
ROSE Compiler Framework/Print

version

Contents
ROSE Compiler Framework/Print version ... 1

About the Book ... 10

How to contribute ... 10

Tracking Wiki Changes .. 11

Enable Email Notifications for Changes to this book ... 11

ROSE's Documentations ... 12

Obtaining ROSE ... 12

Virtual machine image .. 12

git 1.7.10 or later for github.com .. 13

Installation... 13

Platform Requirement ... 13

Software Requirement .. 14

Installing boost .. 14

Installing Java JDK ... 15

./build .. 15

configure ... 15

make .. 16

make check.. 16

make install ... 16

set environment variables ... 17

try out a rose translator ... 17

Virtual machine image .. 17

How to use the virtual machine image .. 17

Obtain the Virtual Machine Image ... 17

Content of the VM Image ... 18

Install VMware Player .. 18

Open/Play the virtual machine .. 19

How was the virtual machine made .. 19

Host Machine .. 19

Configurations... 19

Within the virtual machine .. 20

ROSE tools.. 20

identityTranslator .. 20

Uses ... 20

Source code ... 21

Limitations .. 21

TODO ... 21

Supported Programming Languages ... 21

OpenMP support ... 22

CUDA support .. 22

Abstract Syntax Tree (Intermediate Representation) .. 22

Sanity check .. 22

Visualization of AST .. 23

Text output of AST ... 24

Preprocessing info. .. 24

AST construction .. 24

Program Translation.. 25

Expected behavior of a ROSE Translator ... 25

SageBuilder and SageInterface ... 25

Steps for writing translators .. 25

Order to traverse AST ... 25

example translators ... 26

Program Analysis .. 26

control flow graph ... 26

virtual control flow graph ... 26

static control flow graph ... 27

static and interprocedural CFGs .. 27

Virtual function analysis ... 27

def-use analysis ... 28

pointer analysis ... 28

SSA ... 29

Generic dataflow framework .. 29

Dependence analysis ... 30

Generic Dataflow Framework... 30

Introduction ... 30

Function, nodeState and FunctionState... 31

function ... 31

NodeFact ... 32

NodeState .. 32

FunctionState .. 33

Lattices .. 35

Basics .. 35

below/above vs IN/OUT ... 36

common utility lattices .. 36

LiveVarsLattice... 36

Transfer function ... 37

constant propagation ... 38

live dead variable .. 39

call stack.. 40

Control flow graph and call graph .. 41

Filtered virtual CFG .. 41

Analysis driver .. 42

Class hierarchy .. 42

Initialization: InitDataflowState.. 45

worklist ... 46

apply transfer function .. 49

propagate state to next (meetUpdate) ... 50

stop condition .. 52

live dead variable .. 52

Inter-procedural analysis ... 53

transfer function .. 53

InterProceduralDataflow ... 54

simplest form:unstructured ... 54

ContextInsensitiveInterProceduralDataflow ... 56

How to use one analysis .. 56

Call directly ... 56

Through inter-procedural analysis .. 56

Retrieve lattices ... 57

How to debug .. 57

Trace the analysis .. 57

Dump cfg dot graph with lattices .. 59

Example use .. 60

Program Optimizations ... 61

Developer's Guide ... 61

Basic skills for ROSE developers ... 61

Milestones for a ROSE developers ... 61

code review ... 62

Workflow .. 62

Motivation and Goals .. 62

Development Guide .. 62

Incremental Development ... 62

Code Review ... 63

Continuous Integration.. 63

High Level Workflow ... 63

Requirement Analysis ... 63

Design ... 64

Implementation ... 64

Testing... 64

Documentation .. 64

Publicity .. 64

Proposing Workflow Changes .. 64

Reviewing Workflow Change Proposals .. 65

Review criteria .. 65

Coding Standard.. 66

What to Expect and What to Avoid .. 66

Five Principles .. 66

Avoid Coding Standard War ... 66

Must, Should and Can ... 67

Got New Ideas, Suggestions ... 67

Programming Languages .. 67

Core Languages .. 67

Scripting Languages.. 68

Naming Conventions .. 68

General .. 68

Abbreviations and Acronyms ... 68

File/Directory .. 68

Namespaces... 69

Types ... 69

Variables ... 69

Methods and Functions ... 72

Directories ... 73

Naming Convention .. 73

Layout ... 73

Files ... 74

Naming Conventions .. 74

Line length .. 74

Indentation .. 74

Characters ... 75

Header files ... 75

Source files.. 76

README .. 76

Required Content .. 76

Format ... 77

Examples ... 77

Source Code Documentation .. 77

General Guidelines.. 77

Use //TODO .. 78

Examples ... 78

Functions ... 80

Comments ... 80

Coding ... 80

Classes... 80

Name after what it is ... 81

Explicit access ... 81

Public members first ... 81

Class variables .. 81

Avoid structs ... 81

Statements ... 81

Loops... 81

Type conversions .. 82

Conditionals .. 82

Statements to be avoided .. 83

AST translators ... 83

Test cases .. 83

References ... 83

Code Review Process .. 84

Motivation ... 84

Goals ... 85

Software .. 85

Github ... 85

Developer Checklist .. 85

Coding Standards .. 85

One time setup .. 86

Daily work process ... 87

Review results ... 88

Reviewer Checklist ... 88

What to check ... 88

Commenting .. 89

Decisions ... 90

Who should review what .. 90

What to avoid .. 90

Criticism .. 90

Troubleshooting .. 91

master is out-of-sync ... 91

master cannot be synchronized ... 91

References ... 92

Continuous Integration.. 92

Motivation ... 93

Overview ... 93

Tests on Jenkins .. 94

Check Testing Results... 95

Frequently Failed Jobs .. 95

C6-ROSE-distcheck .. 95

C2-ROSE-language-matrix-linux ... 96

Connection to Code Review ... 96

TODO ... 97

References ... 97

Frequently Asked Questions (FAQ) ... 97

General .. 98

How to search rose-public mailinglist for previously asked questions? 98

How many lines of source code does ROSE have? .. 98

How large is ROSE? ... 99

Compilation... 102

How to speedup compiling ROSE? .. 102

Can ROSE accept incomplete code?... 102

Can ROSE analyze Linux Kernel sources? .. 103

Can ROSE compile C++ Boost library? ... 103

AST ... 103

How to find XYZ in AST?.. 103

How to filter out header files from AST traversals? ... 104

Should SgIfStmt::get_true_body() return SgBasicBlock? 104

How to handle #include "header.h", #if, #define etc. ? .. 105

SgClassDeclaration::get_definition() returns NULL? .. 105

How to add new AST nodes?.. 105

How does the AST merge work? .. 106

Translation .. 106

Can ROSE identityTranslator generate 100% identical output file? 106

How to build a tool inserting function calls? .. 106

How to copy/clone a function? ... 107

Can I transform code within a header file? ... 108

How to work with formal and actual arguments of functions? 109

How to translate multiple files scattered in different directories of a project? 109

