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Chapter 1

Introduction

Understanding Large N behavior of SU(N) gauge theories has always been a long

standing problem[1]. It is Related perhaps to understanding strongly coupled systems

like QCD. Indeed in [2] Polyakov showed that large N behavior of a strongly coupled

gauge theory, if accessible, should be described by string Theory. There are several

contending ways of realizing field theories from strings. In This essay, we will focus on

field theories that are obtained by decoupling the theory on a brane from gravity. In

fact not un till recently has exploring the near Horizon structure of certain Black hole

metrics reveal such a possibility. In [3] Maldacena suggested that large N behavior

of rather conformal SU(N) gauge theories in d dimensions can be equivalently de-

scribed mathematically by super gravity (string Theory) on a d+ 1-dimensional AdS

times Compact d+ 1 dimensional manifold which in the maximally super symmetric

case is: AdSd+1 × Sd+1. The Conformal Field Theory is said to be living on the

boundary of this AdS space which is a d dimensional Conformal space. A very good

practical example to which this argument applies is between the Type2B superstring

theory compactified on an AdS5 × S5 background whose boundary is a conformal 4-

dimensional ”Minkowski” space carrying a conformal ℵ = 4 Super Yang-Mills gauge

theory with SU(N) gauge group and coupling constant gYM . Our Main aim in this
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Thesis is to understand the derivation of this conjecture, Test it for the very simplest

case and apply it to calculate the Quark -anti-Quark Potential.By This Conjecture,

the string coupling constant gs is proportional to g2
YM , and radius of curvature of

AdS5 and S5 is (g2
YMN)1/4, where N is the N units of five form flux on S5 which is

also the number of D-branes and as well the rank of the U(N) gauge group. Actu-

ally this conjecture has been tested and is valid [4, 5, 6] only in certain limits. For

example, in the t’hooft limit: λ = gYMN fixed but large, the string theory is weakly

coupled and the super gravity is a very reliable solution. The hope is that for large N

and so λ but fixed, ℵ = 4 SU(N) Super Yang Mills theory in 4-dimensions should be

governed by a tree approximation to super gravity. Our Motivation for considering

Extremal black holes or black P-branes with near Horizon geometry is because in the

low energy limit, they actually behave like or are [7, 8, 10] D-branes which are solitonic

solutions of close string theories on which Open strings end. In Their near Horizon

geometry they give the AdS×S geometry with a boundary space which is conformal.

For our Particular case, in the large N limit, N parallel D3-brane solution is exactly

an extremal 3-brane solution to Classical Supergravity whose near horizon limit is an

AdS5×S5 having a 4-dimensional Minkowski space on its boundary. It turns out that

the isometry of the gauge theory which lives on the boundary space and the super

gravity in the bulk agree and is the super conformal group, PSU(2, 2/4). This group

has twice the amount of super symmetry of the corresponding super-Poincare group.

The AdS5×S5 has a isometry group of SO(2, 4)×SO(6) ⊂ SU(2, 2/4) which actually

matches with the symmetry of the conformal Minkowski space at the boundary of the

AdS5. Apart from matching the Isometry group and its representation in both sides,

We also check this equivalence,by calculating some two point correlation functions in

the conformal field and show that they are equally given in the super gravity side.

Considering that the supergravity action and its contents fields have an asymptotic

behavior at infinity; at the boundary of AdS, a special proposal by [4, 11]is that,the
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dimension of gauge invariant(traceless symmetric) Operators in the conformal field

theory is determined by the masses of the dual particles(fields) in the super gravity

(string Theory). Indeed these guys conjectured that there exists a one-to-one map

between gauge invariant operators in the CFT and the fields in the AdS side.The

Holographic principle in use highly whereby, the partition functions of the fields in

the 5dimensional AdS i.e the bulk is equivalent to the 4-dimensional generating func-

tional of the vacuum expectation values of operators of the CFT in the boundary.

Upon this the boundary values of the fields acts as sources.[4, 11].

It is quite non trivial to show this correspondence completely because of our present in-

sufficient techniques to handle strongly curved space time string Theory and strongly

coupled gauge theory.

In This thesis, we have for the Kaluza-Klein states on AdS5 × S5, showed the exact

behavior at least for the conformal dimension of the two point function in both sides.

We have not considered Non-Chiral or Non-BPS operators in this work. Therefore,

we have only matched Kaluza-Klein states in the AdS in the low energy limit to

their dual Chiral or BPS Operators in the Super Yang Mills side at least in comfor-

mal dimension. We have also use this same approach to determine the dual to the

Wilson loop operator in the Supergravity side which is this case is just the Minimal

world sheet surface area in the Superstring side. Calculating this Minimal Surface

area actually gives us a coulomb-like potential between a quark-antiquark pair. This

case extends the conjecture to rather superstring limit instead of the supergravity as

observe when this same calculations are done in the Super Yang Mills Theory.
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Chapter 2

Superstring Quantization and

D-branes

2.1 SuperString Quantisation and D-branes

2.1.1 Superstring in flat back ground

Starting with a superstring world sheet action:

S = −T
2

∫
d2σ(∂αX

µ∂αXµ − iΨ̄µγα∂αΨµ) (2.1)

where γα are the dirac matrices on the world sheet such that

{γα, γβ} = 2ηαβ (2.2)

T =
1

2πα′
and (2.3)

`2
s = 2πα′ (2.4)

with γ0 =

0 −i

i 0

 and γ1 =

0 i

i 0


4



Xµ(τ, σ) is a Bosonic vector field and

Ψµ(τ, σ) two component Weyl-Majorana world sheet. spinor[7, 12] Action has been

written under consideration of Supersymmetry,Poincare global invariance, local def-

feomophism and Weyl invariance choosing a conformal gauge. The most convenient

coordinate for quantizing the superstring is the light cone coordinates [13, 14, 7].

Where the fermionic part becomes

S = iT

∫
d2σ(Ψ−∂+Ψ− + Ψ+∂−Ψ+) (2.5)

Our interest is in Closed strings with two boundary conditions; Periodic and anti

Periodic boundary conditions.We have two possibilities;

Periodic boundary condition

Ψµ
A(σ) = Ψµ

A(σ + 2π)

giving Ramond (R) fields and

Anti-Periodic Boundary Condition

Ψµ
A(σ) = −Ψµ

A(σ + 2π)

A, labeling the two components, giving Neveu-Schwarz(NS) fields.

Closed strings have independent left and right movers, so we apply this boundary

Conditions to them separately. Finally we get 4 Possibilities:

The R Sector
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With mode expansion

Ψµ
+(τ, σ) = (

∑
n∈Z

d̃µne
−2in(τ+σ))Left (2.6)

Ψµ
−(τ, σ) = (

∑
n∈Z

dµne
−2in(τ−σ))right (2.7)

Quantizing along with the Bosonic sector gives us creation and annihilation op-

erators and a spectrum of both left and right moving strings. We Observe that the

ground state operators obey the Dirac-Clifford algebra

{dµ0 , dν0} = ηµν (2.8)

. So zero modes must act on the ground state as dirac matrices.

This tells us that the R-Sector gives spacetime spinors.

State

|0〉aR

where a = 1, 2, ..., 32 is spinor with 32 Components.

In D-dimension, we have 2
D
2 components of a dirac spinor, with D = 10 we have 32

components.

We conclude that the ground state |0〉aR is a 32 component Majorana spinor and from

supersymmetry, SuperString has 32 supercharges.

If we introduce the Chirality Operator

Γ11 =
∏9

i=0 Γi

projecting in chiral directions gives 16 component Majorana-Weyl spinors with defi-

nite chirality.

Our State

|0〉aR = |0〉+R ⊕ |0〉
−
R means we have
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32 = 16⊕ 16 components.Therefore states |0〉
+
−
R are spacetime fermions.

The NS Sector(Anti Periodic)

The mode expansion is

Ψµ
+(τ, σ) = (

∑
r∈Z+ 1

2

b̃µr e
−2in(τ+σ))left (2.9)

Ψµ
−(τ, σ) = (

∑
r∈Z+ 1

2

bµr e
−2in(τ+σ))Right (2.10)

Quantization with Bosonic sector, the NS sector gives a spectrum of spacetime Bosons.

Thus our most general space time state is a tensor product of the left and right moving

sector of either NS or R sector. This gives us 4 major possibilities

1. If |Ψ〉 = |NS〉left ⊗ |NS〉right State is a spacetime Boson

2. If |Ψ〉 = |R〉left ⊗ |R〉right Again a spacetime boson( Bispinor) since it is con-

structed from two spinor.

