This version of Total HTML Converter is unregistered.

Alg

Quiz: The Quadratic Formula

Question 1a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 90968) Maximum Attempts: 1
Question Type: Multiple Response
Maximum Score: 2
Question:
Select the two values of x that are roots of the given polynomial below.
$x^{2}+3 x-5$
Correct Answers:

	Choice
A.	$x=\frac{3+\frac{i-1}{2}}{2}$
B.	$x=\frac{3-2-1}{2}$
*C.	$x=\frac{-7-1}{2}$
D.	$x=\frac{-3-y^{\prime} 1}{2}$
E.	$x=\frac{-i+v^{\prime \prime}}{2}$
*F.	$x=\frac{-7-4 x}{9}$

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

| | Global Incorrect Feedback |
| :--- | :--- | :--- |
| | The correct answers are: |
| $x=\quad$ and $x=$ | |$\quad . \quad$.

Question 1 b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297743) Maximum Attempts: 1

Question Type: Multiple Response
Maximum Score: 2
Question:
Select the two values of x that are roots of the given polynomial below.
$x^{2}+3 x+5$

Correct Answers:

This version of Total HTML Converter is unregistered.

Alg

Question 1 c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297744)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

1
Multiple Response
2
Select the two values of x that are roots of the given polynomial below.
$x^{2}-3 x-5$

Correct Answers:

	Choice
A.	$x=$
B.	$x=$
C.	$x=$
*D.	$x=$
*E.	$x=$
F.	$x=$

Attempt	Incorrect Feedback
1 st	

This version of Total HTML Converter is unregistered.

Alg

	Correct Feedback

	Global Incorrect Feedback
	The correct answers are: $x=\frac{3 \sqrt{2!}}{-}$ and $x=$
	$\frac{=\sqrt{3}}{2}$.

Question 2a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 90969)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

1
Multiple Response
2
Select the two values of x that are roots of the given polynomial below.
$2 x^{2}-11 x+15$

Correct Answers:

	Choice
A.	$x=\frac{11-\sqrt{-1}-4}{4}$
B.	$x=\frac{11+\sqrt{2}}{\underline{2}}$
*C.	$x=2.5$
D.	$x=11 ;, \%$
*E.	$x=3$
F.	$x=\frac{11+\sqrt{1-14 y}}{2}$

Attempt	Incorrect Feedback
1st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answers are: $x=2.5$ and $x=3$.

Question 2b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297746) Maximum Attempts: 1
Question Type: Multiple Response
Maximum Score: 2
Question:
Select the two values of x that are roots of the given polynomial below.
$2 x^{2}+7 x+6$

Correct Answers:

This version of Total HTML Converter is unregistered.

Alg

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answers are: $x=-2$ and $x=-1.5$.

Question 2c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297747)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

Multiple Response
2
Select the two values of x that are roots of the given polynomial below.

$$
2 x^{2}+11 x+15
$$

Correct Answers:

	Choice
*A.	$x=-2.5$
B.	$x=\cdots 1 \cdot \sqrt{i} 1$
C.	$x=$
D.	$x=$
*E.	$x=-3$
F.	$x=$

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answers are: $x=-2.5$ and $x=-3$.

This version of Total HTML Converter is unregistered.

Alg
Question 3a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 90970)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

Multiple Response
2
Select the two values of x that are roots of the given polynomial below. $x^{2}-5 x+2$

Correct Answers:

	Choice
A.	$\therefore \quad-\overline{2}$
*B.	$x=\frac{5-\sqrt{17}}{\square}$
* C.	$x=\frac{5+\sqrt{17}}{?}$
D.	$x=5$
E.	$x=\frac{-9-\sqrt{-3}}{2}$
F.	$x=\frac{-9-\sqrt{1-z}}{2}$

Attempt	Incorrect Feedback
1st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answers are:
	$x=\frac{5-i}{2}$ and $x=\frac{5-s i j}{4}$.