Daily work .. 109

git clone returns error: SSL certificate problem? .. 110

What is the best IDE for ROSE developers? .. 110

Portability .. 110

What is the status for supporting Windows? .. 111

How-tos ... 111

How to write a How-to ... 111

Create a new page ... 111

Rules of the content .. 112

How to incrementally work on a project ... 112

Divide and Conquer .. 112

Code Review ... 113

How to create a translator ... 113

Overview ... 113

First Step ... 114

Design considerations ... 114

Searching for the AST node .. 114

Performing Translation ... 115

Verify the correctness ... 116

How to set up the makefile for a translator ... 116

Environment variables .. 116

Translator Code ... 116

Makefile .. 117

A complete example ... 118

How to debug a translator ... 119

A translator not built by ROSE's build system ... 119

A translator shipped with ROSE ... 120

How to add a new project directory .. 120

A basic example .. 120

How to fix a bug ... 121

Reproduce the bug .. 121

Find causes of the bug... 121

Fix the bug .. 122

Lessons Learned.. 122

Formatting/Indenting other people's code ... 122

Using branches of a same repository for different tasks ... 122

Create Exacting Tests Early and Often ... 122

Testing... 123

Modena Test Suite .. 123

Jenkins... 124

using external benchmarks .. 124

Lattices .. 124

Introduction ... 124

Poset .. 124

Lattice Definition .. 126

Infinite vs. Finite lattices... 126

Example: Bit vector Lattices ... 127

monotone function .. 128

tuples of lattices .. 129

integer value: ICP ... 129

Relevance to data flow analysis .. 129

e.g. liveness analysis ... 129

reaching definition .. 130

C++ Programming .. 131

Good API Design .. 131

Characteristics of a Good API .. 131

The Process of API Design ... 131

General Principles ... 132

Documentation Matters ... 132

API vs. Implementation .. 132

"Harmonize" ... 133

Names Matter .. 133

Input Parameters ... 133

Return Values.. 134

Exceptions ... 134

Who is using ROSE .. 134

Universities ... 134

DOE national laboratories... 134

TODO List .. 135

How to backup/mirror this wikibook? .. 135

Maintain the print version ... 135

Maintain the better pdf file ... 135

Sandbox... 136

How to create a new page ... 136

How to do XYZ in wiki? .. 137

How to add comments which are only visible to editor, not readers of a page? 137

Syntax highlighting ... 137

Math formula .. 138

 About the Book

The goal of this book is to have a community documentation providing extensive and

up-to-date instructional information about how to use the open-source ROSE compiler

framework, developed at Lawrence Livermore National Laboratory .

While the ROSE project website (http://www.rosecompiler.org) already has a variety of

official documentations, having a wikibook for ROSE allows anybody to contribute to

gathering instructional information about this software.

Again, please note that this wikibook is not the official documentation of ROSE. It is the

community efforts contributed by anyone just like you.

 How to contribute

If you want to contribute, please first tell if your contributions are relevant to this

wikibook about ROSE

 Welcomed contributions:

o Fix typos, grammar of existing pages to improve quality, clarity, and

readability.

o Add new pages about ROSE-specific tutorials, how-tos, FAQ, workflow

o start discussions on the Discussion Tab of an existing page about new

suggestions of how things can be done better than the current practice.

 What will be not be kept: Copy& paste of general guidelines of doing things:

Please just summary them in the ROSE-relevant wikibook page and give

reference, URL to it.

http://en.wikipedia.org/wiki/ROSE_(compiler_framework)
http://en.wikipedia.org/wiki/ROSE_(compiler_framework)
http://en.wikipedia.org/wiki/Lawrence_Livermore_National_Laboratory
http://www.rosecompiler.org/

Once you are certain the relevance of your contributions. Please read how to do one

example contribution.

 http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_write_a_Ho

w-to

 You can just test water how to edit in wikibook using

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Sandbox

 Occasionally, you may want to insert figures into a wiki page. You can do this by

uploading file first through Left menu -> Toolbox->upload file

o The upload link will direct you to Media Commons, more at link

 Bottomline: make sure your contributions are visible in the print version of this

book and are logically consistent with the rest of the content.

o Link

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Print_version

 Thank you!

 Tracking Wiki Changes

Learn how to "Track Changes": http://en.wikibooks.org/wiki/Help:Tracking_changes

 Enable Email Notifications for Changes to this book

If you want to be notified of changes to this book, WikiBooks provides email

notifications for changes to Wiki pages that you explicitly choose to watch.

To use this feature:

1. Create an account with WikiBooks:

http://en.wikibooks.org/w/index.php?title=Special:UserLogin&returnto=Main+Page&typ

e=signup

2. Login to WikiBooks and set your preferences (top right corner of the web page) for

both email notifications and your watch list:

 Email notification settings
o Preferences-> User profile-> E-mail notifications -> E-mail me when a

page on my watchlist is changed (check this on)

 Define your watchlist
o Preferences->Watchlist -> Advanced options -> you can select the options

you want, such as "Add pages I edit to my watchlist" and "Add pages I

create to my watchlist"

o you can also individually watch and unwatch any wiki page: by click on

the star on the page's tab list (after View history)

Caveat: we don't know if wikibooks supports users to watch one entire book. So far, you

have to do this one page after another by editing them at some points.

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_write_a_How-to
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_write_a_How-to
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Sandbox
http://en.wikipedia.org/wiki/Wikipedia:Wikimedia_Commons#Embedding_Wikicommons.27_media_in_Wikipedia_articles
file:///C:/Users/Acer/Desktop/workspace/1.rose/ROSE%20Compiler%20Framework%20Print%20version%20-%20Wikibooks,%20open%20books%20for%20an%20open%20world_files/ROSE%20Compiler%20Framework%20Print%20version%20-%20Wikibooks,%20open%20books%20for%20an%20open%20world.htm
http://en.wikibooks.org/wiki/Help:Tracking_changes
http://en.wikibooks.org/wiki/Wikibooks:WATCH#Watching_pages
http://en.wikibooks.org/w/index.php?title=Special:UserLogin&returnto=Main+Page&type=signup
http://en.wikibooks.org/w/index.php?title=Special:UserLogin&returnto=Main+Page&type=signup

 ROSE's Documentations

ROSE uses a range of materials to document the project.

 ROSE manual: the design, algorithm, and implementation details. Written in

LaTeX, the content of the manual can come from published papers. It may

contain intense academic citations and math formula.

 ROSE tutorial: code examples for tools built on top of ROSE, step-by-step

instructions for doing things

 Doxygen web reference: class/namespace references of source code

 this wikibook: non-official, community documentation. Editable by anyone,

aimed to supplement official documents and to collect tutorials, FAQ and quick

pointers to important topics.

 Obtaining ROSE

ROSE's source files are managed by git, a distributed revision control and source code

management system. There are several ways to download the source tree:

 Private Git repos within LLNL

o Private Git repository hosted within Lawrence Livermore National

Laboratory: the internal file path is /usr/casc/overture/ROSE/git/ROSE.git:

central repo of ROSE, mostly automatically updated by Jenkins only after

incoming commits pass all regression tests

o Private Git repository hosted by github.llnl.gov: used for daily pushes and

code review

 Public repositories

o Public Git repository hosted at https://github.com/rose-compiler/rose: the

content is identical to the private Git repository at LLNL, except that the

proprietary EDG submodule is not released.

o Downloadable packages and a subversion repository (synchronized with

stable snapshots of ROSE's git repository):

https://outreach.scidac.gov/projects/rose/

 Virtual machine image

It can take quite some time to install ROSE for the first time. We provide a virtual

machine image with a Ubuntu 10.04 OS and an installed ROSE within it.

