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Introduction: 

Understanding nuclear structure remains a main question to physicists today. Still the structure of 
nuclei with more than few nucleons is not fully understood. Measuring nuclear excitations might be a 
tool to solve this puzzle because with extreme conditions the nucleus produce high γ-ray that can be 
used to compare with model. So, studying the γ-ray with high accuracy is a major key to study the 
nucleus as well as the universe.  

AGATA is a project to track gamma ray with high efficiency, it is a European collaboration project 
funded by twelve countries in Europe. The project was proposed in 2001 and in 2002 it was signed by 
the participant countries; in 2005 the first detector showed its result. It is expected that the complete 
AGATA array will be ready within 2018. The spectrometer is 4π γ-ray detector which is a 
combination of several Germanium detectors. It is a major instrument to study nuclear structure ray 
tracking by measuring the γ-radiation. AGATA will have very good full energy peak efficiency with 
high peak-to-total ratio (P/T) and angular resolution. The system will be capable of high event rates 
with ancillary detectors to measure light charged particles or neutron. In this paper, a short discussion 
about the project and the physics behind it is presented. A comparison of this γ-tracking array with 
other γ-tracking arrays has been given with some examples. 

 

AGATA Physics case: 

A major advancement of detector technology for nuclear physics is the development of a gamma-ray 
detection system which is capable of tracking the location of the energy deposited at every gamma-ray 
interaction point in a detector. It will provide an unparalleled level of detection sensitivity which will 
open new avenues for nuclear structure studies. 

Robustness of the shell structure away from stability: 

A many fermion system like atomic nucleus is described in the approximation of almost independent 
particles that move in a common potential. This approximation results in a single-particle shell 
structure of nucleus. 

By measuring the electric quadrupole B (E2) strength decoupling or strong polarization effects in 
nuclei can be searched for. This is sensitive to the proton contribution of the excitation along a single 
magic isotopic chain. As an example, Coulomb excitation experiments give access to the energy of the 
first 2+ state and the associated B (E2) transition rate in even-even nuclei. Changes of shell gapes and 
shifts of the magic gaps can be localized when data are analyzed symmetrically as a function of the 
proton and neutron numbers. The orbit dependent interaction between neutrons and protons cause this 
change. AGATA will allow performing these experiments further from stability cause of its increased 
number of segments. 

The low lying vibrational states near closed-shell nuclei is one of the excited modes of interest. It has 
been shown by comparison with the shell model that a larger effective charge is needed to reproduce 
the experimental B (E2) values compared to higher mass isotopes which indicate a greater core 
polarization due to particle-hole excitations. The additional important information on the physics of 
neutron-rich nuclei can be obtained by higher spin states. If the neutron skin rotates but the core makes 
no contribution then the observation of excited states will provide information about the neutron-
neutron correlations within the surface region. An important way to understand collective excitations 



 

in atomi
develope
efficienc

Isospin 

The uniq
orbitals 
the nucl
features 

Observa
in E1 tr
breaking
stable ta
exhauste
granular
experime

 

Gamm

To track
detector 
scatterin
Photoele

Photoel

Low ene
their ene
It is diffi
scatterin
to reach 

ic nuclei is th
ed and used 
cy for this im

degrees of f

que characte
and have ma
lear force gi
observable o

ation of isosp
ransition in 
g. Heavier N 
argets/beams
ed the gamm
rity and eff
ent. 

ma-ray Int

k the γ ray w
using the e

ng. When a 
ectric effect, 

Fig-1: The

lectric effec

ergy gamma 
ergy to the el
ficult to decid
ng. To determ

the interacti

hrough meas
in different 

mportant class

freedom: N=

eristics for t
aximum spa
ives rise to 
only on the N

pin forbidden
mirror nucl
= Z nuclei a

s, they are p
ma detection
ficiency is e

teraction

we must kno
energy and t
γ-ray pass

Compton sc

e three proba

ct: 

rays with the
lectron to eje
de for sure w
mine these po
on positions

surements of
laboratories

s of experim

=Z nuclei:  

he nuclei N
tial overlap 
neutron-pro

N = Z or very

n E1 gamma 
ei may be u

are very diffi
produced wit
n. In such c
essential. Th

s: 

ow the indiv
the position 

ses through
attering and 

abilities that 

e energy ran
ect it from th

whether low e
oints inside t
. 

f electromagn
s for this me

ments have be

N = Z is: the
of their wav

oton symmet
y near to it. 