3. If |Ψ〉 = |R〉left ⊗ |NS〉right or

4. |Ψ〉 = |NS〉left ⊗ |R〉right These states are spacetime fermions

By defining a 32 component SO(10) spin field operator which act like a super charge

taking bosonic states into fermionic states.

|o〉aR = Sa|o〉NS

We see clearly that the Original Superstring theory has 32 Supercharges. We can

guest that superstring in a D = (9 + 1)-spacetime ( eg Flat Minkowski space time)

will have 32 superchrages and so ℵ = 1 supersymmetry.

Aside If Left and right movers have the same GSO projection,then they belong

to same Equivalence Class and by this Tachyonic particles are removed from the spec-
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trum so that states are |0〉leftR ⊗ bµ− 1
2

|0〉rightNS and bµ− 1
2

|0〉leftNS ⊗ |0〉
right
R and have the same

chirality. The GSO projection takes a 32 component spinor into a 16 component

Majorana-Weyl Spinor removing states with the same chirality in the left and right

sectors.

2.1.2 SuperString Spectrum

For simplicity we will consider only the massless spectrum of the different spectra in

the superstring.[12, 13]

First The |NS〉 ⊕ |NS〉 sector has

• The Scalar field φ or dilaton with single state

• The Asymmetric gauge field Bµν with 28 states.

• The Symmetric traceless 2nd rank tensor; graviton Gµν with 35 states.

Secondly

The |NS〉⊕|R〉,|R〉⊕|NS〉 sector. These states are super partners of the dilaton and

graviton

• The Dilatino,λi spin 1
2

super partner of the dilaton with 28 states

• The Gravitino,Ψi
M of positive chirality spin 3

2
fermion and super partner of

graviton.

where i = 1, 2. They have the same chirality for Type2B.

Finally

For the |R〉 ⊕ |R〉 Sector

. These are Bosonic states from the tensor product of 2 Majorana-Weyl spinors.The

spectra include
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• A scalar field C0

• A two form gauge field Cµν

• A four form gauge field Cµνρσ whose F5 = dCµνρσ is self dual F5 = ∗F̃5.

Type2B strings have only odd form potentials(R-R- forms) while Type2A have even

form.

2.2 D-Branes

Considering the bosonic part of a Polyakov action;

Sp = −T
2

∫
d2σ∂αXµ∂

αXµ (2.11)

Varying the action, we obtain equations of motion for Xµ

δSp = −T{
∫
∂α∂αXµδX

µ − nα∂αXµδX
µ|boundary} (2.12)

By Requiring that the boundary terms vanish for Open strings we find that

δXµ(τ, σ)|σ=0,π = 0,Dirichlit boundary conditions (2.13)

. The open strings also satisfy

∂σX
µ(τ, σ)|σ=o,π = 0, Neuman Boundary Conditions (2.14)

Since any number of components of Xµ can satisfy these conditions, we guess

that open strings can end on higher dimensional extended objects( branes) through

Dirichlet boundary conditions. [7, 10, 12]. These objects are now called D-branes.
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Branes are classified by the number of p-spatial dimensions. The number, type

and arrangement of Dp-branes restrict the open strings states that can exists( since

we quantize the Open strings based on the Dirichlit or Neuman conditions). A con-

venient mathematical description of a Dp-brane is to use light cone coordinates in

which for simplicity, we consider the Bosonic sector, and choose coordinates

X+(σ, τ), X−(σ, τ) and X i(σ, τ) with i = 2, ..., p to satisfy the Neuman Boundary

Conditions: ∂σX
µ(τ, σ)|σ=o,π = 0 with µ = +,−, i = 2, 3, ..., p

while the coordinates Xa a = p + 1, p + 2, ..., p satisfy the Dirichlit Boundary Con-

ditions: Xa(τ, σ = 0) = Xa(τ, σ = π) = X̄a which also specify the location of the

D-brane.

The index coordinates µ define the world Volume and are called the NN coordinates

while the index coordinates a describe the bulk and are called the DD coordinates.

Quantizing the open strings considering the Neuman boundary conditions for X i

i = 2, 3..., P and Dirichlit boundary conditions for the Xa, a = p+ 1, ..., d, we get the

full spectrum for states for the D-branes.

The states are labeled by momentum |P+P i〉 while all the P a vanish because of

Dirichlet boundary conditions. We have Lorentz invariance only in the brane world

Volume since these states transform under Lorentz transformation.

We can conclude that with states |P+P i〉, i = 2, ...p only depend on transverse mo-

mentum; P i. A field d must be function of momentum P i so that string states only

have momentum along the D-brane world volume. If we write the fourier transform,

we see that,these are functions of the coordinates X i with i = 2, 3, ...p and so depends

only on the world Volume coordinates X i with no dependence on the bulk coordi-

nates Xa for a = p + 1, ..., d. Therefore these fields are lorentz vectors living on the

DP-brane world Volume.

Massless Dp-brane spectrum
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The NS-sector massless states are those defined by

(bi−1/2)+|P+P i〉

and since i = 2, 3, ..., p, there is a total of (p+1−2) massless states which transform as

vectors under lorentz transformation on the brane while in the transverse coordinates,

(ba−1/2)+|P+P i〉,

these transform as scalars and their expectation values gives the position of the D-

branes. Since the states

(bi−1/2)+|P+P i〉

are massless vectors, We claim that they must give rise to gauge fields living on the

D-brane. On the Other hand,gravity is not living on the brane but rather in the Bulk.

In Type2B strings, solitonic D-branes have odd P-spartial coordinates. For example,

in a D3-brane, the gauge fields will suggest the presence of a U(1) gauge group. If we

have N D3-branes which are coincident , then we have N2 massless gauge fields which

will characterize a U(N) Yang-Mills theory in the world-volume of the N coincident

D-branes. The states are in the fundamental representation of the U(N) group.

However we also do have d− P massless Scalars as shown in [12, 13, 14, 15, 16]

The Quantization of the open strings on a Dp-brane gives a massless spectrum that

is of Maximal Yang-Mills supermultiplet in the (P+1)-dimensions. Its Massless spec-

trum consist of :

A Lorentz Vector, d− P Scalars and the associated fermions.

While the R-sector, with zero modes operators obeying the Dirac- Clifford algebra

act on the ground state giving massless spinors(fermions) in 10-dimensions.
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2.3 Effective string and D-Brane Action

2.3.1 Type2B Supergravity

From studying the World sheet action and requiring world sheet conformal symmetry,

we can write an effective action for the Type2B Superstring as,

Sσ =
1

4πα′

∫
M

d2σ
√
g[(gαβGµν(X) + iεαβBµν(X))∂αX

µ∂βX
ν + α′RΦ(X)] (2.15)

where the fields Bµν(X) is the antisymmetric tensor, and Φ(X) trace of symmetric

tensor Gµν the graviton. This gives an effective Type2B string action[17]:

S2B = SNS + SR + SCS (2.16)

SNS =
1

2(κ10)2

∫
d10x
√
−Ge−2Φ(R + 4∂µΦ∂µΦ− 1

2
(|H3|)2) (2.17)

SR = − 1

4(κ10)2

∫
d10x
√
−G((|F1|)2 + (|F̃3|)2 +

1

2
(|F̃5|)2) (2.18)

SCS = − 1

4(κ10)2

∫
C4 ∧H3 ∧ F3 (2.19)

whereF̃3 = F3 − C0 ∧H3 (2.20)

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 (2.21)

Cp ,Fp+1 are the R-R fields for potential and field strengths respectively.

B2 and H3 are the NS-NS fields. The Chern-Simon (CS) action contains both.

Remark

In writing the effective action, we made used of the fact that; the Radius of Curvature

is far greater than the string length meaning
√
α′R−1 <<< 1 neglecting higher order

terms in action.
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2.3.2 D-Brane Dynamics-DBI Action

From the Dp-brane spectrum the massless fields in the world-volume give a U(1)

vector plus 9 − p scalars. This describes the low energy dynamics of the D-brane.

The effective action in the low energy limit(low energy Dynamics) is described only

by the massless modes of Open strings completely decoupled from the closed strings

in the bulk. Let ξa , a = 0, 1, ..., p be coordinates of the world Volume of the brane

.Then we write the p-brane Bosonic sector of the action as

Sp = −Tp
∫
dp+1ξTr{e−Φ

√
[−det(Gab +Bab + 2πα′Fab)]} (2.22)

. We can in principle write this action by considering the world sheet action of an

open string and require conformal invariance. From the equations of motions of the

open strings in the D-brane background we arrive at above action.