Question 3b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297748) Maximum Attempts: 1

Question Type: Multiple Response
Maximum Score: 2
Question:
Select the two values of x that are roots of the given polynomial below.
$x^{2}+5 x+7$

Correct Answers:

This version of Total HTML Converter is unregistered.

Alg

	Choice
A.	$x--\frac{1}{7}$
B.	$x=\frac{5-\sqrt{\sqrt{9}}}{2}$
C.	$x=\frac{5+\sqrt{\sqrt{2}}}{2}$
D.	$x=5$
*E.	$x=\begin{gathered}\square \\ \square\end{gathered}$
*F.	$x=$

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answers are: $x=\frac{.1}{-}$ and $x=$
	$2 \sqrt{3}$.

Question 3c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297749)

Maximum Attempts:
Question Type:
Maximum Score: Question:

1
Multiple Response
2
Select the two values of x that are roots of the given polynomial below.
$x^{2}+5 x-7$

Correct Answers:

	Choice
A.	
*B.	$x=$
$*$ C.	$x=$
D.	$x=5$
E.	$x=$
F.	$x=$

Attempt	Incorrect Feedback
1st	

	Correct Feedback

This version of Total HTML Converter is unregistered.

Alg

	Global Incorrect Feedback
	The correct answers are: $x=\quad \cdot \quad$ and $x=$
	$\frac{-5-\sqrt{53}}{2}$.

Question 4a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 90971) Maximum Attempts: 1
Question Type: Multiple Response

Maximum Score: 2
Question:
Select the two values of x that are roots of the given polynomial below.
$3 x^{2}+8 x-3$
Correct Answers:

	Choice
*A.	$x=-3$
B.	$x=\frac{-8+\sqrt{28}}{6}$
C.	$x=\frac{3-\sqrt{5}}{3}$
D.	$x=\frac{3-\sqrt{20}}{6}$
*E.	$x=\frac{\square}{3}$
F.	$x=3$

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answers are: $x=-3$ and $x=$.

Question 4b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297750)

Maximum Attempts:
Question Type:
Maximum Score:
Question:
1
Multiple Response
2
Select the two values of x that are roots of the given polynomial below.

$$
3 x^{2}+20 x-7
$$

Correct Answers:

This version of Total HTML Converter is unregistered.

Alg

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answers are: $x=-7$ and $x=\frac{1}{3}$.

Question 4c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297751)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

1
Multiple Response 2

Select the two values of x that are roots of the given polynomial below. $3 x^{2}+11 x-4$

Correct Answers:

	Choice
*A.	$x=-4$
B.	$x=$
C.	$x=$
D.	$x=$
*E.	$x=$
F.	$x=$

Attempt	Incorrect Feedback
1st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answers are: $x=-4$ and $x=\quad$.

Question 5a of 15 (2 Using The Quadratic Formula to Solve Quadratic Equations 90972)
Maximum Attempts: 1
Question Type: Multiple Choice
Maximum Score:
Question:

2
The polynomial given below has \qquad $\operatorname{root}(s)$.
$2 x^{2}+3 x-2$

	Choice	Feedback
A.	two positive	
B.	two negative	
C.	two complex	
*D.	one positive and one negative	

Global Incorrect Feedback
The correct answer is: one positive and one negative.

Question 5b of $\mathbf{1 5}$ (2 Using The Quadratic Formula to Solve Quadratic Equations 297752)

Maximum Attempts: 1
Question Type: Multiple Choice
Maximum Score:
Question:
2

The polynomial given below has ___ root(s).
$2 x^{2}+2 x+4$

	Choice	Feedback
A.	two positive	
B.	two negative	
*C.	two complex	
D.	one positive and one negative	

Global Incorrect Feedback
The correct answer is: two complex.

Question 5c of 15 (2 Using The Quadratic Formula to Solve Quadratic Equations 297754)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

1
Multiple Choice
2
The polynomial given below has \qquad root(s).
$2 x^{2}+5 x+2$

	Choice	Feedback
*A.	two negative	
B.	two positive	
C.	one positive and one negative	
D.	two complex	

Global Incorrect Feedback
The correct answer is: two negative.

