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Abstract
This paper deals with mean hitting times for random walks on unweighted Cayley

graphs of Zn. In particular, we investigate the notion of the fundamental matrix of a
graph, and use it to quantify hitting time values. We then seek to relate the

fundamental matrix to the graph’s transition matrix such that we need only use the
transition matrix to generate hitting time values. We end with a discussion of roots of
unity and how they play a role in determining hitting times for Cayley graphs of Zn.

Introduction

We start by defining a random walk on an n-vertex graph G as the following process:
(1) Start at an arbitrary vertex vi of G.
(2) Define A as the set of all vertices of G adjacent to the vertex the walk is

currently at. Choose an element vj of A at random.
(3) Move to vj , and repeat step 2.

Now, a Cayley graph is a visual representation of a group. The vertices of Cayley
graph G represent the elements of the group. We choose a set S of elements in the
group G, which we call the alphabet. Let i, j ∈ G such that vertex vi of G represents
i and vj of G represents j. Then a directed edge connects vi to vj if and only if ia = j.

As an example, considerG = the undirected (or bi-directed) 6-cycle, pictured above.
G is equivalent to the Cayley graph of Z6 on generators 1 and −1 (or 5). That is,
G = Cay(Z6, {±1}).

Finally, a mean hitting time is the expected number of steps to reach a given vertex
j of a graph G starting from a vertex i of G. We denote this value as Ei(Tj). Just as
with any other expected value, we can intuitively define Ei(Tj) as a weighted aver-
age. Thus, Ei(Tj) =

∑∞
n=0 n ·P(walk first reaches j starting from i in n steps).

In practice, calculating Ei(Tj) values from this probabilistic definition appears to
be a very difficult task to carry out. So, we seek an easier method for determining
mean hitting times on Cayley graphs.

1Work done at Canisius College REU: Geometry and Physics on Graphs, Summer 2008. Sup-
ported by NSF grant.

2Williams College ’11. E-mail: ajb1@williams.edu.
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Defining Irreducibility of a Transition Matrix

The following definitions and background allow us to find such a method. First
of all, the transition matrix of an n-vertex graph is the n × n matrix whose ij-th
entry describes the probability of a random walk moving from state i to state j. We
refer to a graph’s transition matrix as P . The undirected 6-cycle has the following
transition matrix:

P =


0 1/2 0 0 0 1/2

1/2 0 1/2 0 0 0
0 1/2 0 1/2 0 0
0 0 1/2 0 1/2 0
0 0 0 1/2 0 1/2

1/2 0 0 0 1/2 0


Note that any transition matrix is stochastic, meaning that the entries in each row
sum to 1. This makes sense because the entries in row i describe transition prob-
abilities for a random walk at vertex vi, and we know that any random walk will
move from vi to some other vertex with probability 1. Now, we call a graph G
strongly connected if, for each vertex vi of G there exist paths from vi to any other
vertex in G. That is, we can get from any vertex in G to any other vertex in G. It
is easy to show that if G = Cay(Zn,S) such that the greatest common divisor of
the elements of S is 1, then G is strongly connected. If this is the case, then we call
the alphabet S a generating set. We say that G’s transition matrix P is irreducible
if G is strongly connected. Finally, if P is irreducible, then there exists a unique
stable probability distribution π on the vertices of G such that πP = π. Thus, π is
the 1× n row vector [π1 · · · πn], where each πi describes the portion of the stable
distribution present at vertex vi. With these definitions in mind, we arrive at our
first result, albeit a trivial one.

Theorem 1. Consider the Cayley graph G on Zn with generating set S. Then
G = Cay(Zn,S) has irreducible transition matrix P . Furthermore, the stable dis-
tribution π is uniform.

Proof. First of all, since the elements of S have greatest common divisor 1,
G is strongly connected, and therefore P is irreducible. This also implies the ex-
istence of a stable distribution π. To show π is uniform, assume S has cardinality
m. Then, since G is a Cayley graph, there are exactly m edges leaving each vertex.
We assign each edge leaving each vertex vi weight 1

m (that is, the graph is essen-
tially unweighted). This yields a transition matrix P , which we know is irreducible.
Furthermore, since G is undirected, P is symmetric, and thus P = PT . Hence PT

must also be stochastic, in addition to P . This is equivalent to saying that P is
stochastic along its columns. Now, consider the row vector π = [π1 · · · πn], where
πj = 1

n for all j. Consider an arbitrary column i of P . This column has exactly m
nonzero terms a1, . . . , am summing to 1. Then (πP )i = a1

n + a2
n +· · ·+ am

n = 1
n = πi.