You can just download it and play it using VMware Player

Download the virtual machine image:

 http://www.rosecompiler.org/Ubuntu-ROSE-Demo.tar.gz

https://github.com/rose-compiler/rose
https://outreach.scidac.gov/projects/rose/
http://www.rosecompiler.org/Ubuntu-ROSE-Demo.tar.gz

 Demonstration user account (sudo user in Ubuntu):

o account: demo

o password: password

 Warning: it is a huge file of 4.8 GB

More information is at ROSE virtual machine image

 git 1.7.10 or later for github.com

github requires git 1.7.10 or later to avoid HTTPS cloning errors, as mentioned at

https://help.github.com/articles/https-cloning-errors

Ubuntu 10.04's package repository has git 1.7.0.4. So building later version of git is

needed. But you still need an older version of git to get the latest version of git.

 apt-get install git-core

Now you can clone the latest git

 git clone https://github.com/git/git.git

Install all prerequisite packages needed to build git from source files(assuming you

already installed GNU tool chain with GCC compiler, make, etc.)

 sudo apt-get install gettext zlib1g-dev asciidoc libcurl4-openssl-dev

 $ cd git # enter the cloned git directory

 $ make configure ;# as yourself

 $./configure --prefix=/usr ;# as yourself

 $ make all doc ;# as yourself

 # make install install-doc install-html;# as root

 Installation

ROSE is released as an open source software package. Users are expected to compile and

install the software.

 Platform Requirement

ROSE is portable to Linux and Mac OS X on IA-32 and x86-64 platforms. In particular,

ROSE developers often use the following development environments:

 Red Hat Enterprise Linux 5.6 or its open source equivalent Centos 5.6

 Ubuntu 10.04.4 LTS. Higher versions of Ubuntu are NOT supported due to the

GCC versions supported by ROSE.

 Mac OS X 10.5 and 10.6

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Virtual_Machine_Image
https://help.github.com/articles/https-cloning-errors
https://github.com/git/git.git
http://www.centos.org/

 Software Requirement

Here is a list for prerequisite software packages for installing ROSE

 GCC 4.0.x to 4.4.x , the range of supported GCC versions is checked by support-

rose.m4 during configuration

o gcc

o g++

o gfortran (optional for Fortran support)

 GNU autoconf >=2.6 and automake >= 1.9.5, GNU m4 >=1.4.5

 libtool

 bison (byacc),

 flex

 glibc-devel

 Sun Java JDK

 git

 boost library: version 1.36 to 1.47. Again the range of supported Boost versions is

checked by support-rose.m4 during configuration

 ZGRViewer, a GraphViz/DOT Viewer: essential to view dot graphs of ROSE

AST

o install Graphviz first - Graph Visualization Software

Optional packages for additional features or advanced users

 libxml2-devel

 sqlite

 texlive-full, need for building LaTeX docs

 Installing boost

The installation of Boost may need some special attention.

Download a supported boost version from

http://sourceforge.net/projects/boost/files/boost/

For version 1.36 to 1.38

./configure --prefix=/home/usera/opt/boost-1.35.0

 make

 make install

Ignore the warning like : Unicode/ICU support for Boost.Regex?... not found.

For version 1.39 and 1.48: create the boost installation directory first

In boost source tree

https://github.com/rose-compiler/rose/blob/master/config/support-rose.m4
https://github.com/rose-compiler/rose/blob/master/config/support-rose.m4
https://github.com/rose-compiler/rose/blob/master/config/support-rose.m4
http://sourceforge.net/projects/boost/files/boost/

 ./bootstrap.sh --prefix=your_boost_install_path

 ./bjam install --prefix=your_boost_install_path --

libdir=your_boost_install_path/lib

Remember to export LD_LIBRARY_PATH for the installed boost library, for example

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/leo/opt/boost_1.45.0_inst/lib

export PATH LD_LIBRARY_PATH

 Installing Java JDK

Download Java SE JDK from

http://www.oracle.com/technetwork/java/javase/downloads/index.html

For example, you can download jdk-7u5-linux-i586.tar.gz for your Linux 32-bit system.

After untar it to your installation path, remember to set environment variables for Java

JDK

jdk path should be search first before other paths

PATH=/home/leo/opt/jdk1.7.0_05/bin:$PATH

lib path for libjvm.so

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/leo/opt/jdk1.7.0_05/jre/lib/i386

/server

Don't forget to export both variables!!

export PATH LD_LIBRARY_PATH

 ./build

In general, it is better to rebuild the configure file in the top level source directory of

ROSE. Just type:

 rose_sourcetree>./build

 configure

The next step is to run configure in a separated build tree. ROSE will complain if you try

to build it within its source directory.

There are many configuration options. You can see the full list of options by

typing ../sourcetree/configure --help . But only --prefix and --with-boost are required as

the minimum options.

 mkdir buildrose

 cd buildrose

http://www.oracle.com/technetwork/java/javase/downloads/index.html

 ../rose_sourcetree/configure --prefix=/home/user/opt/rose_tux284 --

with-boost=/home/user/opt/boost-1.36.0/

ROSE's configure turns on debugging option by default. The generated object files

should already have debugging information.

Additional useful configure options

 Specify where a gcc's OpenMP runtime library libgomp.a is located. Only GCC

4.4's gomp lib should be used to have OpenMP 3.0 support

o --with-gomp_omp_runtime_library=/usr/apps/gcc/4.4.1/lib/

 make

In ROSE's build tree, type

 cd buildrose

 make -j4

will build the entire ROSE, including librose.so, tutorials, projects, tests, and so on. -j4

means to use four processes to perform the build. You can have bigger numbers if your

machine supports more concurrent processes. Still, the entire process will take hours to

finish.

For most users, building librose.so should be enough for most of their work. In this case,

just type

 make -C src/ -j4

 make check

Optionally, you can type make check to make sure the compiled rose pass all its shipped

tests. This takes hours again to go through all make check rules within projects, tutorial,

and tests directories.

To save time, you can just run partial tests under a selected directory, like the

buildrose/tests

 make -C tests/ check -j4

 make install

After "make", it is recommended to run "make install" so rose's library (librose.so),

headers (rose.h) and some prebuilt rose-based tools can be installed under the specified

installation path using --prefix.

 set environment variables

After the installation, you should set up some standard environment variables so you can

use rose. For bash, the following is an example:

ROSE_INS=/home/userx/opt/rose_installation_tree

PATH=$PATH:$ROSE_INS/bin

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROSE_INS/lib

Don't forget to export variables !!!

export PATH LD_LIBRARY_PATH

 try out a rose translator

There are quite some pre-built rose translators installed under $ROSE_INS/bin.

You can try identityTranslator, which just parses input code, generates AST, and

unparses it back to original code:

 identityTranslator -c helloWorld.c

It should generate an output file named rose_helloWorld.c, which should just look like

your input code.

 Virtual machine image

The goal of this page is to document

 How users can download the virtual machine image (or virtual appliance) and use

ROSE out of box.

 how the virtual machine image for a fully installed ROSE is created.

 How to use the virtual machine image

 Obtain the Virtual Machine Image

Download the virtual machine image created by using VMware Player:

 http://www.rosecompiler.org/Ubuntu-ROSE-Demo.tar.gz

 Warning: it is a huge file of 4.8 GB.

 Demonstration user account (sudo user in Ubuntu):

o account: demo

o password: password

LLNL users may not be able to download it due to limitations to max downloaded file

size within LLNL.

http://www.rosecompiler.org/Ubuntu-ROSE-Demo.tar.gz

 Content of the VM Image

Copy&paste from README within the virtual machine

This is a virtual machine image for the ROSE source-to-source compiler framework.

sourcetree, cloned from github.com/rose-compiler/rose on July 21, 2012

 /home/demo/rose

buildtree

 /home/demo/buildrose

installation tree (--prefix path)

 /home/demo/opt/rose-inst

A script to set environment variables to use the installed ROSE tools

 /home/demo/set.rose.env

A test translator

 /home/demo/myTranslator

Some dot graphs of a simplest function

 /home/demo/dotGraphs

 Install VMware Player

You have to install VMware Player to your machine to use the virtual machine image.