The Dilaton dependence e−Φ arises because this is an open string tree-level action

and the topology is a disc on the world sheet. The Fab dependence is because of

T-duality and Bab dependence because of imposing gauge invariance on the world

sheet action.From the world sheet action of a closed string,

S =
i

4πα′

∫
M

d2σ
√
gεab∂aX

µ∂bX
νBµν + i

∫
∂M

dxµAµ (2.23)

. Through imposing on each field tensor gauge invariance

δBµν = ∂µξν − ∂νξµ

and

δAµ = − ξµ
2πα′

13



, Only the combination

Bµν + 2πα′Fµν ≡ 2πα′zµν

appearing in the effective action satisfies our invariance conditions as seen in [7, 10,

18]. We simply write

Sp = Tp

∫
dp+1ξTr{e−Φ

√
−detG

√
[det(δab + 2πα′zab)]} (2.24)

giving the effective action of the brane dynamics, at least for the Bosonic sector. In

the Limit where α′ tends to zero α′ → 0 we realize

Sp = Tp

∫
dp+1ξTr{e−Φ

√
−detG(det(1− (2πα′)2

2
Trz2) + ...} (2.25)

where we have used the fact that za
a = 0 and

det(I − εA) ' 1 + εTrA+
ε2

2
(Tr(A)2 − TrA2)

with

Tp(2πα
′)2e−φ

2
=

1

4g2
YM,p

Suppose we are in the flat Minkowski space with ξa = Xa, a = 0, 1, 2, ...p(world

Volume) and XI , I = p + 1, ..., d− p + 1 transverse coordinates. XI are scalars and

the induced metric on the brane is

Gab = ηab + ∂aX
I∂bX

I

14



Then action becomes

Seff = Tp

∫
dp+1xe−ΦTr[1 + zabzab + ∂aX

I∂bX
I ] + ... (2.26)

Seff = Tp

∫
dp+1xe−ΦTr[1 + ∂aX

I∂bX
I − (2πα′)2

2
Trz2] + ... (2.27)

. From the Euler characteristic of the annulus diagram describing the interaction

between two parallel branes, we can find that the tension of a D-brane is proportional

to its charge density and goes like

Tp = ρ(p) =

√
π

gs`
p+1
s

(4π2α′)3−p

. Indeed through this same calculations but considering that the D-branes interact

by exchanging closed strings, we find that the force between two D-branes actually

vanishes.and in particular for D3-brane .The reason is because, there is the cancelation

between attraction due to the graviton and dilaton and the repulsion due to the R-R

p-forms. For a D3-brane,

T3 = ρ(3) =

√
π

gs`4
s

Secondly, D-brane are BPS states since from the Neumann and Dirichlet boundary

conditions, they break 1
2

in this case 16 of the 32 super symmetric charges.

.Thirdly they carry Ramond-Ramond(RR) charges with non vanishing charge density.

SO they coupled to p+ 1-form potential as follows

∫
Vp+1

Cp+1

with the integral running over the D-brane world volume. In fact,[7, 8] D-branes are

known to be extremal P-branes being reliable solutions to Supergravity as we will see

in the chapter 3.1.
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Remark

WE have learn that, the low energy Physics of D-branes living in a flat space can

be described by the dimensional reductions of ℵ = 1 SU(N) Super Yang Mills in

10-dimensions to p+ 1 dimensions. The space time fermionic part of this action have

a dirac form of

−i
∫
dp+1ξTr(λ̄ΓaDaλ) (2.28)

For N Dp-branes of small separations, the Coordinates Xµ(ξ), the gauge fields

Aa(ξ) and the fermionic partners λ(ξ) all become n× n matrices or adjoint represen-

tation of the SU(N) giving rise to the ℵ = 4 Super Yang-Mills.

In the N-coincident D3-brane configuration, each brane is labeled by Chan-Paton

(charges) (i,j)indices of the open strings on the brane. We have for N = 2 D3-branes,

we have 4 possible open strings attached to the branes with Chan-Paton indices: 1−2

,2 − 2 ,1 − 2, and 2 − 1. Each Open string will give rise to a massless Yang-Mills

Multiplet in the Adjoint representation of the SU(N) gauge group . These gauge

fields can interact with each other, giving a non-abelian gauge group.For 2 coincident

D3-brane; a U(2) gauge symmetry appears. The scalars XI are also in the adjoint

representation of this gauge group and give an interesting idea of space time, since

XI is now non-commutative [XI , XJ ] 6= o for I 6= J .

If we separate the two branes by a length x̄a2 − x̄a1 in the transverse space,( see Di-

agram). The two strings 1 − 2 and 2 − 1 are now stretched by tension σ in length

|x̄a2−x̄a1| and so acquire energy σ|x̄a2−x̄a1| therefore have mass. This is just the ordinary

Higgs-effect. Further more, D-branes carry gauge fields because the massless spec-

trum of the open strings living in a D-pbrane is that of a maximally supersymmetric

U(1) gauge theory in the p + 1 dimensions. The 9 − p massless scaler fields present

in this supermultiplet are expected Golstone Modes associated with the transverse
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Oscillations of the Dp-brane. The photons and fermions provide the unique super-

symetric completion. For N Parallel D-branes then we have N2 different species of

the open strings because the Chan-Paton indices i, j = 1, 2, ..., N , charged end on the

different branes. But N2 is the dimension of the adjoint representation of U(N) so

indeed we find the maximally supersymmetric U(N) gauge theory living in the p+ 1

world Volume of the N parallel Dp-branes.The expectation values of the Scalar fields

determine the relative separations of the Dp-branes in the 9 − p transverse dimen-

sions. We are interested in the case where all the scalar expectation values vanish

so that the N Dp-branes are stacked on top of each other(Coincident branes)[3].For

Large N, this stack is a heavy object embedded into a theory of closed strings which

contains gravity. Naturally, this macroscopic object will curve peacetime so could

be described by some classical metric and other background fields. In particular if

p = 3 we have N parallel D3-branes, the gauge group is U(N) with N2 sectors since

i, j = 1, 2, ...N .Separating any one of the branes from the array of branes will lead

spontaneous breaking of the symmetry group where

U(N) −→ U(1)× SU(N)

because one of the stretch strings will now acquire mass and becomes a ”W-Boson”.

The overall U(1) corresponds to the center of mass position of the stack D3-branes

while SU(N) describes the internal dynamics.

We conclude that the spacetime world-volume of the N-coincident D3-branes is de-

scribed by an ℵ = 4 SU(N) Super Yang-Mills gauge theory living on the branes. As

we earlier comment, through dimensional reduction we can get [9, 32],p+1-dimensions

from d = 10 dimensions ℵ = 4 from ℵ = 1 U(N) Super symmetric Yang Mills.

17



Chapter 3

Supergravity Solutions and AdS

geometry

3.1 Supergravity and P-branes

Dp-branes are solitonic solutions to closed string theory. However, in the low energy

limit, α′ −→ 0, the Type2B Superstring theory becomes supergravity whose solutions

are well known [19] to be extremal p-branes.

We saw that,the effective action involve the dilaton φ, the symmetric metric Gµν and

the R-Rp+ 1-form fields;

S2B =

∫
d10x
√
−gs{e−2φ[R(gs)+4(dφ)2− 1

12
(dB)2]− 1

2

∞∑
p

1

(p+ 2)!
(F (p+2))2} (3.1)

where P even or odd means type 2 A or B string theory respectively. B is the NS-NS

two form, F (p+2) is the R-R field strength,where F (p+2) = dC(p+1)

The Newton’s constants

GN ' g2
s`

8
s
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, gs = eφo = constant where `2
s = 2πα′ is string Length related to the string tension

through as (2πα′)−1

Simplifying our equation of motions by going to the Einstein frame.

GMN,s = e
φ
2GMN,e

we get

S2B =
1

GN

∫
d10x
√
−ge[R(ge)−

1

2
(dφ)2− 1

12
e−φ(dB)2]−1

2

∞∑
p

e
(3−p)

2
φ 1

(p+ 2)!
(F (p+2))2]

(3.2)

R-R fields ”couple” to the dilaton. Our interest is only on the fields Gµν , φ ,

Cp+1-forms. An acceptable action [20]is

S2B =
1

GN

∫
d10x
√
−ge[R(ge)−

1

2
(dφ)2 − 1

2
eapφ

1

(p+ 2)!
(dC(p+1))2

] (3.3)

where ap = 3−p
2

We obtain equations of motion with ( L,M,N = 0, 1, 2, ..., 9)

RMN =
1

2
∂Mφ∂Nφ+ SMN

SMN =
1

2(p+ 1)!
eapφ(FML1 , ..., Lp+1F

L1,...,LP+1

N − p+ 1

8(p+ 2)
gMNF

2)

0 = ∇M(eapφFML1,...,LP+1)

2φ =
ap

2(p+ 2)
eapφF 2

We require the solution to have the following properties: Have Poincare invariance

in p + 1-dimensions and rotational SO(q − p) in the transverse directions. To carry

Charge with non vanishing charge density. To be BPS i.e preserve half of the super-

symmetry. To be asymptotically Minkowskian with asymptotic value of the dilaton
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being a constant gs.