Therefore, πP = π, and so the stable distribution is uniform.

The Fundamental Matrix
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Now we can introduce the concept that is crucial to our discussion of hitting times.
The fundamental matrix Z of an n-vertex graph G with irreducible transition ma-
trix P is defined as follows:

Zij =
∞∑
t=0

(p(t)
ij − πj).

Using a matrix-wise definition instead of an entry-wise one, this becomes:

Z =
∞∑
t=0

P t −
 π

...
π


 .

It can be verified that Z has constant diagonal entries and rows summing to 0.
These properties will come into play later in our discussion. Now, if we know the
fundamental matrix and the stable distribution of a graph G, the following formulas
give us mean hitting time values:

Formula 1. πiEπ(Ti) = Zii. This formula gives the expected number of steps
to hit vertex i starting from an arbitrary vertex given the stable distribution.

Formula 2. πjEi(Tj) = Zjj − Zij . This formula describes the mean hitting time
we defined in probabilistic terms earlier.

Now, an even stronger condition than irreducibility for transition matrices is regu-
larity. We call a transition matrix regular if there exists some positive integer k for
which P k has all positive entries. If this is the case, then any starting distribution
ρ on the vertices of G will converge to the stable distribution π. Note that not
all strongly connected graphs have regular transition matrices. For example, the
undirected 6-cycle does not have regular P , for it is bipartite, as shown below:

Thus, it is impossible to reach vertex 1 starting from vertex 0 in an even number
steps, and it is impossible to reach vertex 2 starting from vertex 0 in an odd number
of steps. So, note that if the distribution starts entirely at vertex 0, in the limit,
the distribution will oscillate between the vertex subset {1, 3, 5} and the subset
{2, 0, 4}. We call such a graph periodic. No periodic graphs have regular transition
matrices. Formally, the Perron-Frobenius theorem3 tells us that a transition matrix
is regular if and only if it has exactly one eigenvalue with absolute value 1; and the
transition matrix of the undirected 6-cycle has both 1 and −1 as eigenvalues. To
study convergence times, we need regularity, but all we need to study hitting times
is irreducibility.

3See Saloff-Coste, for instance.
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Thus, the fundamental matrix is a powerful tool for our purposes, so long as we can
determine it. However, for most graphs it seems difficult to calculate this infinite
sum, just as it seems dificult to calculate a hitting time from its probabilistic def-
inition. We therefore seek to equate this definition of Z with a more useable one.
Specifically, we wish to show the following:

Theorem 2.

∞∑
t=0

P t −
 π

...
π


 = Z = (I − (P − P∞))−1 − P∞.

We define P∞ as the n× n matrix representing the stable distribution. Thus, each
row of P∞ is equal to the distribution π; that is,

P∞ =

 π
...
π

 .
Lemma 1. P acts like an identity with respect to P∞; that is

PP∞ = P∞ = P∞P .
Furthermore, P∞P∞ = P∞.

Proof. Define Jn as the n-row column vector of all ones. Thus, we have PP∞ =
PJnπ. Now, by stochasticity of P , PJn = Jn, so PP∞ = Jnπ = P∞. Similarly,
P∞P = JnπP . Since P is irreducible, πP = π. So, P∞P = Jnπ = P∞. To prove
P∞P∞ = P∞, recall that the stable distribution on unweighted, undirected Cayley
graphs of Zn converge is uniform. Thus, P∞ =

1
n · · · 1

n
...

. . .
...

1
n · · · 1

n


So, (P∞P∞)ij = 1

n2 + · · ·+ 1
n2 = n

n2 = 1
n = (P∞)ij . Therefore, P∞P∞ = P∞.

Proof of Theorem. Note from the above definition of π that

∞∑
t=0

P t −
 π

...
π


 =

∞∑
t=0

(
P t − P∞

)
.