Goto http://www.vmware.com/go/downloadplayer/

Select the right bundle for your platform. For example: VMware-Player-4.0.4-

744019.i386.txt

After downloading (assuming you are using Ubuntu 10.04)

 chmod a+x VMware-Player-4.0.4-744019.i386.txt

 sudo ./VMware-Player-4.0.4-744019.i386.txt

 follow the GUI to finish the installation

To start VMPlayer, goto Menu->Applications-> System Tools -> VMware Player

http://www.vmware.com/go/downloadplayer/

 Open/Play the virtual machine

After downloading and untar the tar.gz package to a directory, use VMware player to

open the configuration file of the directory.

 How was the virtual machine made

 Host Machine

We used Ubuntu 10.04 LTS as a host machine to create the virtual machine image.

uname -a

Linux 8core-ubuntu 2.6.32-41-generic-pae #91-Ubuntu SMP Wed Jun 13

12:00:09 UTC 2012 i686 GNU/Linux

cat /etc/*release

DISTRIB_ID=Ubuntu

DISTRIB_RELEASE=10.04

DISTRIB_CODENAME=lucid

DISTRIB_DESCRIPTION="Ubuntu 10.04.4 LTS"

 Configurations

VMware player has been installed onto the host machine, as described above.

Basic configuration for the virtual machine

Hardware

 Memory : 2 GB

 Processors: 2

 Hard Disk size: 15 GB: We would like to keep it small while having enough

space for users.

o 5GB is used for Ubuntu system files and

o 10GB for the demonstration user's home directory

 Network Adapter: NAT: share the host's IP address

OS

 OS: Ubuntu 10.04 LTS

 Demonstration user account (sudo user in Ubuntu):

o account: demo

o password: password

 screen size: 1280x960 (4:3)

Download Ubuntu 10.04 LTS http://releases.ubuntu.com/lucid/ We currently use the i386

desktop ISO as the start point

http://releases.ubuntu.com/lucid/

 http://releases.ubuntu.com/lucid/ubuntu-10.04.4-desktop-i386.iso

 Within the virtual machine

We installed Software Prerequisites

 sudo apt-get install gcc g++ gfortran

 sudo apt-get install autoconf automake libtool

 sudo apt-get install git-core bison flex texlive-full graphviz python-all-dev

We then installed ROSE

 See ROSE installation for details about how this was done.

 ROSE tools

ROSE is a compiler framework to build customized compiler-based tools. A set of

example tools are provided as part of the ROSE release to demonstrate the use of ROSE.

Some of them are also useful for daily work of ROSE developers.

We list and briefly explain some tools built using ROSE. They are installed under

ROSE_INSTALLATION_TREE/bin .

 identityTranslator

Source: http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf (chapter 2)

This is the simplest tool built using ROSE. It takes input source files , builds AST, and

then unparses the AST back to compilable source code. It tries its best to preserve

everything from the input file.

 Uses

Typical use cases

 without any options, test if ROSE can compile your code: replace the compiler

used by your Makefile with identityTranslator

 turn on some built-in analysis, translation or optimization phases, such as -

rose:openmp:lowering to support OpenMP

o type "identityTranslator --help" to see all options

 debug a ROSE-based translator: the first step is often to use identityTranslator to

rule out if it is a compilation problem using ROSE

 use the source of the identityTranslator as a start point to add custom analysis and

transformation. The code in the identityTranslator is indeed the minimum code

required for almost all kinds of ROSE-based tools.

http://releases.ubuntu.com/lucid/ubuntu-10.04.4-desktop-i386.iso
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Installation
http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf

 Source code

identityTranslator.c

#include "rose.h"

int main(int argc, char *argv[]){

 // Build the AST used by ROSE

 SgProject *project = frontend(argc, argv);

 // Run internal consistency tests on AST

 AstTests::runAllTests(project);

 // Insert your own manipulation of the AST here...

 // Generate source code from AST and call the vendor's compiler

 return backend(project);

}

 Limitations

But due to limitations of the frontends and the internal processing, it cannot generate

100% identical output compared to the input file.

Some notable changes it may introduce include:

 "int a, b, c;" are transformed to three SgVariableDeclaration statements,

 macros are expanded.

 extra brackets are added around constants of typedef types (e.g.

c=Typedef_Example(12); is translated in the output to c =

Typedef_Example((12));)

 Converting NULL to 0.

 TODO

 refactor the tools into a dedicated rose/tools directory. So they will always be built

and available by default, regardless which languages are turned on or off

 Supported Programming Languages

ROSE supports a wide range of main stream programming languages, with different

degrees of maturity. The list of supported languages includes:

 C and C++: based on the EDG C++ frontend version 3.3.

o An ongoing effort is to upgrade the EDG frontend to its recent 4.4 version.

o Another ongoing effort is to use clang as an alternative, open-source

C/C++ frontend

 Fortran 77/95/2003: based on the Open Fortran Parser

http://www.edg.com/index.php?location=c_frontend
http://fortran-parser.sourceforge.net/

 OpenMP 3.0: based on ROSE's own parsing and translation support for both

C/C++ and Fortran OpenMP programs.

 UPC 1.1: this is also based on the EDG 3.3 frontend

 OpenMP support

ROSE supports OpenMP 3.0 for C/C++ (and limited Fortran support).

 The ROSE manual has a chapter (Chapter 12 OpenMP Support) explaining the

details. pdf

 A paper was published for the uniqueness of the ROSE OpenMP Implementation

pdf

 Frontend parsing source files (ompparser.yy and ompFortranParser.C) are located

under https://github.com/rose-compiler/rose/tree/master/src/frontend/SageIII

 The transformation of OpenMP into threaded code is located in

omp_lowering.cpp, under https://github.com/rose-

compiler/rose/blob/master/src/midend/programTransformation/ompLowering

 The OpenMP runtime interface is defined in libxomp.h and xomp.c under the

same ompLowering directory mentioned above

 CUDA support

ROSE has an experimental connection to EDG 4.0, which helps us support CUDA.

To enable parsing CUDA codes, please use the following configuration options:

 --enable-edg-version=4.0 --enable-cuda --enable-edg-cuda

Chapter 16 of ROSE User Manual has more details about this.

 Abstract Syntax Tree (Intermediate

Representation)

The main intermediate representation of ROSE is its abstract syntax tree (AST).

 Sanity check

We provide a set of sanity check for AST. We use them to make sure the AST is

consistent. It is also highly recommended that ROSE developers to add a sanity check

after their AST transformation is done. This has a higher standard than just correctly

http://rosecompiler.org/ROSE_UserManual/ROSE-UserManual.pdf
http://rosecompiler.org/ROSE_ResearchPapers/2010-06-AROSEBasedOpenMP3.0ResearchCompiler-IWOMP.pdf
https://github.com/rose-compiler/rose/tree/master/src/frontend/SageIII
https://github.com/rose-compiler/rose/blob/master/src/midend/programTransformation/ompLowering
https://github.com/rose-compiler/rose/blob/master/src/midend/programTransformation/ompLowering

unparsed to compilable code. It is common for an AST to go through unparsing correctly

but fail on the sanity check.