Of course,the 10-dimensional Minkowski metric is also a solution.

P-Branes(Extremal Classical Solutions). In 1991 Horowizt and Strominger

[19, 20]put forward the following solution to Type2B supergravity.These p-dim Black

holes are electrically charged [21, 22, 23]through coupling with Ramond-Ramond(R-

R) (p+ 1)-form, Ap+1

ds2 = H−
1
2 (r)[−f(r)dt2 + d~x2] +H

1
2 (r)[f−1(r)dr2 + r2dΩ2

5]

H(r) ≡ 1 +
R4

r4
, f(r) ≡ 1− r4

0

r4

with r0 = 0 the Horizon

where in the near when r0 = 0 we get an extremal P-brane as

ds2
e = Hp−7/8

p d~x2 +Hp+1/8
p d~y2 (3.4)

Cp+1 = −(H−1
p − 1)g−1

s dx0 ∧ ... ∧ dxp (3.5)

Hp = 1 + (
rp
r

)(7−p) (3.6)

r7−p
p = dp(2π)p−2gsN(α′)

7−p
2 (3.7)

dp = 27−2pπ
9−3p

2 Γ(
7− p

2
) (3.8)

e2φ = g2
sH

3−p/2
p (3.9)

Still in the string coordinates where

eφ/2 = g1/2
s H3−p/8

p
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we get for p = 3

ds2
s = H

−1/2
3 (r)d~x2 +H

1/2
3 (r)d~y2

with ym, m = p+ 1, ..., 9 transverse coordinates r =
√
~y2 and

d~y2 = dr2 + r2dΩ2
8−p

xµ, µ = 0, 1, 2, ...p and

d~x2 = ηµνdx
µdxν

, in general Hp being a harmonic function.

The R-R p-branes have string tension which goes as [24, 25]

Tp ∼
1

gs`
p+1
s

∼ ρ(p),

equal to their charge density.

ASIDE

When gs → 0, their gravitational interaction vanishes since GN ∼ Tpgs → 0 and we

have flat space descriptions of these objects involving open strings, as with D-branes.

We are interested in the solution[26] of supergravity with N Coincident D3-branes in
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d = 10 dimensions:

ds2 = H(r)−1/2ηµνdx
µdxν +H(r)1/2(dr2 + r2dΩ2

5) (3.10)

H(r) = 1 +
4πgsN`

4
s

r4
(3.11)

gs = eφ (3.12)

Bµν = A2µν = 0 (3.13)

F+
5µνρστ = εµνρστλ∂

λH (3.14)

T3 =
2π

(2π`s)4gs
(3.15)

16πκµ =
(2π`s)

8

2π
g2
s (3.16)

This solution satisfy our requirements of a valid solution. There is a p+1dimensional

Poincare invariance on the Dp-brane World volume, while its transverse coordinates

has an SO(d− p) symmetry. It also has a constant Axion χ and Dilaton Φ fields.Has

a true horizon at r = 0 and a Singularity at r = R. In the limit; alpha approaches

zero, α′ → 0, the metric is flat everywhere except on the 4dimensional hyperplane

characterized by ~y = r = 0. They are Charged with p+1 form field Aµ1µ2...µp+1 . given

by the coupling ∫
ddjµ1...µp+1Aµ1...,µp+1 →

∫
j012...pA012,...,p

with the source of the A012,...,p field being of type j012,...,p = Qδ(d−p−1)(x).

Remark

The stack of N D3-branes, will curve space time and we can infer a classical de-

scription with a metric and other background fields. Therefore, we have two separate

description of the stack of Dp-branes. One in terms of the U(N) Supersymmetric

gauge theory on its world volume and the other in terms of classically charged p-
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brane background of type2 Closed string theory. The relation between these two

description is at the heart of the connection between gauge filed theory and strings

which is the subject of my thesis.

In 1995 Polchinski, showed that Dp-branes preserve 1
2

of the bulk supersymmetry

which was in the superstring theory and that they carry an elementary unit of charge

with respect to a p+1 form gauge potential from the Ramond-Ramond (R-R)sector of

Type 2 Superstring. In fact, he showed that the D-branes and the extremal p-branes

are one and the same thing.Therefore, the dynamical end points of Open strings

correspond to extremal solutions of supergravity. The Prove involves commputing, p-

brane charge and tension of the endpoints of open strings and matching them with the

supergravity solutions. In particular in [27] for p = 3-brane, the solution corresponds

to the stack of N D3-brane with:

ds2 = H−
1
2 (r)d ~x||

2 +H
1
2 (r)(dr2 + r2dΩ2

5) (3.17)

F5 = (1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ (dH−1) (3.18)

F5 = Fµ1µ2...µ5dx
µ1 ∧ ... ∧ dxµ5 (3.19)

H(r) = 1 +
R4

r4
(3.20)

R4 = 4πgsN(α′)2 (3.21)

Q = gsN (3.22)

We know that if supergravity solution(extremal p-brane) is a D-brane then one should

be able to derive the Hawking radiation in the D-brane picture by allowing two open

strings living in the D-brane to collide to form a closed string which then is not bound

to the D-brane anymore and can peel off away as the Hawking radiation. This has

been shown [8]and indeed, Dp-brane as extremal p-brane is a (p + 1)-dimensional

hyperplane in spacetime where Open strings can end. By the T-duality, a D-brane is

also a source for open strings. We know that D-brane carry R-R Charges and if in
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Particular a stack N Dp-brane, the resulting (p + 1)-dimensional hyperplane carries

exactly N-units of the (p+ 1)-form flux.

On the world sheet of type 2 string, the left mover and right movers carry separate

space time supercharges. Consequently, Open string boundary condition identifies the

left and right movers, and so the D-brane breaks at least one half of the spacetime

supercharges. In Type2B string theory, precisely one half of the supersymmetry is

preserved for odd P. This is consistent with the type of R-R charges that appear in

the theory. Therefore Dp-branes are BPS objects in string theory which carry exactly

the same charge as the black (classical)p-brane solution in Supergravity.

Since supersymmetry invariance requires

δΨµα ∼ (...)(1 − Γ0Γ1....Γp)ε = 0 and Γ0Γ1...Γpε = ε( selects half of the spinors

ε). For p = 3, our 4-dimensional World Volume of D3-brane will contain ℵ = 4

supersymmetric Yang Mills conformal Field theory with SU(N) gauge group. On the

other hand, since extremal P-branes also have BPS bound ( Mass less or equal to

charge (M 6 Q)) ,So the solution is also left invariant by one half supersymmetric

charges).D-branes are also stable like extremal p-branes. Moreover, by Calculating,

the annulus diagram of the tree level interaction of a two D3-branes, which vanish,

we can check that there is no force between the two parallel D-branes. The diagram

can be seen as the exchange of a closed string from one D-brane to the other.The

string graph is an annulus with no vertex operators. The poles from graviton and

dilaton then give the coupling Tp of the closed string states to the D-brane. One finds

that the tension of the D-brane is proportional to g−1
s and from the R-R part of the

String effective action which comes with the factor of e−φ = g−1
s i.e from amplitude

calculation of the exchange of closed string between two Parallel D-brane in the Low

energy Limit( massless Modes) we finally arrive at

Tp =

√
π

16κ
(4π2α′)

(11−p)
2

24



where κ = κ0e
φ. Which is the same for the classical p-brane solutions. Finally we

conclude that the D3-brane is an extremal 3-brane solution to Supergravity. Since

D-branes have no force between them, for our N coincident D3-branes, the effective

loop expansion parameter for the open string is gsN rather than gs; after all each

open string boundary loop ending on the D-branes comes with a chan-Paton factor

N as well as the string coupling gs. Therefore, the D-brane description is good when

gsN >> 1. This is exactly the regime where supergravity description is appropriate.

However we also have that the low energy effective theory of open strings in Dp-brane

is the U(N) gauge theory in (p+1) dimensions with 16 supercharges and (9−p) scalar

fields in the adjoin representation of U(N). We should find the relation between the

theory of the open strings living on the D3-brane; ℵ = 4 Super Yang- Mills, and the

gravity theory of the fields living in the space curved by the D3-brane ( the Bulk).

3.2 Maldacena Limit or Near Horizon Limit

Our motivation for examining superstring dynamics in the presence of D3-Branes has

two important points of view,[25, 28, 29]

3.2.1 View Point One

Now that D3-branes are end points on which open strings are attached, we see that

superstrings with such boundaries have three ingredients:

First the open strings living on the D3-branes in the low energy limit will describe

the dynamics of the D3-brane,by a certain Yang Mills gauge theory. Secondly, the

closed strings living in the bulk is described by a Type2B closed superstring. In the

low energy limit, the supergravity remains. Finally, there are interactions between

the open and open strings on the D-branes and the closed strings in the bulk. The
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final action for these strings can be written as:

S = Sbulk + Sbrane + Sinteraction

where

Sbulk = close strings in bulk

Sbrane = Open strings on the D-brane and

SInteraction = is the interaction between the open strings on the D-brane and the close

string in the bulk

In the low energy limit; α′ → 0, massive modes of strings drop out and

Sbulk → Supergravity and

Sbrane → ℵ = 4 S(U)N Super Yang Mills field theory.