This version of Total HTML Converter is unregistered.

Alg
Question 6a of 15 (2 Using The Quadratic Formula to Solve Quadratic Equations 90973)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

1
Multiple Choice
2
The polynomial given below has \qquad $\operatorname{root}(s)$.
$3 x^{2}-8 x+4$

	Choice	Feedback
*A.	two positive	
B.	two negative	
C.	one positive and one negative	
D.	two complex	

Global Incorrect Feedback
The correct answer is: two positive.

Question 6b of 15 (2 Using The Quadratic Formula to Solve Quadratic Equations 297753)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

1
Multiple Choice
2
The polynomial given below has \qquad $\operatorname{root}(\mathrm{s})$.
$2 x^{2}-3 x+1$

	Choice	Feedback
*A.	two positive	
B.	one positive and one negative	
C.	two negative	
D.	two complex	

Global Incorrect Feedback
The correct answer is: two positive.

Question 6c of 15 (2 Using The Quadratic Formula to Solve Quadratic Equations 297755)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

1
Multiple Choice
2
The polynomial given below has \qquad root(s).
$2 x^{2}-9 x+9$

	Choice	Feedback
*A.	two positive	
B.	two negative	
C.	one positive and one negative	
D.	two complex	

Global Incorrect Feedback
The correct answer is: two positive.

This version of Total HTML Converter is unregistered.

Alg
Question 7a of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 121113)
Maximum Attempts: 1
Question Type: Numeric Fill In Blank
Maximum Score: 2
Correct Answer: 0
Question: The quadratic formula cannot be used to solve an equation if the coefficient of the equation's x^{2}-term is \qquad

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: 0.

Question 7 b of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297756)

Maximum Attempts:
Question Type:
Maximum Score:
Correct Answer:
Question:

the equation's x^{2}-term is	
Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: 0.

Question 7 c of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297757) Maximum Attempts: 1
Question Type: Numeric Fill In Blank
Maximum Score: 2
Correct Answer: 0
Question: The quadratic formula cannot be used to solve an equation if the coefficient of the equation's x^{2}-term is \qquad

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: 0.

Question 8a of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 121263) Maximum Attempts: 1

Question Type:
Maximum Score: Question:

1
Multiple Choice
2
If the discriminant of an equation is positive, which of the following is true of the equation?

This version of Total HTML Converter is unregistered.

Alg

	Choice	Feedback
A.	It has two complex solutions.	
B.	It has one real solution.	
*C.	It has two real solutions.	

The correct answer is: It has two real solutions.

Question 8b of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297758) Maximum Attempts: 1
Question Type: Multiple Choice
Maximum Score:
Question:
2
If the discriminant of an equation is positive, which of the following is true of the equation?

	Choice	Feedback
A.	It has two complex solutions.	
B.	It has one real solution.	
*C.	It has two real solutions.	

The correct answer is: It has two real solutions.

Question 8c of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297759)

Maximum Attempts: 1
Question Type: Multiple Choice
Maximum Score: 2
Question: If the discriminant of an equation is positive, which of the following is true of the equation?

	Choice	Feedback
A.	It has one real solution.	
*B.	It has two real solutions.	
C.	It has two complex solutions.	

Global Incorrect Feedback
The correct answer is: It has two real solutions.

Question 9a of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 121264) Maximum Attempts: 1
Question Type: Multiple Choice
Maximum Score: 2
Question:

If the discriminant of an equation is 0 , which of the following is true of the equation?

This version of Total HTML Converter is unregistered.

Alg

	Choice	Feedback
A.	It has two complex solutions.	
*B.	It has one real solution.	
c.	It has two real solutions.	

The correct answer is: It has one real solution.

Question 9b of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297760)
Maximum Attempts: 1
Question Type: Multiple Choice
Maximum Score: 2
Question: If the discriminant of an equation is 0 , which of the following is true of the equation?

	Choice	Feedback
A.	It has two complex solutions.	
B.	It has two real solutions.	
*C.	It has one real solution.	

