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In this paper we will consider one inequality on the sum of divisors function.

This inequality is closely related with the Robin’s inequality.
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As in the theorem 1 of the paper [1], we suppose that n =g/ -2 ---q/" is
the prime factorization of n, where q,, q,, ---(,, are distinct primes and
A, Ay,o- A, are non-negative integers. We assume A4, >4, >---> A4 2>1
here, too. Let p, =2, p, =3, p;=5,---, p,, -+ be the consecutive primes. We
will choose p, >5 arbitrarily and fix it. We put r,(n)=p/ - py - p;.
Then by the theorem 1 of the paper [2], there exist the optimum points

A, = (210, A A ) € R™ in m -dimensional real space R" of the function



exp(exp(e” -F (/T)))

H(2)=H (&, ddy) =

prpl.pl
where
= - p i
F(A)=F (A ) =[5

and y=0.577--- is Euler’s constant ([4,5]).

We have

Theorem. There exists a constant 1< ¢, <+oo such that for any n>2 we

have

J(n)Se7-n-loglog(co~n~exp(\/@-exp(\/m»).
Proof. We put
(exp(exp(e‘7 -a(n)/n)))/n
exp[Jiogn-exp(Jfogiogtn 1|

There are two steps for the proof of the theorem.

G(n)=

D The function G (n)has the following properties.

First, Forany ne (A, m) ([1]) it holds that G(n) <G (r,(n)).

In fact, it is clear by the theorem 1 and the theorem 2 of the paper [1].
Second, for n=p/-py---pi we put G(n)=G(1)=G (4, 4. 4,) -
Then there exist a,= (alo , Q) ap ) €R™ such that for any

(A,g?’...,,im)eRm we have G(Z)SG(&O). This is also clear by the

theorem 1 of the paper [2]. And for the optimum points

a, = (alo, a;),---ar?])e R™ of the function G(/T), such the results as in the

theorem 2 and the theorem 3 of the paper [2] hold.



Also for any n>2 we have G(n)<H (n)=(exp(exp(e‘7 .a(n)/n)))/n.

Finally, The every member ¢ (i=1,m) of the optimum points
{a, &],--ap} of the function G(Z) is not larger than 4’ (i =1,m)of one
of the function H (1), namely, for any i (1<i<m) it holds that o’ <4’

In fact, by the theorem 2 of [2], for the function H (/?_, ) it holds that

ﬂl +1

P+ 0 +1
pi = pyt == pit =

:(e_yF(/T()))-exp(e_yF(Zo))+l (1<i<k).
Similarly, for the function G (/T ) it holds that

al +1

Py

az +1 _ ak +l

=Py == Py
1

:(eVF(ﬁo))-exp(e7F(&0))-(1+T(n)]+1 (1S i< k)’

where

exp(‘/log log(n+ 1))
‘P(n): 2-4/logn ’

+exp(\/10glog(n+1)) logn ( n

2 Jloglog(n+1) log(n+l)' n+1

) -0 (n - oo) .
Hence for any i (1<i<m) we have ¢; <A’ and, in particular, we have

() -TT 2 < [T - F (1)

i=1 |
@ We put

0 0 0
D, :G(oz1 , az,---,am)

and



a ol al 1 1 r_ -1
N =P Pa? P Pest " P> My =N Py
— 0 0 0 m-1
a0=(0¢1,0{2,---,0{m_1)eR ,
' _ —r\ _ 0 0 0
Dmfl—G(ao)—G(ocl,az,---,amfl).

In this connection, we put

Dpyi=  max G4, A, Ay).

(A2 A Ay JER™

Then it is clear that D, , <D, , and
log [I)::: :(exp(e‘V.F(ﬁo)) exp(e 7F( (;)))

—(logno+M eXP(\/W))
+(logn6+«/logn(') -exp( loglog(n, +1)))

:exp(e7-F(&g))£exp[e 7 F(ay): ! j lj (log py, ) -
—(Jlog N, -exp(\/loglog(no +1))—\/log ng -exp(,/loglog(ng +1))).

By the theorem 4 of the paper [3] we have

exp<e‘”F<&s>)(e"p(e F (@) %J‘IJS
<oofe - # (&) el F(2) 1 |1]-

=log p, +0,(py).

where O, (p,)=0 [log P J So there is a constant a a > 0 such that

4
®1(pm)s a.log—pm_

JPn

On the other hand, we have



logn, =log(py" ps’ -+ pi¥ - ply - ply ) = 2t log p, =
i=1

m Kk
=Zlog p; +Z(ai°—1)-log o} =3(pm)+9(pk)+ Ry
i=1

i=l
where 3(p,,) = _log p; is the Chebyshev’s function ([6]) and R, =0(p, ).
i=1
Hence by the prime number theorem ([4,5,6]), we have

logn, _ 9(Pw) (P, Re
P Pr Pn P

-1 (pm—>oo).

