html and Xml helper classes
● Use Sanitizer::checkCss to use user's css
● Use database wrapper functions
● Write clean, clearly commented code!

Write Some Secure Code

● Create a Special Page that allows
searching, and showing results

● Assume you have a database of important
text data:

● CREATE table `myData` (`id` INT, `name` varchar(80),
`body` TEXT);

● Present a search box
● Search the database for matches in `name`

or `body, display matches to user

Review a Volunteer's Code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