The correct answer is: It has one real solution.

Question 9c of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297761)
Maximum Attempts: 1
Question Type: Multiple Choice
Maximum Score: 2
Question: If the discriminant of an equation is 0 , which of the following is true of the equation?

	Choice	Feedback
*A.	It has one real solution.	
B.	It has two complex solutions.	
C.	It has two real solutions.	

Global Incorrect Feedback
The correct answer is: It has one real solution.

Question 10 of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 121265)

Maximum Attempts:	1
Question Type:	Multiple Choice
Maximum Score:	2
Question:	If the discriminant of an equation is negative, which of the following is true of

This version of Total HTML Converter is unregistered.

Alg

	Choice	Feedback
*A.	It has two complex solutions.	Correct!
B.	It has one real solution.	
C.	It has two real solutions.	

Global Incorrect Feedback
The correct answer is: It has two complex solutions.

Question 10b of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297762)

Maximum Attempts: 1
Question Type: Multiple Choice
Maximum Score:
Question:
2
If the discriminant of an equation is negative, which of the following is true of the equation?

	Choice	Feedback
A.	It has one real solution.	
$*$ B.	It has two complex solutions.	
C.	It has two real solutions.	

Global Incorrect Feedback
The correct answer is: It has two complex solutions.

Question 10c of 15 (1 Using The Quadratic Formula to Solve Quadratic Equations 297763)
Maximum Attempts:
Question Type:
1

Maximum Score:
Question: If the discriminant of an equation is negative, which of the following is true of the equation?

	Choice	Feedback
A.	It has two real solutions.	
B.	It has one real solution.	
*C.	It has two complex solutions.	

Global Incorrect Feedback
The correct answer is: It has two complex solutions.

This version of Total HTML Converter is unregistered.

Alg
Question 11 af 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 121267)
Maximum Attempts:

Question Type: 1

Maximum Score: 2
Correct Answer: 0
Question: Find the discriminant of the following equation.
$4 x^{2}+12 x+9$

Attempt	Incorrect Feedback
1st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: 0.

Question 11 of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297764)

Maximum Attempts:
Question Type:
Maximum Score:
Correct Answer:
Question:
Attempt Incorrect Feedback 1st Correct Feedback Find the discriminant of Fill In Blank

Question 11 c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297765)
Maximum Attempts: 1
Question Type: 1

Maximum Score: 2
Correct Answer: 0
Question: Find the discriminant of the following equation.
$4 x^{2}+16 x+16$

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: 0.

This version of Total HTML Converter is unregistered.

Alg
Question 12a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 121268)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

	Choice	Feedback
A.	2	
*B.	$\frac{-}{2}$	
C.	$\frac{}{2}$	
D.	-	

1
Multiple Choice
2
What is the solution to the following equation?
$4 x^{2}+12 x+9=0$

Global Incorrect Feedback
The correct answer is: $\frac{-7}{2}$.

Question 12 b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297766)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

	Choice	Feedback
A.	2	
B.	$\overline{3}$	
C.	$\frac{3}{7}$	
*D.		

1
Multiple Choice
2
What is the solution to the following equation?
$9 x^{2}+12 x+4=0$

Global Incorrect Feedback
The correct answer is:

Question 12c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297767)

Maximum Attempts:
Question Type:
Maximum Score: Question:

1
Multiple Choice
2
What is the solution to the following equation?
$4 x^{2}+16 x+16=0$

This version of Total HTML Converter is unregistered.

Alg

	Choice	Feedback
*A.	-2	
B.	-4	
C.	$\frac{1}{亡}$	
D.	$\frac{1}{5}$	

Global Incorrect Feedback
The correct answer is: -2 .

Question 13a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 121274)

Maximum Attempts:
Question Type:
Maximum Score:
Correct Answer:
Question:
Attempt Incorrect Feedback 1 st Correct Feedback
\begin{tabular}{\|l
\hline
\end{tabular} |

Question 13b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297768)
Maximum Attempts: 1
Question Type: Numeric Fill In Blank
Maximum Score: 2
Correct Answer: -23
Question: Find the discriminant of the following equation.