From this we get

logn, = pm-(1+t91(pm)),

where 6,(p,)= O( j . So we also obtain

log p,,

logng = Py, (1 +0, ( P )) :

where 6, (P, )= O[ J . And it is easy to see that

lOg pm—l

(«/log N, -exp(\/log log(n, +1))—\/log ng -exp(‘llog log(ny +1) )) =
= (\/log n, —\/log n, )-exp(,/log log(n, + 1))+
+4/logn; -(exp(,/log log(n, +1) ) —exp(ﬂllog log(n; +1) )) =

:exP(M)'(;)_g—\/EfmJ'(l'F@Z(pm))’

where 0, (p, )= O( j . Hence we have

log p,,

4
logD, —logD;, , <a- log” Py

m-1 = \/pfm
_exp(ﬂllog P ) ioz(f/z_m (l+®2(pm)) .




On the other hand, it is clear that

log® p,,

o)

This shows that there exists a number m, such that for any m>m,; we have

=0 (p, > )

D, <D, <D,,.

m-1 —
From this we get

0<c,=supD, <+o.
m

This is the proof of the theorem. [

Note. (1) We are sure that
exp(exp(e*y -3/2))/2

eXP(\/@ : eXp(\/@))

@ The process for the proof of the theorem by the papers [1,2,3] is

¢, =D, = =1.6436---<2

graphically as follows. Here = shows the increasing direction of the values

for the function H (n) and G(n).

A A _
anll 'q;Q ’(:133"'(1;11'“—11 ’qr/rlmm

1 «— paper [1]
L(N) =Py - Py P oo Py

! « paper [2]
Ny =P - pE - pX - pLphs

! « paper [3]
M =P Py B P Py

1 v

n=2

As it was indicated in the paper [1], one can say that any natural number has
the three-dimensional structure. For §=(q,, 0,, -0y ), 4 =(4, 4, 4;)

and a)(n):m of n=q"-q---q/> we put n:n(ﬁ, /?_,,m). Then to prove

the theorem we have taken the process reducing the dimensional numbers of



n= n(q, A, m) in the function G (n) The dimensional numbers of n in the
function G (n) were reduced by the paper [1], [2] and [4], respectively. That
is so; n=n(q, 2,m)—>n(4,m)—n(4,m)—>n(m).

® The below table 1 shows the optimum points A, = (/110,120 - --,ﬂ,ﬂ) of the

function H (/T) and the values of H (n,) and G(n,) to @(n)=m.

Table 1
o(n) Z:(jf,gzo,...’,m) of H(n,),
=M 0 0 0 0
n0=2}“1 312522p£kpi1(+1pr1n G(no)
5.09518716186---,
L A0 =1 1.643686767536---
3.58945411446---,
2 | A=165-,2 =1 0.8250082x10" ---
1.91192398575---,
3| =270, 1) =133, 1) =1 0.7148367x107 -
A =336, 4) =175, 1.32309514626---,
-6
A TR RT 0.1065950x10° ---
=422, 1)=2.29---, 0.57062058635---,
9
S| 01240, 20220 =1 0.3761569x10” -
A'=4.53--+, 1)=2.49---, 0.40977025702---,
-10
=502+, 1)=2.80---,
7 0 0 0.22782964552---,
=1.59... =1.14...
330 509 ’0’1“ ’ 0.575576x10™"" ...
A=20=2=1
A=522-, 1)=2.92.--,
8 0 0 0.20507350097 -,
=1.68-+, A)=1.21---
’130 Lo ’ 0.164730x10™"% .-
A=X=1=2=1
=557, A}=3.14---,
9 0 0.16722089980- --
=1.83-++, A)=1.34... ’
’130 o) 0.287587x10™ .-
A== =2 =4 =1




® The below table 2 shows the Hardy-Ramanujan’s numbers ([1]), which

give maximum value of the function G(n,) to @(n)=m.

Table 2

w(n)
=Ml Ay =n(Ay)=p e pl o pl Pl G(f,)

1 2 1.643686767536---

2 | 23 0.82500822x10™ ---

3] 2735 0.71483676x107 ---
4 2°.3%.5.7 0.10659507x10° -
5 24.32.5.7-11 0.37615690x107 -
6 | 2%.3.5.7.11-13 0.76776726x10™ ..
7| 2°.3°.5.7-11-13:17 0.575576185x10™" ...
8 | 29-3°.52.7.11-13-17-19 0.164730227x10™2 ..
9 2°.3°.5%.7-11-13-17-19-23 0.287587585x10™ ---
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