Consider the case where t = 0. In this case, P 0−P∞ = I−P∞ = (P − P∞)0−P∞.
Now, for t ≥ 1, we appeal to the binomial theorem. From the binomial theorem,
we know that (1 + x)t =

∑t
i=0

(
t
i

)
xi. Now, let x = −1. Clearly,

0 = (1 + (−1))t =
t∑
i=0

(
t

i

)
(−1)i.
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So, for t ≥ 1, if we negate every other term of the expansion of (P − P∞)t, the
coefficients of the terms will sum to 0. This yields

(P − P∞)t = P t −
(
t

1

)
P t−1P∞ +

(
t

2

)
P t−2P 2

∞ − · · · ± P t∞

= P t −
(
t

1

)
P∞ +

(
t

2

)
P∞ − · · · ± P∞

= P t − P∞.
Our lemma enables us to get from the first line to the second line. We get from the
second line to the third line by knowing that since the first term of the sequence,
P t, has coefficient 1, the remaining terms of the sequence must sum to −1. So, now
we know that

∞∑
t=0

(P t − P∞) =
∞∑
t=0

(P − P∞)t − P∞.

Remember that the zeroth term of the sequence on the left yields an extra −P∞ that
we must tack on to the end of the sequence on the right. Consider

∑∞
t=0(P −P∞)t.

The first term of this series is I, and the common ratio is (P − P∞). Since 0 ≤
Pij < 1 ∀ i, j ∈ (1, . . . , n), and every term of P∞ is equal to 1/n, every term of
(P − P∞) has absolute value less than 1. Thus, the infinite series has a finite sum
equal to

I

I − (P − P∞)
= (I − (P − P∞))−1.

Therefore,
∞∑
t=0

(P t − P∞) =
∞∑
t=0

(P − P∞)t − P∞ = (I − (P − P∞))−1 − P∞ = Z.

Example 1. Let G be the undirected 6-cycle; that is, G = Cay(Z6, {±1}). Using
G’s transition matrix, which we showed above, the identity matrix, and P∞ (the
6 × 6 matrix where each entry is equal to 1

6 ), we construct Z (via Mathematica)
according to the formula above:

Z =


35/36 5/36 −13/36 −19/36 −13/36 5/36
5/36 35/36 5/36 −13/36 −19/36 −13/36
−13/36 5/36 35/36 5/36 −13/36 −19/36
−19/36 −13/36 5/36 35/36 5/36 −13/36
−13/36 −19/36 −13/36 5/36 35/36 5/36

5/36 −13/36 −19/36 −13/36 5/36 35/36


Labeling the the vertices from 0 to 5, we can calculate the hitting times as follows:

E0(T1) = 1
π1

(Z11 − Z01) = 6( 35
36 −

5
36 ) = 5.

E0(T2) = 1
π2

(Z22 − Z02) = 6( 35
36 + 13

36 ) = 8.

E0(T3) = 1
π1

(Z33 − Z03) = 6( 35
36 + 19

36 ) = 9.

Eπ(T4) = 1
π4

(Z44) = 6( 35
36 ) = 35

6 .
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Quantifying Hitting Time Values Using Only P

So, using Theorem 2 and Definitions 1 and 2, we can quantify hitting times on
any finite graph with irreducible transition matrix. However, the fundamental ma-
trix is an abstract concept that is hard to visualize. It is hard to tell exactly where
the actual values for the hitting times are coming from. Thus, it would be nice if
we could determine hitting times straight from P , for we can get P directly from
the graph itself. We work toward this result in the next section of this paper.

Now, we call a tranisition matrix circulant if each row is equal to a cyclic shift of
the first row. That is, the i-th row is equal to the first row, except that each entry is
shifted, in a cyclic manner, i−1 places to the right. Looking back at the transition
matrix of the undirected 6-cycle, we see that it is circulant. Hence, the unidirected
6-cycle is a circulant graph. Indeed, all Cayley graphs on Zn are circulant, for Zn
is always a cyclic group. Now, recall that πiEπ(Ti) = Zii, where Eπ(Ti) represents
the expected number of steps to reach vertex i when starting from an arbitrary
vertex in the stable distribution. Consider G = Cay(Zn,S) as defined above. G,
then, has the stable probability distribution π, where πi = 1

n ∀ i ∈ {1, . . . , n}. Since
the distribution is uniform, and all diagonal entries of Z are equal by definition,
note that Eπ(Ti) does not depend on i; it is uniform as well. We shall refer to this
uniform Eπ(Ti) value for Cayley graphs as Eπ(Tn).