The recommend one is

 AstTests::runAllTests(project); from src/midend/astDiagnostics. Internally, it

calls the following checks:

o TestAstForProperlyMangledNames

o TestAstCompilerGeneratedNodes

o AstTextAttributesHandling

o AstCycleTest

o TestAstTemplateProperties

o TestAstForProperlySetDefiningAndNondefiningDeclarations

o TestAstSymbolTables

o TestAstAccessToDeclarations

o TestExpressionTypes

o TestMangledNames::test()

o TestParentPointersInMemoryPool::test()

o TestChildPointersInMemoryPool::test()

o TestMappingOfDeclarationsInMemoryPoolToSymbols::test()

o TestLValueExpressions

o TestMultiFileConsistancy::test() //2009

o TestAstAccessToDeclarations::test(*i); // named type test

There are some other functions floating around. But they should be merged into

AstTests::runAllTests(project)

 FixSgProject(*project); //in Qing's AST interface

 Utility::sanityCheck(SgProject*)

 Utility::consistencyCheck(SgProject*) // SgFile*

 Visualization of AST

We provide ROSE_INSTALLATION_TREE/bin/dotGeneratorWholeASTGraph to

generate a dot graph of the detailed AST of input code.

To visualize the generated dot graph, you have to install

 ZGRViewer here: http://zvtm.sourceforge.net/zgrviewer.html#download.

 Graphviz: http://www.graphviz.org/Download.php.

A complete example

make sure the environment variables(PATH, LD_LIBRARY_PATH) for the

installed rose are correctly set

http://zvtm.sourceforge.net/zgrviewer.html#download
http://www.graphviz.org/Download.php

which dotGeneratorWholeASTGraph

~/workspace/masterClean/build64/install/bin/dotGeneratorWholeASTGraph

run the dot graph generator

dotGeneratorWholeASTGraph -c ttt.c

#see it

which run.sh

~/64home/opt/zgrviewer-0.8.2/run.sh

run.sh ttt.c_WholeAST.dot

 Text output of AST

just call: SgNode::unparseToString(). You can call it from any SgLocatedNode within the

AST to dump partial AST's text format.

 Preprocessing info.

In addition to nodes and edges, ROSE AST may have some extra attributes attached for

preprocessing information like #include, #if .. #else. They are attached before, after, or

within a nearby lAST node (only the one with source location information.)

An example translator will traverse the input code's AST and dump information about the

found preprocessing information,

exampleTranslators/defaultTranslator/preprocessingInfoDumper -c

main.cxx

Found an IR node with preprocessing Info attached:

(memory address: 0x2b7e1852c7d0 Sage type: SgFunctionDeclaration) in

file

/export/tmp.liao6/workspace/userSupport/main.cxx (line 3 column 1)

-------------PreprocessingInfo #0 ----------- :

classification = CpreprocessorIncludeDeclaration:

 String format = #include "all_headers.h"

relative position is = before

Source: http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf (Chapter 29 -

Handling Comments, Preprocessor Directives, And Adding Arbitrary Text to Generated

Code)

 AST construction

SageBuilder and SageInterface namespaces provide functions to create AST pieces and

manipulate them.

http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf

 Program Translation

With its high level intermediate representation, ROSE is suitable for building source-to-

source translators. This is achieved by re-structuring the AST of the input source code,

then unparsing the transformed AST to the output source code.

 Expected behavior of a ROSE Translator

A translator built using ROSE is designed to act like a compiler (gcc, g++,gfortran ,etc

depending on the input file types).

So users of the translator only need to change the build system for the input files to use

the translator instead of the original compiler.

 SageBuilder and SageInterface

The official guide for restructuring/constructing AST highly recommends using helper

functions from SageBuilder and SageInterface namespaces to create AST pieces and

moving them around. These helper functions try to be stable across low-level changes

and be smart enough to transparently set many edges and maintain symbol tables.

Users who want to have lower level control may want to directly invoke the member

functions of AST nodes and symbol tables to explicitly manipulate edges and symbols in

the AST. But this process is very tedious and error-prone.

 Steps for writing translators

Generic steps:

 prepare a simplest source file (a.c) as an example input of your translator

o avoid including any system headers so you can visualize the whole AST

o use ROSE_INSTALLATION_TREE/bin/dotGeneratorWholeASTGraph

to generate a whole AST for a.c

 prepare another simplest source file (b.c) as an example output of your translator

o again, avoid including any system headers

o use ROSE_INSTALLATION_TREE/bin/dotGeneratorWholeASTGraph

to generate a whole AST for b.c

 compare the two dot graphs side by side

 use SageInterface or SageBuilder functions to restruct the source AST graph to be

the AST graph you want to generate

 Order to traverse AST

Naive pre-order traversal is not suitable for building a translator since the translator may

change the nodes the traversal is expected to visit later on. Conceptually, this is

essentially the same problem with C++ iterator invalidation.

To safely transform AST, It is recommended to use a reverse iterator of the statement list

generated by a preorder traversal. This is different from a list generated from a post order

traversal.

For example, assuming we have a subtree of : parent <child 1, child 2>,

 Pre order traversal will generate a list: parent, child 1, child2

 Post order traversal will generate a list: child 1, child2, parent.

 Reverse iterator of the pre order will give you : child2, child 1, and parent.

Transforming using this order is the safest based on our experiences.

 example translators

split one complex statement into multiple simpler statements

 ROSE/projects/backstroke/ExtractFunctionArguments.C

 Program Analysis

ROSE have implemented the following compiler analysis

 call graph analysis

 control flow graph

 data flow analysis: including liveness analysis, def-use analysis, etc.

 dependence analysis

 side effect analysis

 control flow graph

ROSE provides several variants of control flow graphs

 virtual control flow graph

The virtual control flow graph (vcfg) is dynamically generated on the fly when needed.

So there is no mismatch between the ROSE AST and its corresponding control flow

graph. The downside is that the same vcfg will be re-generated each time it is needed.

This can be a potentially a performance bottleneck.

Facts

 documentation: virtual CFG is documented in Chapter 19 Virtual CFG of

ROSE tutorial pdf

 source files:

o src/frontend/SageIII/virtualCFG/virtualCFG.h

o src/ROSETTA/Grammar/Statement.code // prototypes of member

functions for located nodes, etc.

o src/frontend/SageIII/virtualCFG/memberFunctions.C // implementation of

virtual CFG related member functions for each AST node

 this file will help the generation of

buildTree/src/frontend/SageIII/Cxx_Grammar.h

 test directory: tests/CompileTests/virtualCFG_tests

 a dot graph generator: generator a dot graph for either the raw or interesting

virtual CFG.

o source: tests/CompileTests/virtualCFG_tests/generateVirtualCFG.C

o Installed under rose_ins/bin

 static control flow graph

Due to the performance concern of virtual control flow graph, we developed another

static version which persistently exists in memory like a regular graph.