transitions i
used to dete
icult to study
th very low
ases the use
he performa

vidual intera
n of the inte

matter, the
Pair product

can occur wh

nge ~100 keV
he atom. Thi
energy absor
the crystal w

netic momen
easurement. 
een increased

e neutrons a
ve functions,
try which m

in the even-e
ermine the o
y because in 

w cross sectio
e of a gamm
ance of AG

actions of an
eraction to r
ere are main
tion. 

hen photon i

V interact wit
is absorption
rption is pho

we have to re

nts. Several t
The sensitiv

d by the AGA

nd the proto
, and the cha

manifests itse

even N = Z n
origins of th
fusion-evapo
on and the 
ma ray dete
GATA is sa

n event that 
econstruct th
nly three ty

nteracts with

th an atomic
n of γ-ray occ
otoelectric ab
ely on the pr

2 |

techniques h
vity and the 
ATA detecto

ons occupy 
arge-indepen
elf in some 

nuclei and di
he isospin s
oration react
existing resu

ector array w
atisfactory w

can occur in
he sequence
ypes of inte

 

h matter [7].  

c electron and
curs in a sing
bsorption or 
robability of 

 A G A T A 

have been 
detection 
rs. 

the same 
ndence of 

structure 

ifferences 
symmetry 
ions with 
ults have 

with high 
with this 

nside the 
e of their 
eractions: 

d transfer 
gle point. 
Compton 
the γ-ray 



 

The kine
binding 
transfer m

The tota
effect. A
dominan

Compto

The ener
to some 
The en
transferr
other pa
scattered
inside th
It is the
consider
these eve
high acc

Let us co
of its en

etic energy o
energy of t
mechanism. 

al attenuation
As the photo
nt interaction

on Scatteri

rgy of a γ-ra
MeV is abs

nergy of th
red to the el
art of the ene
d. Often se
he detector w
e most impo
red for trac
ents we need

curacy. 

onsider an ex
nergy (e1) to

of the ejected
the electron.
 

Fig-2: T

n below phot
on energy in
n mechanism

ing: 

ay between a
sorbed by C
he incident
lectron to ej
ergy goes in
veral scatte

with a final p
ortant event
king a γ-ra

d to determin

xample as sh
o that electr

d photoelectr
. Below 50 

The gamma-r

on energy of
creases abov
above few M

a few hundre
ompton Scat
γ-ray is 

ect it and th
nto a photon 
ring events 

photoelectric
t that needs
ay. To reco
ne the scatter

hown in figu
ron and aga

ron is equal t
keV the ph

ray cross-sec

f about 100 k
ve 100 keV,
MeV. 

ed keV 
ttering. 

partly 
hen the 

that is 
occur 

c event. 
s to be 
onstruct 
ring angle an

ure-3. A γ-ra
ain the scatte

to the differe
hotoelectric 

tions for ger

keV is due n
, Compton s

nd the positio

y scatters wi
ered γ-ray i

Fig-3: Poss

ence of the i
effect is the

manium. 

nearly entirel
scattering inc

on of the invo

ith an electro
s absorbed 

sible Compto

3 |

incident γ-ray
e dominatin

ly to the pho
creases until

olved interac

on at point 1
at position 

on scattering

 A G A T A 

y and the 
g energy 

 

toelectric 
l it is the 

ction with 

 and part 
2 by the 

g[1]. 



4 | A G A T A 
 

photoelectric effect. The scattering angle at point 1 is assumed to be θ. From the Compton formula, we 
know that the energy of the scattered photon is given by 
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Where, Eγ' (= Eγ-e1), is the energy of the scattered photon and Eγ is the energy of the incident photon 
and e1 is the released energy to the Ge Crystal. The energy release at the interaction points and the 
position of the scattering can be determined by a good position sensitive detector. If we know the 
source of the γ-ray and 3-D coordinates of the involved points then the scattering angle can be 
calculated: 
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Here, 01 is the vector distance from point 0 to 1 and so is12. From this the energy of the scattered γ'-
ray can be determined and the energy can be compared to the energy released at point 2. This 
procedure can be repeated for a three points system and possibly get alternative values for the 
Compton scattering. The two energy values can be compared using the energy of the incoming 
transition with a least-squares: 

 
 





expected
'

2expected
''2




E

EE
 

Here, Eγ' is the observed energy and expected
'E is the expected energy of the photon. The χ2 is that the 

photon energy and scattering angle are described by the Compton relationship [10]. The sequence of this 
event is that the γ-ray originates in point 0 has a Compton scattering at point 1 and then the scattered 
photon is fully absorbed at point 2. A small value of χ2 is expected, for the large value of χ2 is against 
to the model. Sometimes the figure of merit is considered which is inverse of this quantity. We also 
need to consider other possible scattering sequences like 021 and the least deviation should be 
accepted as the scattering sequence. It might happen that none of these sequences give a sufficiently 
small value for χ2 because these two interaction points did not exhaust the sum energy as the detector 
cannot give this information. 