Lemma 2. Eπ(Tn) is equal to the average of the mean hitting times starting
from an arbitrary vertex j and going to an arbitrary vertex i. That is,

Eπ(Tn) =
1
n2

n∑
i=1

n∑
j=1

Ei(Tj).

Proof. First, note that since G is undirected and strongly connected,

Ei(Tj) = Ej(Ti) for all i, j ∈ {1, . . . , n} .
Furthermore, since G is circulant, for some arbitrary k ∈ {1, . . . , n},

Ei(Tj) = Ei±k(Tj±k) for all i, j ∈ {1, . . . , n} .
Thus, in order to show that Eπ(Tn) is the average of all the mean hitting times, it
is sufficient to show that

Eπ(Tn) =
1
n

n∑
j=1

Ei(Tj).

By Formula 1, πjEπ(Tj) = Zjj for some j,

Eπ(Tj) =
1
πj
Zjj = nZjj .

Since the rows of Z sum to 0, we have

Eπ(Tj) = nZjj −
n∑
j=1

Zij .

And since the diagonal entries of Z are constant, this becomes

Eπ(Tj) =
n∑
j=1

(Zjj − Zij).
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By Formula 2,
n∑
j=1

(Zjj − Zij) =
n∑
j=1

(πjEi(Tj)) =
1
n

n∑
j=1

Ei(Tj).

And therefore,

Eπ(Tj) = Eπ(Tn) =
1
n

n∑
j=1

Ei(Tj) =
1
n2

n∑
i=1

n∑
j=1

Ei(Tj).

Theorem 3.
n∑
j=1

Ei(Tj) =
n∑

m=2

(1− λm(P ))−1.

Proof. By Lemma 2,
∑n
j=1Ei(Tj) = Eπ(Tn) = Eπ(Ti) for any i. Once again,

Formula 1 gives us Eπ(Ti) = 1
πi
Zii = nZii. Now, by the definition of Z, nZii =

Tr(Z). From linear algebra, we know that if two matrices commute with each other
and are symmetric, then they are simultaneously diagonalizable. First of all, since
G is undirected, P is symmetric. And since Z is written in terms of I, P , and P∞,
all symmetric matrices, Z must also be symmetric. Furthermore, we know that P
commutes with Z, since symmetric matrices always commute. Thus, the two are
simultaneously diagonalizable. And since there exists a natural formula relating Z
to P , the same formula relates eigenvalues of Z to eigenvalues of P . That is, just
as Z = I − (P − P∞)−1 − P∞, we can write

Tr(Z) =
n∑

m=1

λm(Z) =
n∑

m=1

λm
(
(I − (P − P∞))−1 − P∞

)
=

n∑
m=1

(
[λm(I)− (λm(P )− λm(P∞))]−1 − λm(P∞)

)
.

Now, P∞ has rank 1 and null space of dimension n − 1. Thus, it must have
eigenvalue 0 of multiplicity n − 1. And, since it is a stochastic matrix, its only
nonzero eigenvalue must be 1, of multiplicity 1. Thus, for m ≥ 2, P∞ makes no
contribution to the sum. Furthermore, the value of the summand when m = 1 is
(1− (1− 1))−1 − 1 = 0. So,

n∑
m=1

(
[λm(I)− (λm(P )− λm(P∞))]−1 − λm(P∞)

)

=
n∑

m=2

[λm(I)− λm(P )]−1 =
n∑

m=2

(1− λm(P ))−1.

Therefore, we have
n∑
j=1

Ei(Tj) =
n∑

m=2

(1− λm(P ))−1.

Example 2. Consider G = Cay(Z6, {±1}): the undirected 6-cycle, as before.
The eigenvalues of transition matrix P of G are

{
1, 1

2 ,
1
2 ,−

1
2 ,−

1
2 ,−1

}
, and the
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eigenvalues of the fundamental matrix Z of G are
{

2, 2, 2
3 ,

2
3 ,

1
2 , 0
}

. Let us verify
that

Eπ(Tn) =
n∑

m=2

(1− λm)−1.