Facts:

 documentation: 19.7 Static CFG of ROSE tutorial pdf

 test directory: rose/tests/CompileTests/staticCFG_tests

 static and interprocedural CFGs

Facts:

 documentation: 19.8 Static, Interprocedural CFGs of ROSE tutorial pdf

 test directory: rose/tests/CompileTests/staticCFG_tests

 Virtual function analysis

Facts

 Original contributor: Faizur from UTSA, done in Summer 2011

 Code: at src/midend/programAnalysis/VirtualFunctionAnalysis.

 implemented with the techniques used in the following paper: "Interprocedural

Pointer Alias Analysis -

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2382". The paper

boils down the virtual function resolution to pointer aliasing problem. The paper

employs flow sensitive inter procedural data flow analysis to solve aliasing

problem, using compact representation graphs to represent the alias relations.

http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf
http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf
http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2382

 some test files in the roseTests folder of the ROSE repository and he told me that

the implementation supports function pointers as well as code which is written

across different files (header files etc).

 documentation: Chapter 24 Dataflow Analysis based Virtual Function Analysis,

of ROSE tutorial pdf

 def-use analysis

If you want a def-use analysis, try this

http://www.rosecompiler.org/ROSE_HTML_Reference/classVariableRenaming.html

VariableRenaming v(project);

v.run();

v.getReachingDefsAtNode(...);

 pointer analysis

https://mailman.nersc.gov/pipermail/rose-public/2010-September/000390.html

On 9/1/10 11:49 AM, Fredrik Kjolstad wrote: > Hi all, > > I am trying to use Rose as the

analysis backend for a refactoring > engine and for one of the refactorings I am

implementing I need > whole-program pointer analysis. Rose has an implementation of >

steensgard's algorithm and I have some questions regarding how to use > this. > > I

looked at the file steensgaardTest2.C to figure out how to invoke > this analysis and I am

a bit perplexed: > > 1. The file SteensgaardPtrAnal.h that is included by the test is not >

present in the include directory of my installed version of Rose. > Does this mean that the

Steensgaard implementation is not a part of > the shipped compiler, or does it mean that I

have to retrieve an > instance of it through some factory method whose static return type

is > PtrAnal? I believe it is in the shipped compiler. And you're using the correct file to

figure out how to use it. It should be in the installed include directory --- if it is not, it's

probably something that needs to be fixed. But you can copy the include file from

ROSE/src/midend/programAnalysis/pointerAnal/ as a temporary fix

> > 2. How do I initialize the alias analysis for a given SgProject? Is > this done through

the overloaded ()?

The steensgaardTest2.C file shows how to set up everything to invoke the analysis. Right

now you need to go over each function definition and invoke the analysis explicitly, as

illustrated by the main function in the file. > > 3. Say I want to query whether two pointer

variables alias and I have > SGNodes to their declarations. How do I get the AstNodePtr

needed to > invoke the may_alias(AstInterface&, const AstNodePtr&, const >

AstNodePtr&) function? Or maybe I should rather invoke the version of > may_alias that

takes two strings (varnames)? > To convert a SgNode* x to AstNodePtr, wrap it inside an

AstNodePtrImpl object, i.e., do AstNodePtrImpl(x), as illustrated inside the () operator of

TestPtrAnal in steensgaardTest2.C.

http://www.rosecompiler.org/ROSE_HTML_Reference/classVariableRenaming.html
https://mailman.nersc.gov/pipermail/rose-public/2010-September/000390.html

> 4. How do I query whether two parameters alias? > The PtrAnal class has the following

interface method

 may_alias(AstInterface& fa, const AstNodePtr& r1, const AstNodePtr&

r2); It is implemented in SteensgaardPtrAnal class, which inherit PtrAnal class. To build

AstInterface and AstNodePtr, you simply need to wrap SgNode* with some wrapper

classes, illustrated by steensgaardTest2.C

-Qing Yi

void func(void) {

int* pointer;

int* aliasPointer;

pointer = malloc(sizeof(int));

aliasPointer = pointer;

*aliasPointer = 42;

printf("%d\n", *pointer);

}

The SteensgaardPtrAnal::output function returns:

c:(sizeof(int)) LOC1=>LOC2

c:42 LOC3=>LOC4

v:func LOC5=>LOC6 (inparams:) ->(outparams: LOC7)

v:func-0 LOC8=>LOC7

v:func-2-1 LOC9=>LOC10

v:func-2-3 LOC11=>LOC12 (pending LOC10 LOC13=>LOC14 =>LOC4)

v:func-2-4 LOC15=>LOC16 =>LOC17

v:func-2-5 LOC18=>LOC14 =>LOC4

v:func-2-aliasPointer LOC19=>LOC14 =>LOC4

v:func-2-pointer LOC20=>LOC13 =>LOC14 =>LOC4

v:malloc LOC21=>LOC22 (inparams: LOC2) ->(outparams: LOC12)

v:printf LOC23=>LOC24 (inparams: LOC16=>LOC17 LOC14=>LOC4) -

>(outparams:

 LOC25)

 SSA

ROSE has implemented an SSA form. Some discussions on the mailing list: link.

Rice branch has an implementation of array SSA. We are waiting for their commits to be

pushed into Jenkins. --Liao (discuss • contribs) 18:17, 19 June 2012 (UTC)

 Generic dataflow framework

see more at ROSE Compiler Framework/Generic Dataflow Framework

https://mailman.nersc.gov/pipermail/rose-public/2012-March/001496.html
http://en.wikibooks.org/wiki/User:Liao
http://en.wikibooks.org/wiki/User_talk:Liao
http://en.wikibooks.org/wiki/Special:Contributions/Liao
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Generic_Dataflow_Framework

As the ROSE project goes on, we have collected quite some versions of dataflow

analysis. It is painful to maintain and use them as they

 duplicate the iterative fixed-point algorithm

 scatter in different directories and

 use different representations for results.

An ongoing effort is to consolidate all dataflow analysis work within a single framework.

Quick facts

 original author: Greg Bronevetsky

 code reviewer: Chunhua Liao

 Documentation:

 source codes: files under ./src/midend/programAnalysis/genericDataflow

 tests: tests/roseTests/programAnalysisTests/generalDataFlowAnalysisTests

 currently implemented analysis

o dominator analysis: dominatorAnalysis.h dominatorAnalysis.C

o livedead variable analysis, or liveness analysis: liveDeadVarAnalysis.h

liveDeadVarAnalysis.C

o constant propagation: constantPropagation.h constantPropagation.C:

TODO need to move the files into src/ from /tests

 Dependence analysis

The interface for dependence graph could be found in DependencyGraph.h. The

underlying representation is n DepGraph.h. BGL is required to access the graph.

Here are 6 examples attached with this email. In deptest.C, there are also some macros to

enable more accurate analysis.

If USE_IVS is defined, the induction variable substitution will be performed. if

USE_FUNCTION is defined, the dependency could take a user-specified function side-

effect interface. Otherwise, if non of them are defined, it will perform a normal

dependence analysis and build the graph.

 Generic Dataflow Framework

 Introduction

As the ROSE project goes on, we have collected quite some versions of dataflow

analysis. It is painful to maintain and use them as they

 duplicate the iterative fixed-point algorithm

https://mailman.nersc.gov/pipermail/rose-public/2012-May/001620.html

 scatter in different directories and

 use different representations for results.

An ongoing effort is to consolidate all dataflow analysis work within a single framework.

Quick facts

 original author: Greg Bronevetsky

 code reviewer: Chunhua Liao

 Documentation:

 source codes: files under ./src/midend/programAnalysis/genericDataflow

 tests: tests/roseTests/programAnalysisTests/generalDataFlowAnalysisTests

 currently implemented analysis

o dominator analysis: dominatorAnalysis.h dominatorAnalysis.C

o livedead variable analysis, or liveness analysis: liveDeadVarAnalysis.h

liveDeadVarAnalysis.C

o constant propagation: constantPropagation.h constantPropagation.C:

TODO need to move the files into src/ from /tests

 Function, nodeState and FunctionState

Function and nodeState are two required parameters to run data flow analysis:

They are stored together inside FunctionState //functionState.h

functionState.h

genericDataflow/cfgUtils/CallGraphTraverse.h

 function

An abstraction of functions, internally connected to SgFunctionDeclaration *decl

declared in ./src/midend/programAnalysis/genericDataflow/cfgUtils/CallGraphTraverse.h

constructors:

 Function::Function(string name) based on function name

 Function::Function(SgFunctionDeclaration* sample) // core constructor

 Function::Function(SgFunctionDefinition* sample)

CGFunction* cgFunc; // call graph function

Function func(cgFunc);

 NodeFact

any information related to a CFG node.

