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In this paper we will consider one inequality on the sum of divisors function. 

This inequality is closely related with the Robin’s inequality.  

 

As in the theorem 1 of the paper [1], we suppose that  is 

the prime factorization of n , where  are distinct primes and 

m
mqqqn λλλ 21

21 ⋅=

1 2, , mq q q

1 2, , mλ λ λ  are non-negative integers. We assume  

here, too. Let be the consecutive primes. We 

will choose  arbitrarily and fix it. We put 

1 2 1mλ λ λ≥ ≥ ≥ ≥

1 2 32, 3, 5, , ,np p p p= = =

5mp ≥ ( ) 1 2
0 1 2

m
mr n p p pλλ λ= ⋅ . 

Then by the theorem 1 of the paper [2], there exist the optimum points 

( 0 0 0
0 1 2, , , m

m ) Rλ λ λ λ= ∈ m in -dimensional real space mR of the function   
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and =0.577γ  is Euler’s constant ([4,5]).  

 

We have    

Theorem. There exists a constant 01 c≤ < +∞  such that for any  we 

have 

2n ≥

      ( ) ( )( )( )0log log exp log exp log log( 1)n e n c n n nγσ ≤ ⋅ ⋅ ⋅ ⋅ ⋅ + .      

 Proof.  We put  

      ( )
( )( )( )( )

( )( )
exp exp / /

exp log exp log log( 1)

e n n n
G n

n n

γ σ− ⋅
=

⋅ +
.                

There are two steps for the proof of the theorem.        
① The function has the following properties.   ( )G n

First, For any ( ,n S mλ∈ )  ([1]) it holds that ( ) ( )0 ( )G n G r n≤ .  

In fact, it is clear by the theorem 1 and the theorem 2 of the paper [1].   

Second, for 1 2
1 2

m
mn p p pλλ λ= ⋅  we put ( ) ( ) ( )1 2, , , mG n G Gλ λ λ λ= = . 

Then there exist ( )0 0 0
0 1 2, , m

m Rα α α α= ∈ such that for any 

( )1 2, , , m
m Rλ λ λ ∈  we have ( ) ( )0G Gλ α≤ . This is also clear by the 

theorem 1 of the paper [2]. And for the optimum points 

( 0 0 0
0 1 2, , m

m ) Rα α α α= ∈  of the function ( )G λ , such the results as in the 

theorem 2 and the theorem 3 of the paper [2] hold.  
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Also for any  we have 2n ≥ ( ) ( ) ( )( )( )( )= exp exp / /G n H n e n n nγ σ−≤ ⋅ .            

 Finally, The every member ( )0 1,i i mα =  of the optimum points 

{ }0 0 0
1 2, , mα α α of the function ( )G λ  is not larger than ( )0 1,i i mλ = of one 

of the function ( )H λ , namely, for any ( )1i i m≤ ≤  it holds that 0 0
i iα λ≤ .  

In fact, by the theorem 2 of [2], for the function ( )H λ  it holds that     

               
( )( ) ( )( ) ( )

00 0
1 2 11 1

1 2

0 0exp 1 1 .

k
kp p p

e F e F i k

λλ λ

γ γλ λ

++ +

− −

= = = =

= ⋅ + ≤ ≤
               

Similarly, for the function ( )G λ  it holds that     

        
( )( ) ( )( ) ( ) ( )
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where  
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2 log

exp log log( 1) log
0 .
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n
n
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n n n n
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+
Ψ = +

⋅

+ ⎛ ⎞+ ⋅ ⋅ →⎜ ⎟+ +⋅ + ⎝ ⎠
→∞

) 0
i

         

Hence for any  we have (1i i m≤ ≤ 0
iα λ≤  and, in particular, we have     

             ( ) (
0 01 1

0 01 1
1 1

1 1
1 1

i im m
i i

i ii i

p pF F
p p

α λ

)α λ
− − − −

− −
= =

− −
= ≤ =

− −∏ ∏ .                  

② We put   

       ( )0 0 0
1 2, , ,mD G mα α α=                                   

and 
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In this connection, we put  
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Then it is clear that  and    1mD D−′ ≤
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 By the theorem 4 of the paper [3] we have   
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On the other hand, we have 
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iwhere ( )
1

log
m

m
i

p pϑ
=

=∑ is the Chebyshev’s function ([6]) and ( )k kR o p= .  

Hence by the prime number theorem ([4,5,6]), we have    

         ( ) ( ) (0log 1m k k
m

m m m m

p pn R p
p p p p

ϑ ϑ
= + + → → ) .∞                   

From this we get  

        ( )( )0 1log 1mn p pθ= ⋅ + m ,                             

where ( )1
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⎛ ⎞
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1
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= Ο⎜
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On the other hand, it is clear that   

                                         
( ) (

3log 0
exp log

m
m

m

p p
p

→ → )∞

1

                        

This shows that there exists a number  such that for any  we have  0m 0m m≥

         1m m mD D D− −′< ≤ .                                       

From this we get 

             00 sup m
m

c D< = < +∞ .                                 

This is the proof of the theorem.   