In this case, Zii = 35
60 for all i and πi = 1

6 for all i, so Eπ(Tn) = 6 35
60 = 35

6 . And
indeed,
n∑

m=2

(1−λm(P ))−1 =
1

1− 1/2
+

1
1− 1/2

+
1

1 + 1/2
+

1
1 + 1/2

+
1

1 + 1
= 2+2+

2
3

+
2
3

+
1
2

=
35
6

as well. Note that each term of the sum is an eigenvalue of the Z-matrix, such that
every Z-eigenvalue shows up in the sum except 0 (which, of course, would make no
contribution to the sum anyway). So, we can find Eπ(Tn) values for Cayley graphs
right from the transition matrix. We will now try to determine Ei(Tj) values using
only P . Spectral decomposition of P allows us to do so.

Theorem 4.

Ei(Tj) = n

n∑
m=2

(1− λm(P ))−1ujm(ujm − uim).

Proof. Recall that P is symmetric becuase G is undirected. From linear al-
gebra, we know that symmetric matrices can be diagonalized by an orthogonal
transformation of their eigenvectors and eigenvalues. Now, since P is stochastic,
we diagonalize it by an orthonormal transformation; that is, P = UΛUT , where
U is an n × n matrix whose columns are the unit eigenvectors of P , and Λ is the
diagonal matrix consisting of P ’s eigenvalues. Thus, Pij = (UΛUT )ij . By the rules
of matrix multiplication,

(UΛUT )ij =
n∑

m=1

n∑
k=1

(UimΛmkUTkj).

Now, Λmk is nonzero only where m = k, so we have

(UΛUT )ij =
n∑

m=1

UimΛmmUTmj =
n∑

m=1

uimλmu
T
mj =

n∑
m=1

λmuimujm.

Thus, Pij =
∑n
m=1 λmuimujm. Defining P exactly in terms of its eigenvalues and

unit eigenvectors brings us one step closer to quantifying hitting times on G.

In Theorem 3, we proved that
n∑

m=1

λm(Z) =
n∑

m=2

(1− λm(P ))−1.

We also showed that Z and P share the same eigenspace. So, we can write

Zij =
n∑

m=2

(1− λm(P ))−1uimujm.

Note that the largest eigenvalue of P is 1, which has no inverse under the defined
expression relating eigenvalues between the two matrices. Instead, 1 has a ”quasi-
inverse of 0”, which shows up as an eigenvalue in the Z-matrix. Thus, we do need
to alter the summand when we change the lower bound on the summation from 1
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to 2, since the only term we lose in doing so has value 0ui1uj1 = 0.

We are now ready to define hitting times in terms of eigenvectors and eigenval-
ues of P . From above,

Ei(Tj) = n(Zjj − Zij)

= n(
n∑

m=2

(1− λm(P ))−1ujmujm −
n∑

m=2

(1− λm(P ))−1uimujm)

= n

n∑
m=2

(1− λm(P ))−1ujm(ujm − uim).

Example 3. Let us calculate hitting times on the undirected 6-cycle again and
verify that they match up with the values we got in Example 2. Now, the eigenval-
ues and orthonormal eigenvectors of P are as follows:

λ1 = 1, with eigenvector
[

1 1 1 1 1 1
]
/
√

6;

λ2 = 1
2 , with eigenvector

[
1 0 −1 −1 0 1

]
/2;

λ3 = 1
2 , with eigenvector

[
−1/2 −1 −1/2 1/2 1 1/2

]
/
√

3;

λ4 = − 1
2 , with eigenvector

[
−1 0 1 −1 0 1

]
/2;

λ5 = − 1
2 , with eigenvector

[
−1/2 1 −1/2 −1/2 1 −1/2

]
/
√

3;

and λ6 = −1, with eigenvector
[
−1 1 −1 1 −1 1

]
/
√

6.

Note: Mathematica did not give me orthogonal eigenvectors; I had to orthogo-
nalize the non-orthogonal ones using the Gram-Schmidt process.