Because Sinteraction α
′ κ10 ∼ gs(α

′)2

where κ10 is the Newton’s constant in 10-dimensions, as α′ → 0 with gs fixed, means

Sinteraction → 0 decouples

as κ10 → 0. The gravity becomes entirely free and we are left with; free gravity in

the bulk of spacetime and a 4-dimensional ℵ = 4 gauge field theory on the D3-brane.

3.2.2 View point Two

Suppose our D3-branes are now extremal 3-branes of supergravity, then the energy

measured at a point P at r is Ep and the energy at infinity E are related through:

Ep ∼
d

dτ
=

1√
−goo

d

dt
∼ 1√
−goo

E

This means

E = H(r)−1/4Ep ∼ rEP

Therefore for Ep fixed, as the radial distance from D-brane reduces i.e r → 0, the
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energy observed at infinity vanishes, E → 0, which gives the low energy limit or

regime.

We conclude that, from this point of view, we also have two decoupled low energy

systems of excitation. The First is that, at Large distances or low energies ( Energy

α 1
length

), the gravity in bulk is free(away from the D3-brane). Secondly, for small

distances, we have low energy excitations and the D3-brane becomes and ℵ = 4 SYM

theory.So in low energy limit, we have two decoupled systems; gravity which is in

the bulk and a SYM field theory on the D3-branes. Naively, we say that,near the

D-brane, r → 0, ℵ = 4 SYM with gauge group SU(N) for large N is equivalent to a

gravity theory in the bulk when alpha goes to zero; α′ → o.

3.2.3 The limit

Let us consider the following limits:

First,

when r << R, i.e r → 0, the harmonic function behaves as: H(r) w R4

r4
such that the

metric becomes:

ds2 w
r2

R2
(−dt2 + d~x2) +

R2

r2
dr2 +R2dΩ2

5 (3.23)

. If we change coordinates through

r

R
≡ R

xo

We get:

ds2 = R2−dt2 + d~x2 + dx2
o

x2
o

+R2dΩ2
5 (3.24)
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This metric is AdS5 × S5 in Poincare coordinates with the 5-dimensional Anti-de

Sitter space and 5-sphere having the same radius R.

In the limit where x0 tends to zero, xo → o, we have a 4-dimensional space which

is isomorphic to Minkowski space living on the boundary of the AdS5 space i.e an

<1 × S4 isomorphic to Minkowski.The <1 is for the time coordinate.

Suppose we change coordinates with U ≡ r
α′

fixed and find out what happens

when alpha approaches zero; α′ → o and r → o. We can think of U as the energy

scale in the gauge theory and demand that E
U

be fixed. With r ≡ U × α′, our metric

becomes

ds2 = α′[
U2

√
4πgsN

(−dt2 + d~x2) +
√

4πgsN(
dU2

U2
+ dΩ2

5] (3.25)

where as α′ → 0 everything inside bracket is finite.

R4 = (α′)2gs4πN (3.26)

Here N is the number of D3-branes and gs is the string coupling. While in the Super

Yang-Mills gauge theory, N is the rank of the SU(N) gauge group.

The Limit, where r tends to zero, r → o is called the Near Horizon limit. In this

limit,

D3− brane −→ AdS5 × S5

with the curvature radii RAdS5 = RS5 given as

RAdS = RS = `s(
gsN

π
)1/4

Second

On the other hand, when r >> R, in other words if we take r → ∞, Radius of
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curvature becomes very small, we recover our flat spacetime (9 + 1)Minkowski or<10.

In a very heuristic manner, we have seen how we get ℵ = 4 SYM from D3-brane

in the low energy limit(α′ → o). Now we try to understand this limit in string theory

side.

Supergravity approximation of string means the curvature of the background metric

ds2 = α′[
U2

√
4πgsN

(−dt2 + dx2) +
√

4πgsN(
dU2

U2
+ dΩ2

5)

must be large compared to the string length, ie R =
√
α′(4πgsN)1/4 >>

√
α′ = `s

That means,from the action

S2B =
1

G10

∫
d10x
√
ge−2φ[<+ ...+

`2
s

R2
<2 + ....]

where the Ricci scalar < ∼ 1
R2 ; R being the radius of curvature, we can neglect

higher derivatives terms of <. From ND3-branes, gs = g2
YM , therefore for R >> `s

which means gsN >> 1 or g2
YMN >> 1, Quantum string corrections governed by

gs come in powers of gs. When gs small i.e gs → 0 ( gsN >>> 1,large N), we

can neglect these higher order terms and concentrate on the tree level which is well

described by supergravity. Therefore for supergravity to be a valid approximation

of Type2B superstring, we need to have gs → 0, N→ ∞ but with t’Hooft coupling

λ = gsN = g2
YMN remaining finite and large; gsN = λ >> 1.

On the other hand as t’Hooft showed in [1] at large N, effective coupling is λ ≡ g2
YMN

which means that when λ >> 1, perturbation theory does not longer work, which

is supergravity while for for λ << 1 perturbation theory is reliable but supergravity

is replaced with the full sting theory. This makes the AdS/CFT duality very hard

to check since for λ >> 1 we cannot perform calculations in the strongly interacting

gauge theory (but Supergravity reliable) while λ << 1 we still cannot handle strongly

coupled (Large Curvature) string theory (but we can handle very well the weakly
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coupled gauge theory). We resort to a conjecture of AdS/CFT duality in the following

versions:

3.3 Maldacena’s Conjecture

In [3, 4, 24],versions of Maldacena’s Conjecture:

The Weakest Version: ℵ = 4 SU(N) Super Yang Mills in 4-dimension is dual to

supergravity; the low energy limit of Type2B superstring theory on AdS5 × S5 in

the limit when t’Hooft coupling λ = g2
YMN >> 1, gs → 0, N → ∞ . In this case,

there would be order α′ and gs corrections to supergravity which might not agree

with order 1
N2 and 1√

g2N
correction to ℵ = 4 supersymmetric Yang-Mills theory.

The stronger Version: AdS/CFT duality is valid at any finite gsN , but only

if N → ∞ and gs → 0, which means that α′ corrections, given by α′

R2 = 1√
gsN

agree,

but gs corrections might not.

The Strongest Version: AdS/CFT duality is valid at any gs and N even if we

cannot make calculations in certain limits.

This also contains the conjecture that the AdS5×S5 background is an exact solution of

Type 2B superstring theory. An obvious example we will be using through out is that

Type2B string Theory compactified on AdS5 × S5 plus some appropriate boundary

conditions ( and possibly also some degree of freedom) is dual to N = 4; d = 3 + 1

U(N) Super Yang-Mills Theory.
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3.4 AdS Spacetime

Low Energy effective action of supergravity

Sgravity =
1

16πGN

∫
ddx
√
−g(R− Λ) (3.27)

AdS spaces are maximally symmetric solutions to Einstein equations with a constant

energy momentum tensor known as cosmological constant Tµν = Λgµν . Varying the

action with respect to the metric we have equation of motion

Rµν − 1/2gµνR = 8πGNλgµν (3.28)

Anti-de sitter spaces(AdS) is a space-time of negative curvature. We denote a (d +

1)dimensional AdS space by AdSd+1. Constant curvature means its curvature can be

expressed in terms of the metric GMN , M,N = 0, 1, 2...d as:

RKLMN =
R

d(d+ 1)
(GKMGLN −GKNGLM)

and Ricci Scalar < as

< = −d(d+ 1)

R2
AdS

A convenient way of realizing AdSd+1 is that it is a hypersurface

(X0)2 − δijX iXj + (Xd+1)2 = R2
AdS (3.29)

i, j = 1, 2, ...d in flat space R2,d with signature (2, d) and the metric induced from the

flat space.

dS2
d+2 = −(dXo)2 + δijdX

idXj − (dXd+1)2 (3.30)
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This space has closed-time-like circles since

(Xo)2 + (Xd+1)2 = R2
AdS + δijX

iXj (3.31)

From equation (3.29, 30), we see that AdSd+1 is by construction a maximally sym-

metric space of isometry group SO(2, d). There are several useful coordinates of AdS

spacetime. One of these useful coordinates is the Poincare coordinates. As we saw

earlier, this system of coordinates arises naturally in the context of supergravity or