 It has no dataflow 's IN/OUT concept

 not meant to evolve during the dataflow analysis

class NodeFact: public printable

{

 public:

 // returns a copy of this node fact

 virtual NodeFact* copy() const=0;

};

 NodeState

Store information about multiple analyses and their corresponding lattices, for a given

node (CFG node ??)

./src/midend/programAnalysis/genericDataflow/state/nodeState.h

It also provide static functions to

 initialize NodeState for all DataflowNode

 to retrieve NodeState for a given DataflowNode

class NodeState

{

 // internal types: map between analysis and set of lattices

 typedef std::map<Analysis*, std::vector<Lattice*> > LatticeMap;

 typedef std::map<Analysis*, std::vector<NodeFact*> > NodeFactMap;

 typedef std::map<Analysis*, bool > BoolMap;

 // the dataflow information Above the node, for each analysis

that

 // may be interested in the current node

 LatticeMap dfInfoAbove; // IN set in a dataflow

 // the Analysis information Below the node, for each analysis

that

 // may be interested in the current node

 LatticeMap dfInfoBelow; // OUT set in a dataflow,

 // the facts that are true at this node, for each analysis that

 // may be interested in the current node

 NodeFactMap facts;

 // Contains all the Analyses that have initialized their state

at this node. It is a map because

 // TBB doesn't provide a concurrent set.

 BoolMap initializedAnalyses;

// static interfaces

 // returns the NodeState object associated with the given

dataflow node.

 // index is used when multiple NodeState objects are associated

with a given node

 // (ex: SgFunctionCallExp has 3 NodeStates: entry, function

body, exit)

 static NodeState* getNodeState(const DataflowNode& n, int

index=0);

// most useful interface: retrieve the lattices (could be only one)

associated with a given analysis

 // returns the map containing all the lattices from above the

node that are owned by the given analysis

 // (read-only access)

 const std::vector<Lattice*>& getLatticeAbove(const Analysis*

analysis) const;

 // returns the map containing all the lattices from below the

node that are owned by the given analysis

 // (read-only access)

 const std::vector<Lattice*>& getLatticeBelow(const Analysis*

analysis) const;

}

 FunctionState

./src/midend/programAnalysis/genericDataflow/state/functionState.h

A pair of Function and NodeState.

 it provides static functions to initialize all FunctionState And retrieve

FunctionState

class FunctionState

{

 friend class CollectFunctions;

 public:

 Function func;

 NodeState state;

 // The lattices that describe the value of the function's

return variables

 NodeState retState;

 private:

 static std::set<FunctionState*> allDefinedFuncs;

 static std::set<FunctionState*> allFuncs;

 static bool allFuncsComputed;

 public:

 FunctionState(Function &func):

 func(func),

 state(/*func.get_declaration()->cfgForBeginning()*/)

 {}

 // We should use this interface --------------

 // 1. returns a set of all the functions whose bodies are in the

project

 static std::set<FunctionState*>& getAllDefinedFuncs();

 // 2. returns the FunctionState associated with the given function

 // func may be any declared function

 static FunctionState* getFuncState(const Function& func);

 ...

}

FunctionState* fs = new FunctionState(func); // empty From FuntionState to NodeState

/*************************************

 *** UnstructuredPassInterAnalysis ***

 *************************************/

void UnstructuredPassInterAnalysis::runAnalysis()

{

 set<FunctionState*> allFuncs =

FunctionState::getAllDefinedFuncs(); // call a static function to get

all function state s

 // Go through functions one by one, call an intra-procedural

analysis on each of them

 // iterate over all functions with bodies

 for(set<FunctionState*>::iterator it=allFuncs.begin();

it!=allFuncs.end(); it++)

 {

 FunctionState* fState = *it;

 intraAnalysis->runAnalysis(fState->func, &(fState-

>state));

 }

}

// runs the intra-procedural analysis on the given function, returns

true if

// the function's NodeState gets modified as a result and false

otherwise

// state - the function's NodeState

bool UnstructuredPassIntraAnalysis::runAnalysis(const Function& func,

NodeState* state)

{

 DataflowNode funcCFGStart =

cfgUtils::getFuncStartCFG(func.get_definition(),filter);

 DataflowNode funcCFGEnd =

cfgUtils::getFuncEndCFG(func.get_definition(), filter);

 if(analysisDebugLevel>=2)

 Dbg::dbg <<

"UnstructuredPassIntraAnalysis::runAnalysis() function

"<<func.get_name().getString()<<"()\n";

 // iterate over all the nodes in this function

 for(VirtualCFG::iterator it(funcCFGStart);

it!=VirtualCFG::dataflow::end(); it++)

 {

 DataflowNode n = *it;

 // The number of NodeStates associated with the given

dataflow node

 //int numStates=NodeState::numNodeStates(n);

 // The actual NodeStates associated with the given

dataflow node

 const vector<NodeState*> nodeStates =

NodeState::getNodeStates(n);

 // Visit each CFG node

 for(vector<NodeState*>::const_iterator itS =

nodeStates.begin(); itS!=nodeStates.end(); itS++)

 visit(func, n, *(*itS));

 }

 return false;

}

example: retrieve the liveness analysis's IN lattice

void getAllLiveVarsAt(LiveDeadVarsAnalysis* ldva, const NodeState& state,

set<varID>& vars, string indent)

 LiveVarsLattice* liveLAbove =

dynamic_cast<LiveVarsLattice*>(*(state.getLatticeAbove(ldva).begin()));

 Lattices

Caveat: lattice vs. lattice value

 A lattice by definition is a set of values. However, an instance of lattice type in

Generic dataflow framework is used to represent an individual value within a

lattice also. Sorry for this confusing. We welcome suggestions to fix this.

 Basics

See more at ROSE Compiler Framework/Lattice

Store the data flow analysis information attached to CFG nodes.

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Lattice

Fundamental operations:

 what to store: lattice value set, bottom, up , and anything in between

 initialization: LiveDeadVarsAnalysis::genInitState()

 creation: transfer function

 meet operation: a member function of the lattice

Example

 liveness analysis: the live variable set at the entry point of a CFG node:

 constant propagation: lattice values from no information (bottom) -> unkown -->

constant --> too much information (conflicting constant values, top),

// blindly add all of that_arg's values into current lattice's value

set

void LiveVarsLattice::incorporateVars(Lattice* that_arg)

// retrieve a subset lattice information for a given expr. This lattice

may contain more information than those about a given expr.

Lattice* LiveVarsLattice::project(SgExpression* expr)

// add lattice (exprState)information about expr into current lattice's

value set: default implementation just calls meetUpdate(exprState)

bool LiveVarsLattice::unProject(SgExpression* expr, Lattice* exprState)

 below/above vs IN/OUT

The concept is based on the original CFG flow direction

 above: the incoming edge direction

 below: the outcoming edge direction

IN and OUT depends on the direction of the problem, forward vs. backward

 forward direction: IN == above lattice, OUT = below lattice

 backward direction: IN == below lattice, OUT = above lattice

 common utility lattices

the framework provides some pre-defined lattices ready for use.

lattice.h/latticeFull.h

 BoolAndLattice

 LiveVarsLattice

class LiveVarsLattice : public FiniteLattice

{

 public:

 std::set<varID> liveVars; // bottom is all live variables,

top is the empty set, meet brings down the lattice -> union of

variables.