E0(T1) = 6
n∑

m=2

(
1− λm(P ))−1u1m(u1m − u0m)

= 6
[
2 · 0(0− 1/2) + 2 · −1/

√
3(−1/

√
3 + 1/2

√
3) + 2/3 · 0(0 + 1/2)

+2/3 · 1/
√

3(1/
√

3 + 1/2
√

3) + 1/2 · 1/
√

6(1/
√

6 + 1/
√

6)
]

= 6
[
2 · 0 + 2 · −1/

√
3 · −1/2

√
3 + 2/3 · 0 + 2/3 · 1/

√
3 · 1/

√
3 + 1/2 · 1/

√
6 · 1/

√
6
]

= 6 [0 + 1/3 + 0 + 1/3 + 1/6] = 5 = 6(Z11 − Z01).
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E0(T2) = 6
n∑

m=2

(
1− λm(P ))−1u2m(u2m − u0m)

= 6
[
2 · −1/2(−1/2− 1/2) + 2 · −1/2

√
3(−1/2

√
3 + 1/2

√
3) + 2/3 · 1/2(1/2 + 1/2)

+2/3 · −1/2
√

3(−1/2
√

3 + 1/2
√

3) + 1/2 · −1/
√

6(−1/
√

6 + 1/
√

6)
]

= 6
[
2 · −1/2 · −1 + 2 · −1/2

√
3 · 0 + 2/3 · 1/2 · 1 + 2/3 · −1/2

√
3 · 0 + 1/2 · −1/

√
6 · 0

]
= 6 [1 + 0 + 1/3 + 0 + 0] = 8 = 6(Z22 − Z02).

We can verify that the other hitting times work as well using this formula. So, we
can now determine hitting times directly from the transition matrix.

Using Roots of Unity to Determine Hitting Times

Almost everything we have done up to this point is generalizable to any graph
with irreducible transition matrix. The only property Cayley graphs have that not
all other graphs with irreducible P have is that π is uniform. This makes proving
Theorem 1 a little easier, and replaces all 1

πi
coefficients in hitting time calculations

with the uniform value n. Also, working with undirected Cayley graphs means that
P is always symmetric, which, admittedly, makes proving Theorem 1, and especially
Theorem 4, easier. If P was not symmetric, we would have to use powers of π to
symmetrize it before diagonalizing with the orthonormal transformation as shown
above.

However, there is a special property unique to Cayley graphs of Zn: they are
circulant. Therefore, we can use primitive roots of unity to generate eigenvalues
and orthonormal eigenvectors for their transition matrices. The following theorem
is taken from Julia Lazenby’s thesis, Circulant Graphs and Their Spectra:

Theorem 5. If X = Cay(Zn,S), then Spec(X) = {λx|x ∈ Zn} where

λx =
∑
s∈S

exp

(
2πixs
n

)
.

Proof. Let T be a linear operator corresponding to the adjacency matrix of a
circulant graph X = Cay(Zn, {a1, a2, . . . , am}). If f is any real function on the
vertices of X we have

T (f)(x) = f(x+ a1) + f(x+ a2) + · · ·+ f(x+ am).

Let ω be a primitive nth root of unity and let g(x) = ωkx for some k ∈ Zn. Then,

T (g)(x) = ωkx+ka1 + ωkx+ka2 + · · ·+ ωkx+kam

= ωkx
(
ωka1 + ωka2 + · · ·+ ωkam

)
.

Thus, g is an eigenfunction and ωka1 + ωka2 + · · ·+ ωkam is an eigenvalue.

This theorem concerns the spectrum of the adjacency matrix of a Cayley graph.
However, our transition matrices are simply the adjacency matrix divided by the
graph’s regularity. That is, assuming the cardinality of S is m, we divide each entry
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of a graph’s adjacency matrix by m to come up with the graph’s transition matrix.
So, if we substitute P in for T in the above proof, we come up with

P (f)(x) =
f(x+ a1) + f(x+ a2) + · · ·+ f(x+ am)

m
.

Defining ω and g exactly the same as in the proof,

P (g)(x) =
ωkx+ka1 + ωkx+ka2 + · · ·+ ωkx+kam

m

= ωkx
(
ωka1 + ωka2 + · · ·+ ωkam

m

)
.