  

Note.  ①We are sure that  

                      
( )( )

( )( )0 1

exp exp 3/ 2 / 2
1.6436 2

exp log 2 exp log log 3

e
c D

γ− ⋅
= = = ≤

⋅
          

② The process for the proof of the theorem by the papers [1,2,3] is 

graphically as follows. Here ⇒ shows the increasing direction of the values 

for the function  and .   ( )H n ( )G n

                                    3 11 2
1 2 3 1

m m
m mn q q q q qλ λ λλ λ −
−= ⋅ ⋅ ⋅  

                                                      ⇩                                    ← paper [1] 
                                    31 2

0 1 2 3( ) m
mr n p p p pλ λλ λ= ⋅ ⋅ ⋅  

                                                      ⇩                                    ← paper [2] 
                             , 

00 0
1 2 1 1

0 1 2 1
k

k kn p p p p pλλ λ
+= ⋅ ⋅ m

1

                                                      ⇩                                    ← paper [3] 
                             

00 0
1 2 1 1

0 1 2 1
k

k k mn p p p p pλλ λ
+ −′ = ⋅ ⋅  

                                                   ⇩                          
2n =   

 
As it was indicated in the paper [1], one can say that any natural number has 
the three-dimensional structure. For ( )1 2, , mq q q q= , ( )1 2, , mλ λ λ λ=  

and  of ( )n mω = 1 2
1 2

m
mn q q qλλ λ= ⋅  we put ( ), ,n n q mλ= . Then to prove 

the theorem we have taken the process reducing the dimensional numbers of 
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( , ,n n q mλ= )  in the function ( )G n . The dimensional numbers of  in the 

function  were reduced by the paper [1], [2] and [4], respectively. That 

is so; 

n

( )G n

( ) ( ) ( ) ( )0, , , ,n n q m n m n m n mλ λ λ= → → → .     

③ The below table 1 shows  the optimum points ( )0 0 0
0 1 2, , , mλ λ λ λ=  of the 

function ( )H λ  and the values of ( )0H n  and  to 0( )G n mn =)(ω .   

Table 1  

( )n
m

ω
=
 

( )0 0 0
1 2, , , mλ λ λ λ=  of  

00 0 0
1 2 2 1 1

0 12 3 5 k
k kn p pλλ λ λ

+= ⋅ ⋅ ⋅ mp  

( )0H n , 

0( )G n  

 
1 

   
  0

1 1λ =
5.09518716186 , 

 1.643686767536
 
2 

    
  0 0

1 21.65 , 1λ λ= =
3.58945411446 , 

-10.8250082 10×  
 
3 

   
  0 0

1 22.70 , 1.33 , 1λ λ= = 0
3λ =

1.91192398575 , 
-50.7148367 10×  

 
4   

0 0
1 2
0 0
3 4

3.36 , 1.75 ,
1 , 1

λ λ

λ λ

= =

= =

1.32309514626 , 
-60.1065950 10×  

 
5    

0 0
1 2
0 0 0
3 4 5

=4.22 ,  =2.29 ,

=1.24 , = 1

λ λ

λ λ λ =

0.57062058635 , 
-90.3761569 10×  

 
6   

0 0
1 2
0 0 0
3 4 5

=4.53 ,  =2.49 ,

=1.38 , = 1

λ λ

λ λ λ λ 0
6= =

 
0.40977025702 , 

-100.767767 10×  

 
7 

   

0 0
1 2
0 0
3 4
0 0 0
5 6 7

=5.02 ,  =2.80 ,

=1.59 , =1.14 ,

1

λ λ

λ λ

λ λ λ= = =

 
0.22782964552 , 

-110.575576 10×  

 
8 

   

0 0
1 2
0 0
3 4
0 0 0 0
5 6 7 8

=5.22 ,  =2.92 ,

=1.68 , =1.21 ,

1 

λ λ

λ λ

λ λ λ λ= = = =

 
0.20507350097 , 

-120.164730 10×  

 
9 

   

0 0
1 2
0 0
3 4
0 0 0 0 0
5 6 7 8 9

=5.57 ,  =3.14 ,

=1.83 , =1.34 ,

1

λ λ

λ λ

λ λ λ λ λ= = = = =

 
0.16722089980 , 

-140.287587 10×  

… …   …   … …   … 
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③ The below table 2 shows the Hardy-Ramanujan’s numbers ([1]), which 

give maximum value of the function  to 0( )G n mn =)(ω .   

 
Table 2 

( )n
m

ω
=
 

 

( ) 1 1 1
0 0 0 1 1

k
k kn r n p p p pλλ

+= = ⋅ m  

 

0( )G n  

1    2 1.643686767536  

2   32 ⋅  -10.82500822 10×  

3    5322 ⋅⋅ -50.71483676 10×  

4   3 22 3 5 7⋅ ⋅ ⋅  -60.10659507 10×  

5    117532 24 ⋅⋅⋅⋅ -90.37615690 10×  

6   4 22 3 5 7 11 13⋅ ⋅ ⋅ ⋅ ⋅  -100.76776726 10×  

7    1713117532 35 ⋅⋅⋅⋅⋅⋅ -110.575576185 10×  

8    191713117532 235 ⋅⋅⋅⋅⋅⋅⋅ -120.164730227 10×  

9    23191713117532 235 ⋅⋅⋅⋅⋅⋅⋅⋅ -140.287587585 10×  

…     …   …   …   … 
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