D3-branes. Radial coordinates other than world volume coordinates xµ = (t, xa,

a = 1, 2, ...d− 1) are related through change of coordinates

Xo = RAdS
t

z
and Xa = RAdS

xa

z
and we get

Xd+1 −Xd = RAdS(z +
1

z
(x2 − t2)) (3.32)

Metric becomes

ds2 =
R2
AdS

z2
(−dt2 + ~X2 + dz2) (3.33)

making manifest, the invariance under SO(1, d) of the isometry group SO(2, d)

In terms of the new radial coordinates; r =
R2
AdS

z
our metric becomes

ds2 =
R2
AdS

r2
dr2 +

r2

R2
AdS

ηµνdx
µdxν (3.34)

A Euclidean version of AdSd+1 in [4, 5, 26] can be realized as follows: We consider

a Euclidean space Rd+1 with coordinates yo, ..., yd and let Bd+1 be the open ball
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∑d
i=1 |~y|2 < 1 then the AdSd+1 can be identified as Bd+1 with metric

ds2 =
4
∑d

i=0 dy
2
i

(1− |y|2)2

. In the above Poincare coordinates in Euclidean space, the AdSd+1 is the upper half

space xo ∈ (0,∞) with coordinate x0, x1, ...xd and the metric

ds2 =
1

x2
o

(
d∑
i=0

(dxi)2) (3.35)

In Poincare coordinates, AdSd+1 has a d-dimensional Minkowski space as its boundary

while for Euclidean coordinates Rd is its boundary as xo tends 0; x0 −→ 0.

From our above definitions of AdSd+1 and its boundary we deduce that the isometry

group of AdSd+1 is SO(2, d) for Poincare Coordinates (SO(1, d + 1) for Euclidean).

This isometry group is a conformal group and has dimension as: For a d-dimensional

Euclidean space Ed, the conformal group SO(1, d+1) has same number of generators

as SO(d+2). This is the number of linearly independent antisymmetric (n+2)×(n+2)

matrices. dim-SO(1, d+ 1) = 1
2
(d+ 2)(d+ 1). By comparison, the Poincare group in

d-dimensions has d translational generators and 1
2
d(d− 1) rotation generators. Dim-

Poincare is (Ed) = 1
2
d(d+1) The difference between the Poincare and conformal group

space is just d+1. This is just the following extra possible conformal transformations

of Dilaton ~x→ λ~x, λ ∈ R The special Conformal Transformations ~x→ ~x′ such that

xµ′

x2′ =
xµ

x2
+ αµαµ, µ = 1, ..., n

and gives rise to additional d generators. which may equivalently write

(xµ)′ =
xµ + αµx2

1 + 2~α · ~x+ α2x2
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The d generators for special conformal transformations with the 1 from the dilaton

gives the d+ 1 dimensions.
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Chapter 4

Test of AdS/CFT and Wilson Loop

4.1 Global Symmetry

Naively, we begin verifying the AdS/CFT Correspondence with the global symmetry;

SU(2, 2/4) of both theories. The ℵ = 4 Super Yang-Mills has a vanishing beta func-

tion so has a conformal symmetry with bosonic isometry group SO(2, 4) ∼ SU(2, 2)

generated by the translations Pµ, Lorentz transformations Lµν , dilatons D and special

conformal transformations Kµ.An R-symmetry group SO(6)R ' Su(4)R generated

by T a,a = 1, 2, 3, ..., 15. The Poincare Supersymmetry generated by supercharges

Qa
α and Q̄a

α̇, a = 1, 2, ...4 which gives ℵ = 4 Poincare Super symmetry; and finally

Conformal Supersymmetries generated by the supercharges Saα and S̄aα̇; resulting from

the fact that[Qa
α, Kµ] ∼ Saα do not commute. Putting all these together realizes the

global Continuous symmetry group PSU(2, 2/4) for ℵ = 4 Super Yang-Mills.

On the other hand, in Supergravity, the AdS5 × S5, have a Bosonic symmetry group

SO(2, 4) for the AdS5 side and SO(6) for S5 based on their geometry. Hence AdS5×S5

gives the Bosonic isometry group SO(2, 4)× SO(6) ∼ SU(2, 2)× SU(4)R. Although

only 16 of the 32 Poincare Super symmetry charges are preserved in our BPS N

Parallel D3-coincident branes, yet in the AdS limit, they are supplemented by the
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enhanced extra 16 supercharges because of its geometry making 32 Super charges. All

together realizes the global symmetry PSU(2, 2/4) in Supergravity matching exactly

the global symmetry in both theories [30]

4.2 Global Symmetry Representation

SU(2, 2/4) has multiplet representation in Super Yang-Mills and Supergravity. The

correspondence is between Fields in Type2B String to gauge invariant operators in

super Yang-Mills. Single traceless symmetric tensors of SO(6); short representation,

operators in the Super Yang Mills side correspond to Kaluza-Klein modes on the AdS

side. Fields in AdS in Multiplet of SU(2,2/4) correspond to Unitary Super Conformal

Multiplets of SU(2,2/4) in the Super Yang Mills side. Meaning Kaluza-Klein Modes

on AdS with short multiplet representation (BPS) of SO(6) is dual to BPS operators(

Short Multiplets) Traceless symmetric tensors of SO(6) in Super Yang-Mills(SYM).

[30, 31].

BPS Operators are given by the single traceless symmetric tensors of SO(6);

ϑk(x) ≡ 1

nk
STr(X

i1(x), X i2(x), ..., X ik(x))

Aside 1
2

BPS for ℵ = 4 SYM means half of the 16 supercharges leaves the primary

or chiral Operator invariant. The constant nk is for the overall normalization of the

operator. The dimension of this operator is unrenormalized and thus ∆ = k For more

on this check [24]

In the Type2B super gravity, using Kaluza-Kelin compactification of d = 10 on

S5. First for a sphere of radius L of S5, the Newton constant in d = 5 becomes

G5
N =

G10
N

V ol(S5)
=

8π3g2
s(α

′)4

L5
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Decomposing the d = 10 fields in spherical harmonics Y I
` (ŷ) on S5 with I a multi-

index running from over the possible projections of `. We linearize as in [31]. The

field equations in AdS5 vacuum configuration.

For simplicity we consider the case of the dilaton. The spectrum of fluctuations of

the dilaton can be deduced from Kaluza-Klein (K-K) ansatz.

Φ =
∞∑
l=0

(l+1)(l+2)2(l+3)
12∑
I=1

Φ`
I(z)Y I

` (ŷ) (4.1)

Using

∇2
S5Y I

` = −`(`+ 4)

L2
Y I
` for all I (4.2)

We conclude that the ΦI
` component field transforms in the irreducible representation

r = [0, `, 0] of SO(6) ' SU(4) and has an AdS mass (M`L)2 = `(`+ 4) .For the other

fields we will have to resolve the intricate mixing with the other fields. Therefor, each

ΦI
` satisfies the equation of motion of the form

(2AdS5 −M2)ΦI
` = Non Linear terms (4.3)

with M2 = m2

L2

The whole spectrum of the linearized fluctuations assembles into represenetations of

the super isometry group

SU(2, 2/4) ⊃ SO(4, 2)× SO(6)

. We observe that the particles in the same multiplet have different AdS mass since

Mass2 is not a casimir operator of the SU(2, 2/4).

These K-K modes classified in SU(2, 2/4) representations give exactly the set of short
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representations for composite Operators in the Super Yang- Mills field theory. There

is a one-to-one correspondence between the K-K fields of Type2B D = 10 supergravity

and the composite operators(in the short representations) of the ℵ = 4 Super Yang-

Mills theory.

Finally we observed that the:

• ΦI
` is dual to chiral primary Operators(CPO) TrX

` , in the ` = 2 multiplet,

• 15 bulk gauge fields Aµ from the AM = (Aµ, φi) is dual to the conserved currents

Ji of SO(6)R symmetry group and the

• AdS5 Metric fluctuation hµν is dual to the field theory stress Energy tensor Tij

[31]

We must note that, this correspondence is not as a result of the dynamics but due

to the symmetry especially the SO(6) ' SU(4) group. It turns out that the Unitary

Irreducible Representations(UIR’S) have all been classified completely[30, 31, 32].

