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Outline

● Overview of top vulnerabilities
● Code review practice
● Secure design / writing secure code
● Write some secure code
● Review a volunteer's code



  

Top Problems

● Cross-Site Scriptng (xss)
● Cross-Site Request Forgery (csrf)
● Register Globals
● SQL Injection



  

XSS

● An attacker is able to inject client-side 
scripting into a web page, executed by 
others. May, or may not, be cross-domain.

● Can result in:
● Authenticated Requests by victim
● Session hijacking
● Click jacking
● Propagation of Script (xss worm)
● Internal network access / portscanning



  

Reflected XSS

● Javascript in the request is written to the 
page

●  <input type="text" name="search_term" value="<? echo 
$_GET['search_term']; ?>" />

● And if someone sends you a link:
“page.php?search_term=”><script>alert()</script><!--”?



  

2nd Order (Stored) XSS

● Attacker-controlled data is stored on the 
website, and executable scripts are 
displayed to the viewer (victim)

●



  

3rd Order (Dom-based) XSS

● Attacker controls existing DOM 
manipulations in a way that generates 
attacker-influenced execution of scripts



  

Cross-Site Script Inclusion (xssi)

● (or “Javascript Hijacking”)
● A script with sensitive data is included and 

manipulated from another domain



  

Preventing XSS

● Validate your input
● Escape your output

● Mediawiki Tools:
● Html, Xml, Sanitizer classes
● jQuery elements
● Jsonp api runs as anonymous



  

Additional Reading

● For the theories behind XSS, and why 
certain filter should be applied, read:
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

● Quick reference of how to escape data in 
different html/document contexts:
https://www.owasp.org/index.php/Abridged_XSS_Prevention_Cheat_Sheet

●

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Abridged_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Abridged_XSS_Prevention_Cheat_Sheet


  

Additional Reading on SOP

● Understanding cross-domain aspects of 
xss requires knowledge of the Same Origin 
Policy (SOP) you are dealing with

● https://www.owasp.org/index.php/File:SameOriginPolicy.ppt
● http://code.google.com/p/browsersec/wiki/Part2

● The SOP for javascript, XHR, and Flash 
are different!

https://www.owasp.org/index.php/File:SameOriginPolicy.ppt
http://code.google.com/p/browsersec/wiki/Part2
https://www.owasp.org/index.php/File:SameOriginPolicy.ppt
http://code.google.com/p/browsersec/wiki/Part2


  

Cross-Site Request Forgery (csrf)

● If a user has an authenticated session 
established to a secure site, a remote site 
can reference resources on that site, which 
will be requested with the authority of the 
logged-in user.

● A page on funnykitties.com can call the 
“image”:
<img src='http://en.wikipedia.com/wiki/index.php?
title=some_thing&action=delete' />



  

Preventing CSRF

● Tokens written into form just prior to editing, 
and checked when form is received

● This is in addition to authentication / 
authorization checks

● Tokens must be difficult to predict

● Mediawiki uses editToken



  

Register Globals

● If register_globals is on, then an attacker 
can set variables in your script

● If an attacker can control variables in your 
script, there is potential for

● Remote File Inclusion
● Altering code execution path



  

Register Global Vulnerabilities

● include($lang.".php");

● <?php

//MyScript.php

if ( authenticate( $_POST['username'], $_POST['pass'] ) ) {

    $authenticated = true;

}

if ( $authenticated ) {

   ...

}



  

Register Global Protections

● Don't use globals in script paths
● Ensure your script is called in the correct 

context
● if ( !defined( 'MEDIAWIKI' ) ) die( 'Invalid 

entry point.' );

● Sanitize defined globals before use
● Define security-critical variables before use 

as 'false' or 'null'



  

SQL Injection

● Poorly validated data received from the 
user is used as part of a database (SQL) 
statement

● Can result in:
● Authentication Bypass
● Data Corruption
● System Compromise



  

Preventing SQLi

● Use MediaWiki built-in database classes 
and pass key=>value pairs to the functions

● select(), selectRow(), insert(), 
insertSelect(), update(), delete(), 
deleteJoin(), buildLike()



  

Additional Top Web Vulnerabilities

● OWASP Top 10
● https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project


  



  



  



  



  



  

Secure Design Principles

● Simplicity
● Secure by Default
● Secure the Weakest Link
● Least Privilege



  

Secure Coding Checklist

● Avoid eval, create_function
● Regex'es

● Don't use /e
● Escape with preg_quote()

● Filter / Validate your Inputs
● intval(), getInt(), etc
● Use a whitelist of expected values when 

possible



  

Secure Coding Checklist
● Use HTMLForm class, or include/check 

$wgUser->editToken
● Defend against register-globals
● Use Html and Xml helper classes
● Use Sanitizer::checkCss to use user's css
● Use database wrapper functions
● Write clean, clearly commented code!



  

Write Some Secure Code

● Create a Special Page that allows 
searching, and showing results

● Assume you have a database of important 
text data:

● CREATE table `myData` (`id` INT, `name` varchar(80), 
`body` TEXT);

● Present a search box
● Search the database for matches in `name` 

or `body, display matches to user



  

Review a Volunteer's Code
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