	$x^{2}+3 x+8=0$	
Attempt	Incorrect Feedback	
1st		

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: -23.

Question 13c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297769)	
Maximum Attempts:	1
Question Type:	Numeric Fill In Blank
Maximum Score:	2
Correct Answer:	-28
Question:	Find the discriminant of the following equation.
	$x^{2}+2 x+8=0$

This version of Total HTML Converter is unregistered.

Alg

Attempt	Incorrect Feedback
1 st	

	Correct Feedback

	Global Incorrect Feedback
	The correct answer is: -28.

Question 14a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 121275)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

	Choice	Feedback
A.	6	
B.	-6	
c.	$-2 \pm \sqrt{2}$	
*D.	$1 \pm v^{\prime}$	

1
Multiple Choice
2
What is the solution to the following equation?
$x^{2}+2 x+7=0$

Global Incorrect Feedback
The correct answer is: $\quad \pm j \mathrm{~b}$.

Question 14b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297770)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

	Choice	Feedback
A.	3	
B.	-3	
C.		
*D.		

1
Multiple Choice
2
What is the solution to the following equation?
$x^{2}+4 x+7=0$

Global Incorrect Feedback
The correct answer is:

Question 14c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297771)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

1
Multiple Choice
2
What is the solution to the following equation?
$x^{2}+2 x+6=0$

This version of Total HTML Converter is unregistered.

Alg

	Choice	Feedback
A.	5	
B.	-5	
c.	$- \pm V^{\prime} \doteq$	
*D.	$-1+\sqrt{-r}$	

Global Incorrect Feedback
The correct answer is: $-1 \sqrt{-\overline{5}}$.

Question 15a of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 121288)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

1
Multiple Choice
2
Find the roots of the polynomial below.
$2 x^{2}-8 x+3$

	Choice	Feedback
	$=\frac{8+\sqrt{5}}{4}$ and	
A.	$=\frac{8-\sqrt{4}}{4}$	
B.	$x=4$ and $x=2$	
C.	$x=10$ and $x=4$	
*D.	$x=\frac{i+\sqrt{4 \pi}}{2}$ and x	
$=$		

Global Incorrect Feedback
The correct answer is: $x=4{ }_{2}^{\frac{1}{2}}$ and $x=$

Question 15b of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297772)

Maximum Attempts:
Question Type:
Maximum Score:
Question:

1
Multiple Choice
2
Find the roots of the polynomial below.
$3 x^{2}-8 x+3$

This version of Total HTML Converter is unregistered.

Alg

	Choice	Feedback
A.	$\begin{aligned} & \because-\frac{2 \sqrt{7}}{} \text { and } \\ & =\frac{d-3, ~}{F_{i}} \end{aligned}$	
B.	$x=4$ and $x=2$	
c.	$x=20$ and $x=8$	
*D	$\begin{aligned} & x=\frac{\sqrt{7}}{\bar{y}} \text { and } \\ & y=\frac{\vdots}{3} \end{aligned}$	

Global Incorrect Feedback
The correct answer is: $x=\frac{4 \quad \frac{1}{3}}{3}$ and

$$
x=\frac{\vdots}{2}
$$

Question 15c of 15 (3 Using The Quadratic Formula to Solve Quadratic Equations 297773)

Maximum Attempts:	1
Question Type:	Multiple Choice
Maximum Score:	2
Question:	Find the roots of the polynomial below.
	$2 x^{2}-9 x+3$

	Choice	Feedback
*A.	$\begin{aligned} & \frac{=\sqrt{\sqrt{19}}}{4} \text { and } \\ & =-\sqrt{-\overline{15}} \end{aligned}$	
B.	$x=8$ and $x=2$	
C.	$x=9$ and $x=18$	
D.	$-\frac{z \sqrt{\bar{b}}}{2}$ and	

Global Incorrect Feedback
The correct answer is: and