4.3 AdS/CFT Correlation Functions

Observed quantities in ℵ = 4 Super-Yang-Mills theory are gauge invariant. They are

composite operators living on the boundary of AdS5 including Correlations functions

and Wilson loops. From [4] using a standard prescription for computing correlation

functions of gauge invariant local composite operators, we consider massive scalar

field (dilaton). In Euclidean Coordinates of AdS5, its equation

(∇2
AdS5
−m2)Φ = 0 (4.4)
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with metric

dS2
AdS5

=
R2

ρ2
(dρ2 + d~x2) (4.5)

where d ~x2 = δijdx
idxj. The generalized Dirichlit boundary conditions is

Φ(x, ρ)→ ρνφ(x) (4.6)

where as ρ tends to 0 (Boundary of AdS5 being conformal), the Laplace equation

∇2
AdS5

φ(~x, ρ) =
1√
G
∂µ(
√
GGµν∂νΦ) (4.7)

∇2
AdS5

φ(~x, ρ) = ρ5∂ρ(ρ
−3∂ρΦ) + ρ2∂ · ∂Φ (4.8)

becomes

(ρ2∂2ρ− 3ρ∂ρ+ ρ2∇2 −m2)Φ(x, ρ) = 0 (4.9)

Using the green’s function method such that a solution

Φ(x, ρ) =

∫
∂AdS5

d4~xK(ρ, x;x0)φ0(x) (4.10)

�~x,ρK(~x, ~x′, ρ) = ρβδ4(~x− ~x′) (4.11)

we are interested in the behavior that

K(ρ, x;x0) −→ ρ4−βδ(x− x0) (4.12)
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at the boundary so that we obtain the solution to above equation expressed in terms

of Bulk-to-Boundary Propagator as

K(ρ, x, x0) = C
ρα

(ρ2 + (x− x2
0))β

(4.13)

where Cβ is the Normalisation factor given as

Cβ =
Γ(β)

π2Γ(β − 2)
(4.14)

putting K into the differential equation and solving for β we obtain the mass-to-

dimension relation for scalars

(m)2 = ∆(∆− 4) (4.15)

where m2 = m2

R2 and the inverse of equation is

∆ = 2 +
√

4 + (m)2 and β = ∆ (4.16)

For any dimension d

∆ =
d

2
+

1

2

√
d2 +m2 (4.17)

where m2 = Mass of fields from spherical correction of radius R while M2 = Mass of

field in AdS5

REMARKS

First we observed that ∆ is real as expected for any Unitary theory once the Breitenlohmer-

Freedman bound (m)2 ≥ −4 required for stability of the AdS5 is enforced.

40



Second,

(∇2
AdS5
−m2)Φ(ρ, x) = 0 (4.18)

gives two solutions and as

ρ→ 0

,

Φ(x, ρ) ' ρµφ(x) =


ρ4−∆φ(x),

ρ∆φ(x),

Φ(x, ρ) ' ρβφ(x, ) is non-recompensable and in [25] that correspondence to studying

the theory in a background with non-vanishing Vacuum Expectation Values(VEV) of

operators for the field ie determining the VEV of operators of associated dimensions.

While Φ(x, ρ) ' ρ4−βφ(x) do not correspond to bulk excitations but rather they

represent the coupling of external sources to the supergravity or string theory. This

is like operator deformations of the fixed point action required to compute correlation

functions. The Mass-to-dimension relations and their inverses for other fields includes:

1. Symmetric Tensors (ML)2 = ∆(∆− 4) and ∆ = 2+
−

√
4 + (ML)2

2. P-forms (ML)2 = (∆ + p)(∆ + P − 4) and ∆ = 2+
−

√
(2− p)2 + (ML)2

3. fermions (ML)2 = (∆− 2)2 and ∆ = 2+
− |ML|

For Our scalers above reading the masses from Table in [31]

m2 = k(k − 4), (k ≥ 2) and m2 = (k + 4)(k + 8),(k ≥ o)

we get that

∆ = k, for scaler hµµ and
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∆ = k + 8, for field aαβγδ

They all have the [0, k, 0] representation of the SO(6) group as seen on the table

on presentation slide. Vectors and scalars correspond to P-forms with P = 1, 0

respectively.

2 Point Functions

We consider calculating the 2 point function for a Massive Scalar in the AdS side.

The map between AdS and the CFT quantities is given by relation proposed in

[4, 33, 34]

exp(−ΓSugra(φi)) = 〈exp(
∫
d4xφ0

iϑi)〉

where the Left hand side (LHS) is the supergravity action evaluated on the classical

solution given by φi and the right hand side(RHS) is a generating function for the

correlations functions in the super Yang-Mills theory. Therefore, for every field φi in

the AdS side, there is a unique operator; traceless and symmetric tensor of SO(6) ϑi

in the Yang-Mills side, so that this operator has a conformal dimension ∆i.

Consider a two point function of a scalar operator whose corresponding field in the

AdS5+1 is a massive scalar field hµµ of mass m, then the action is:

S =
1

2

∫
d4+1x

√
g[gµν∂µφ∂νφ+m2φ2]

in the AdS4+1 this action becomes

S =
1

2

∫
d5xdρρ−4+1[(∂ρφ)2 + (∂iφ)2 +

m2

ρ2
φ2]

where we have set from the AdS metric L = 1 as in [35]

For ρ→ 0 we find that

Φ(ρ, x)→ ρd−β(φ0(~x) +O(ρ2) + ρ∆[A(~x) +O(ρ2)
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where ∆ are root to ∆(∆− d) = m2

when φ0(~x) is boundary values of φ(ρ, ~x) and as source of the operator ϑβ

With our bulk-to-boundary propagator

K(ρ, ~x;x0) = Cβ
ρα

(ρ2 + (~x− ~x0)2)β

and

Φ(~x, ρ) =

∫
∂AdS4+1

d4~x′K(ρ, ~x, ~x′)φ0(~x′)

where

Cβ =
Γ(β)

π
d
2 Γ(β − d

2
)

then

S(φ0) = I(φ0) = −
(β − d

2
)Γ(β)

π
d
2 Γ(β − d

2
)

∫
ddx′

∫
ddx′′

φ0(x′)φ0(x′′)

|~x− ~x′|2β

then the two point function is

〈ϑ(~x)ϑ(~y)〉 =
δ2I(φ0)

δφ0(~x)δφ0(~y)
|φ0=0

〈ϑ(~x)ϑ(~y)〉 =
(∆− d

2
)Γ(β)

π
d
2 Γ(β − d

2
)

1

|~x− ~y|2β

While in the SYM side, our composite operators

ϑ(x)∆ ≡
1

nk
STr{X i1(x), ..., X i∆(x)}

by Poincare symmetry 〈ϑ∆1(x1), ϑ∆2(x2)〉 must depend on (x1 − x2)2) By inversion

symmetry it must vanish unless ∆1 = ∆2 by scaling symmetry one fixes the exponent

and by properly normalizing the operators we obtain

〈ϑ∆1(x1), ϑ∆2(x2)〉 =
C∆δ∆1,∆2

|x1 − x2|2∆1
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where

Cβ =
(2β − 4)Γ(β)

π
d
2 Γ(β − d

2
)

1

| ~x1 − ~x2|2β1

which is the same as obtained above.

Another corresponding field in the AdS side from the Born-Infeld D-brane action is

the anti symmetric tensor.

Sint =

√
π

K

∫
d4x[tr(

1

4
φF 2

αβ −
1

4
CFαβ ˜Fαβ) +

1

2
hαβTαβ]

Consider, the coupling of the Dilatons Φ to the 1
4g2
YM
trF

2
αβ. In Yangs-Mills. Since

ℵ = 4 Super Yang-Mills SU(N) is conformal invariant quantum theory and F 2
αβ has

dimension 4 the 2-point functions of

〈F 2(x), F 2(y)〉 N2

|~x− ~y|2

where N is the rank of he SU(N) group.

While in the AdS5 Volume of S5 = π3L3 = π3R3 then

S =
π3R3

4κ2
10

∫
d5x
√
ggµν∂µΦ∂νΦ

with gµν = R2

ρ2 δµν is the metric of AdS5

For λ >>> 1 we have a classical sugra solution, so from solving the equation

∂µ[
√
ggµν∂νΦ] = 0

with boundary condition

φ(ρ, ~x)→ ρ4−∆φ0(~x)

Φ(ρ, ~x) =

∫
d4x′K∆(ρ, ~x, ~x′)φ0(x′)
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with

K∆(ρ, ~x, ~x′) ∼
ρ4

[ρ2 + (~x− ~x′)2]4

. Substituting in S(Φ) we get

S(φ0) =
π3R3

4κ2
10

∫
d4~x′ρ−3Φ∂0Φ

S(φ0)
π3R8

4κ2
10

∫
d4x′d4x′′

φ0(x′)φ0(x′′)

(~x− ~x′)8

so that our generating function

Z(φ0) = exp[
π3R8

4κ2
10

∫
d4x′d4x′′

φ0(x′)φ0(x′′)

(~x− ~x′)8
]

with

R2 = α′
√

4πNgs

and

2κ2
10 = (2π)7g2

s(α
′)4

Therefore our two point function is

〈F 2(x)F 2(y)〉 =
∂2Z(φ0)

∂φ0(x)∂φ0(y)
|φ0=0

〈F 2(x)F 2(y)〉 N2

(~x− ~y)8

Some of the most stricking results of this AdS/CFT conjecture obtained in the same

way for other fields are in [36]
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4.3.1 Wilson Loop

The Wilson loop operator is a phase factor associated with the trajectory of a heavy

quark in the fundamental representation of the gauge group which in this case is

U(N).