So, this new g is an eigenfunction of P , and ωka1+ωka2+···+ωkam

m is an eigenvalue of P .

Example 4. Now, if we once again consider the undirected 6-cycle, ω = exp( 2πi
6 ),

k ranges from 0 to 5, m = 2, a1 = −1, and a2 = am = 1. So, we compute eigenvec-
tors and eigenvalues as follows:

λ1 =
ω0·1 + ω0·−1

2
=

1 + 1
2

= 1.

ux1 = ω0x for x ranging from 0 to 5. Thus,

u1 =
[
ω0 ω0 ω0 ω0 ω0 ω0

]
=
[

1 1 1 1 1 1
]
.

λ2 =
ω1·1 + ω1·−1

2
=
exp( 2πi

6 ) + exp(−2πi
6 )

2

=
cos π3 + i sin π

3 + cos −π3 + i sin −π3
2

=
1 + i

(√
3

2 −
√

3
2

)
2

=
1
2
.

u2 = [ ω1·0 ω1·1 ω1·2 ω1·3 ω1·4 ω1·5 ] = [ ω0 ω1 ω2 ω3 ω4 ω5 ].
Now, all but one of these entries will be a complex number. To come up with
eigenvectors without complex entries, we add this eigenvector to the one generated
when k = 5, and subtract from this one the one generated when k = 5. That is,
the new u2 will be

[ ω0 ω1 ω2 ω3 ω4 ω5 ] + [ ω0 ω5 ω10 ω15 ω20 ω25 ].

Similarly, the new u3 will be

[ ω0 ω1 ω2 ω3 ω4 ω5 ]− [ ω0 ω5 ω10 ω15 ω20 ω25 ].

The eigenvectors generated when k = 2 and when k = 4 also have some complex
entries, so we use the same process to make their entries real.

Using the above method, we calculate all eigenvalues and eigenvectors, normal-
ize the eigenvectors, and come up with the following:

λ1 = 1, with unit eigenvector
[

1 1 1 1 1 1
]
/
√

6.

λ2 = 1
2 , with unit eigenvector

[
1 1/2 −1/2 −1 −1/2 1/2

]
/
√

3.
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λ3 = 1
2 , with unit eigenvector

[
0 1 1 0 −1 −1

]
/2.

λ4 = − 1
2 , with unit eigenvector

[
1 −1/2 −1/2 1 −1/2 −1/2

]
/
√

3.

λ5 = − 1
2 , with unit eigenvector

[
0 1 −1 0 1 −1

]
/2.

λ6 = −1, with unit eigenvector
[

1 −1 1 −1 1 −1
]
/
√

6.

Note that these eigenvectors are not all the same as they were in Example 3.
However, it can be verified that all these eigenvectors are orthogonal, and so we
can use Theorem 4 to generate hitting times. Once again, we compute E0(T1).

E0(T1) = 6
n∑

m=2

(
1− λm(P ))−1u1m(u1m − u0m)

= 6
[
2 · 1/2

√
3(1/2

√
3− 1/

√
3) + 2 · 1/2(1/2− 0) + 2/3 · −1/2

√
3(−1/2

√
3− 1/

√
3)

+2/3 · 1/2(1/2− 0) + 1/2 · −1/
√

6(−1/
√

6− 1/
√

6)
]

= 6
[
2 · 1/2

√
3 · −1/2

√
3 + 2 · 1/4 + 2/3 · −1/2

√
3 · −3/2

√
3

+2/3 · 1/4 + 1/2 · −1/
√

6 · −2/
√

6
]

= 6 [−1/6 + 1/2 + 1/6 + 1/6 + 1/6] = 5 = 6(Z11 − Z01).

So, using roots of unity to generate hitting times on undirected Cayley graphs
of Zn seems to be a very natural process, for it automatically constructs orthogonal
eigenvectors, unlike Mathematica. While we do need to correct for complex entries,
we do not need to orthogonalize the eigenvectors using the Gram-Schmidt process
like we did in Example 3. Thus, as long as we have a symmetric generating set S
on a finite cyclic group, the mean hitting times on the resulting graph are coming
directly from these roots of unity. With some more manipulation, it appears that
we can apply this method to Cayley graphs of any finite abelian group with any
generating set.
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