If there are N interaction points detected by the detector then there must be N-1 Compton scattering 
vertices. Then, in general 
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Where, Eγ and Eγ' are the energies of the scattering and scattered γ-rays at the nth vertex. Wn is the 
weighting factor which is the probability that the γ-rays involves in the nth vertex have travelled for 
the resulting length.  
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Backtracking Method: 

The backtracking method [3] [4] of γ-ray reconstruction is based on the observation of the energy 
deposition of the final photoelectric interaction after scattering. Usually the energy after the interaction 
falls into a narrow band. In figure 9 the photo and Compton spectra of the energy depositions in the 
individual interactions of the γ-rays is shown. In most cases the γ-ray interacts by a few Compton 
scattering events before the photo-absorption takes place. The peak position of the different 
interactions is distinguishable. 

The algorithm starts from the last point of the interaction i.e. the photoelectric interaction whose 
energy falls in the narrow energy interval. It starts by sorting all the interaction points according to the 
energy and computes all physical distances between the interaction points. Considering that the first 
interaction point (k =1) has an energy E (k) greater than Ephotomin = 90 keV. The nearest interaction 
point in the Ge detector to the starting point is chosen as the previous interaction point (k =2). The 
compatibility of the distance r2→1 of these two points is checked with the photoelectric range in Ge for 
a photon energy Et = E (1): 

      phototGeAvogadro

Ge

macrot
t EN

A

E
E
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ρGe is the density and AGe is the atomic mass of Ge. The probability to travel a distance r2→1 or more is 

    



 


tE

rrP 
12

12 exp  

The probability is 0 when the distance in Ge is smaller than the physical distance. The probability to 
undergo a photoelectric effect is 

    
 tott

photot

photot E

E
EP




  

If the probability P (r2→1) is smaller than Pphotomin, a new photoelectric point is chosen. If the 
probability P (r2→1) is greater than Pphotomin, the second interaction point (k =2) is accepted and the total 
statistic for this step will be 

  121,  rPFtot  

Before interaction point k =2, the photon energy was    21 EEEt   

After the interaction the scattered energy is  1EEs  . From the Compton formula we know the 

direction in which the previous point k =3 should search for: 

   









ts
ee EE
cm

11
1cos 2  

Here, mec
2 =511 keV, is the rest mass of the electron. 
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For the point k =3 we need to look for the distance less than 3λ (Et) away from the k =2 point in the 
direction of cos (θe) which is obtained by testing the difference between cos (θe) and cos (θp). Where 
cos (θp) is the geometrical coordinates of the interaction points and given by: 

  
1223

1223 .
cos




rr

rr
p 



  

The figure of merit for this difference is 

 
   













 



 pe

F
coscos

expcos  

Where σθ is the uncertainty in the evolution of cos (θp) due to the that in the interaction positions. 
Therefore, the interaction point k =3 is 

    compttot EPrPFF  23cos2,  

Where,  23rP  is the probability to travel the distance r3→2 and  comptEP is the probability to 

undergo the Compton scattering. If Ftot, 2 is greater than Fcomptmin then this point is accepted. Then the 
total energy before the interaction point k =3 is: 

      321 EEEEt   

And the scattered energy is: 

    21 EEEs   

This procedure is repeated to look for the previous interaction point in the path. When the product of 
the probabilities at step 3 doesn’t satisfy the threshold condition then another interaction point is 
searched for and so on. If there is no interaction point that fulfills this condition within 3λ of the k =2 
then the point k =3 is taken to be the source position. Now, we know the source point and as the 
distance from any interaction point to the source is greater than the average distance between 
interaction points, so the figure of merit for the angle difference is more severe: 

 
   













 



 pe

F
coscos

2expcos  

If the source satisfy the threshold requirement and if 

 

 

track

k

k
ktottot FFF 







 

/1

, , then the track is ended. 

A new choice is made for the interaction point k =2 if the source doesn’t fulfill these requirements. 
These procedures are followed to find all the photoelectric interaction points. If Ephotomin< e (i) 
<Ephotomax is satisfied for no points then the backtracking procedure is complete. 
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Summary: 

AGATA is the most efficient γ-ray tracking array ever developed and position sensitive Ge-detectors 
are the main concept for this. It is mentionable that the Composite Ge detectors were first developed 
for the EUROGAM spectrometer and it has been used many standard applications. The Encapsulated 
Ge detectors were developed for the EUROBALL spectrometer. The Segmented techniques are the 
latest of their combination and are used in AGATA. In this paper, a short overview of the AGATA is 
given. 
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