W (C) =
1

N
TrPexp

∮
C

dτ(iAµ(x)ẋµ + Φi(x)(yi))

where xµ is a parametrization of the loop yi =
√

˙x2θi and θi is a point on a five

dimensional unit sphere (θ2 = 1). In the AdS/CFT corresponds , the Wilson loop is

computed by finding the area of the world sheet of the classical string on AdS5 × S5

whose boundary is the loop C, which in turn lies on the boundary of AdS5.

In gauge theory,[37] the Wilson loop operator is

W (C) = Tr[Pexp(i

∮
c

A)]

depends on the loop C embedded in 4 dimension space and P path ordered integral of

the gauge correction along the contour. The trace is taken over some representation

of the gauge group( here in the fundamental representation).

From the expectation Value of the Wilson loop operator 〈W (C)〉 we can calculate the

Quark-AntiQuark Potential. We will consider a rectangular loop with sides length T

and width L in Euclidean space. Then if we view T as the time direction, we can

say that for large T, we can show that [37, 18] the expectation value will behave as

e−TE where E is the lowest possible energy of the quark-anti quark configuration.

Therefore we have

〈W 〉 ∼ e−TV (L)

where V (L) is the quark-anti quark potential. For large N and g2
YMN large(in

the strong coupling limit), The AdS/CFT correspondence maps the computation

of 〈W (C)〉 in the CFT into a problem of finding a Minimum Surface area in the AdS
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as in [38].

DISCUSSION

AdS/CFT realises a U(N) gauge group from the large number of D3-branes ( Large N)

situated at the same point-Concident. The strings with two ends on different branes

in such a concident configuration are massless, since there is no physical seperation

between the D-branes and they correspond to gauge fields,

Aaµ = (Λa)ij|i〉 ⊗ |j〉 ⊗ |µ〉

. We consider a simple case with N + 1 Coinsident D3-branes giving a U(N + 1)

gauge group. Let us take one of the D-branes and seperate it from the rest. This is

like breaking the gauge group spontaneously via a Higgs-like mechanism;

U(N + 1) −→ U(N)× U(1),

where U(N) corresponds to the remaining coincident N D3-branes. The strings that

have one end on the N D3-branes and the other end on the extra D3-brane will

become massive with mass Mass = string Tensions × D3-branes seperations. They

also have state

|i0〉 × |i〉 = |N + 1〉 × |i〉

with the i being the fundamental index. Thus they have the fundamental represen-

tation of the U(N) gauge group. Its Mass is therefore

M =
1

2πα′
r =

U

2π

for U = r
α′
. This string behaves as a ” W-Boson” and acts on the U(N) as a quark.

If we take U → ∞,(α′ → 0) we obtain an infinitely massive external quark which is

a string stretched in the AdS space from some U0 and some finite part of U.
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Since we are taking U → ∞ where the ℵ = 4 Super Yang-Mills(SYM) gauge theory

lives, our Wilson loop contour C at infinity is a boundary of the string. This is our

string world sheet stretched between the contour C at infinity down to a finite point

in the AdS forming a smooth surface.

Supersymmetry of the ℵ = 4 SYM dictates that we have to generalised the Wilson

loop as

W (C) =
1

N
TrPexp[

∮
C

(iAµẋµ + θIXI(xµ)
√
ẋ2)dτ ]

Where xµ(τ) are parameters of the loop and θI is a unit vector giving the position

of the string in S5 of the AdS5 × S5 and corresponds to the scalar XI of the ℵ = 4

SYM.

In order to calculate 〈W (C)〉 we use the prescription for finding the partition function

for the string with boundary on C [4].

In the Supergravity limit, gs → 0 or gsN large but fixed, then

〈W (C)〉 = Zstring[C] = e−Sstring [C]

where Sstring = string World Sheet action = 1
2πα′
×Area of world sheet.

Since the string has tension and gravity in the AdS5 × S5, its will want to minimize

its ”gravitational potential” which is the minimum of U. Therefore the string between

U =∞ at boundary and some U = U0 by is tension. But the area of this world sheet

will be divergent and 〈W (C)〉 = 0

Although the string is stretched between the |i〉 and |N + 1〉 D-branes thus between

U = ∞ and U = U0, it will represent an infinitely massive ” W-boson” whose mass

φ we must subtract. Then from the action we must subtract the term φ`, where ` is

the length of the loop C and φ is the free ”W-boson”(free string) mass= U
2π

as from

[39]. Then

〈W (C)〉 = e−(Sφ−`φ)
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Quark-AntiQuark Potential Calculation. Our Contour as we said earlier is

an infinitely thin rectangle [40]. T → ∞ with a quark at x = −L/2 and Anti quark

at x = L/2 see figure.

with U = r
α′

, our AdS5 × S5 metric is

dS2 = α′[
U2

R2
(dt2 + d~x2) +R2dU

2

U2
+R2dΩ2

5]

where R2 =
√

4πgsN

Therefore, Our Nambu-Goto Action for the string will be

Sstring =
1

2πα′

∫
dτdσ

√
det(GMN∂αXM∂βXN)

Now since, we want a static solution, let us use the static gauge where τ = t and

σ = x.

Then for T → ∞, meaning T
L
→ ∞ we assume that the world sheet is translation

invariant in [41](Otherwise the curvature of the world sheet near corner becomes

important). For Static configuration we neglect time coordinates and so U = U(σ) =

U(x). Calculating the induced world sheet metric

hαβ = GMN∂αX
M∂βX

N

with

h11 = α′
U2

R2
(
dt

dτ
)2 = (α′)2

and

h22 = α′
U2

R2
(
dx

dσ
)2 + α′

R2

U2
(
dU

dσ
)2

and so

h22 = α′(
U2

R2
+
R2

U2
(U ′)2)
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and h12 = 0 = h21 and U ′ = (dU
dσ

) Thus

Sstring =
1

2π
T

∫
dx

√
(∂xU)2 +

U4

R4

Let U0 be the minimum of the U(x) and g = U
U0

Then the Euler equation of Motion

is

1

U2
√

(∂xU)2 + 1
= constant

whose solution is

x =
R2

U2

∫ U
U0

1

dy

y2
√
y4 − 1

By inverting X(U,U0) to U(x, U0) we can find U0. Now, because At U = ∞ at

x = L/2 then we

L

2
=
R2

U0

∫ ∞

1

dy

y2
√
y4 − 1

=
R2
√

2π
3
2

U0Γ(1
4
)2

From Wilson loop, prescription

Sφ − `φ = TVqq̄(L)

we regularize this formaular by intergrating only up to Umax. Then ` ' 2T and mass

of string is

φ =
Umax − U0

2π
+
U0

2π
=
U0

2π

∫ ymax

1

dy +
U0

2π

Integrating from Umax to U0 and then U0 to Umax we get

TVqq̄(L) = T
U0

2π
[

∫ ∞

1

dy(
y2√
y4 − 1

− 1)− 1]

and substituting from

L

2
=
R2
√

2π
3
2

U0Γ(1
4
)2
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we finally obtain

Vqq̄(L) = −
4π2

√
2g2

YMN

Γ(1
4
)4L

Observation

Finally that the potential [41, 42] Vqq̄(L) α 1
L

determined by conformal invariance as

in the gauge filed case

〈W (C)〉ladder = exp[(

√
g2
YMN

π
− 1 +O(

1√
g2
YMN

)
T

L
)]

for g2
YMN >> 1 ( strong Coupling limit.

The Potential is also a Vqq̄(L) α (g2
YMN)

1
2 as opposed to g2

YMN , Therefore we con-

clude that it is a non-perturbative result. This only indicates, the screening of the

charges at strong coupling. The calculations still make sense for all distances L when

gsN is large independent of gs. Also, subleading corrections from quantum fluctua-

tions of the world sheet were calculated in [41, 42, 43]

4.3.2 CONCLUSION

The AdS/CFT Conjecture depends entirely on D-branes being extremal branes, Car-

rying Ramond-Ramond Charges.

Low energy D3-brane dynamics is entirely described by N=4, Super Yang-Mills SU(N)

in 4-dimesion

The AdS/CFT conjecture holds well only when we consider BPS(Tracless Symmetric

) Operators in the N=4, Super Yang-Mills whose dimensions are protected by Su-

persymmetry. This BPS Operators in the short multiplets of SU(2,2/4) have same

dimension and representation as the Kaluza-Klein modes in Super gravity on AdS5.

For non-BPS operators we will have to consider excitation modes of the Superstring,

whose conformal dimension is not protected.
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