 ...

 };

// Meet operation: simplest set union of two lattices:

// computes the meet of this and that and saves the result in this

// returns true if this causes this to change and false otherwise

bool LiveVarsLattice::meetUpdate(Lattice* that_arg)

{

 bool modified = false;

 LiveVarsLattice* that =

dynamic_cast<LiveVarsLattice*>(that_arg);

 // Add all variables from that to this

 for(set<varID>::iterator var=that->liveVars.begin(); var!=that-

>liveVars.end(); var++) {

 // If this lattice doesn't yet record *var as being

live

 if(liveVars.find(*var) == liveVars.end()) { // this if

() statement gives a chance to set the modified flag.

 //

otherwise, liveVars.insert() can be directly called.

 modified = true;

 liveVars.insert(*var);

 }

 }

 return modified;

}

 Transfer function

basics: Data_flow_analysis#flow.2Ftransfer_function

 IN = sum of OUT (predecessors)

 OUT = GEN + (IN - KILL)

The impact of program constructs on the current lattices (how to change the current

lattices).

 lattices: stores IN and OUT information

 additional data members are necessary to store GEN and KILL set inside the

transfer function.

http://en.wikibooks.org/w/index.php?title=Data_flow_analysis&action=edit&redlink=1

class hierarchy:

class IntraDFTransferVisitor : public ROSE_VisitorPatternDefaultBase

{

protected:

 // Common arguments to the underlying transfer function

 const Function &func; // which function are we talking about

 const DataflowNode &dfNode; // wrapper of CFGNode

 NodeState &nodeState; // lattice element state, context

information?

 const std::vector<Lattice*> &dfInfo; // data flow information

public:

 IntraDFTransferVisitor(const Function &f, const DataflowNode &n,

NodeState &s, const std::vector<Lattice*> &d)

 : func(f), dfNode(n), nodeState(s), dfInfo(d)

 { }

 virtual bool finish() = 0;

 virtual ~IntraDFTransferVisitor() { }

 };

class LiveDeadVarsTransfer : public IntraDFTransferVisitor

{

};

class ConstantPropagationAnalysisTransfer : public

VariableStateTransfer<ConstantPropagationLattice>

{}

 constant propagation

template <class LatticeType>

class VariableStateTransfer : public IntraDFTransferVisitor

{

 ...

};

class ConstantPropagationAnalysisTransfer : public

VariableStateTransfer<ConstantPropagationLattice> {};

void

ConstantPropagationAnalysisTransfer::visit(SgIntVal *sgn)

 {

 ROSE_ASSERT(sgn != NULL);

 ConstantPropagationLattice* resLat = getLattice(sgn);

 ROSE_ASSERT(resLat != NULL);

 resLat->setValue(sgn->get_value());

 resLat->setLevel(ConstantPropagationLattice::constantValue);

 }

 live dead variable

Functions to convert program point to Generator and KILL set. For liveness analysis

 Kill (s) = {variables being defined in s}: //

 Gen (s) = {variables being used in s}

OUT = IN -KILL + GEN

 OUT is initialized to be IN set,

 transfer function will apply -KILL + GEN

class LiveDeadVarsTransfer : public IntraDFTransferVisitor

{

 LiveVarsLattice* liveLat; // the result of this analysis

 bool modified;

 // Expressions that are assigned by the current operation

 std::set<SgExpression*> assignedExprs; // KILL () set

 // Variables that are assigned by the current operation

 std::set<varID> assignedVars;

 // Variables that are used/read by the current operation

 std::set<varID> usedVars; // GEN () set

public:

 LiveDeadVarsTransfer(const Function &f, const DataflowNode &n,

NodeState &s, const std::vector<Lattice*> &d, funcSideEffectUses

*fseu_)

 : IntraDFTransferVisitor(f, n, s, d), indent(" "),

liveLat(dynamic_cast<LiveVarsLattice*>(*(dfInfo.begin()))),

modified(false), fseu(fseu_)

 {

 if(liveDeadAnalysisDebugLevel>=1) Dbg::dbg << indent <<

"liveLat="<<liveLat->str(indent + " ")<<std::endl;

 // Make sure that all the lattice is initialized

 liveLat->initialize();

 }

 bool finish();

 // operationg on different AST nodes

 void visit(SgExpression *);

 void visit(SgInitializedName *);

 void visit(SgReturnStmt *);

 void visit(SgExprStatement *);

 void visit(SgCaseOptionStmt *);

 void visit(SgIfStmt *);

 void visit(SgForStatement *);

 void visit(SgWhileStmt *);

http://en.wikibooks.org/w/index.php?title=Liveness_analysis&action=edit&redlink=1

 void visit(SgDoWhileStmt *);

}

// Helper transfer function, focusing on handling expressions.

// live dead variable analysis: LDVA,

// expression transfer: transfer functions for expressions

/// Visits live expressions - helper to LiveDeadVarsTransfer

class LDVAExpressionTransfer : public ROSE_VisitorPatternDefaultBase

{

 LiveDeadVarsTransfer &ldva;

public:

 // Plain assignment: lhs = rhs, set GEN (read/used) and KILL

(written/assigned) sets

 void visit(SgAssignOp *sgn) {

 ldva.assignedExprs.insert(sgn->get_lhs_operand());

 // If the lhs of the assignment is a complex expression (i.e. it

refers to a variable that may be live) OR

 // if is a known expression that is known to may-be-live

 // THIS CODE ONLY APPLIES TO RHSs THAT ARE SIDE-EFFECT-FREE AND WE

DON'T HAVE AN ANALYSIS FOR THAT YET

 /*if(!isVarExpr(sgn->get_lhs_operand()) ||

 (isVarExpr(sgn->get_lhs_operand()) &&

 liveLat->isLiveVar(SgExpr2Var(sgn->get_lhs_operand()))))

 { */

 ldva.used(sgn->get_rhs_operand());

 }

...

}

 call stack

(gdb) bt

#0 LDVAExpressionTransfer::visit (this=0x7fffffffcea0, sgn=0xa20320)

at ../../../../sourcetree/src/midend/programAnalysis/genericDataflow/si

mpleAnalyses/liveDeadVarAnalysis.C:228

#1 0x00002aaaac3d9968 in SgAssignOp::accept (this=0xa20320,

visitor=...) at Cxx_Grammar.C:143069

#2 0x00002aaaadc61c04 in LiveDeadVarsTransfer::visit (this=0xaf9e00,

sgn=0xa20320)

at ../../../../sourcetree/src/midend/programAnalysis/genericDataflow/si

mpleAnalyses/liveDeadVarAnalysis.C:384

#3 0x00002aaaadbbaef0 in ROSE_VisitorPatternDefaultBase::visit

(this=0xaf9e00, variable_SgBinaryOp=0xa20320)

at ../../../src/frontend/SageIII/Cxx_Grammar.h:316006

#4 0x00002aaaadbba04a in ROSE_VisitorPatternDefaultBase::visit

(this=0xaf9e00, variable_SgAssignOp=0xa20320)

at ../../../src/frontend/SageIII/Cxx_Grammar.h:315931

#5 0x00002aaaac3d9968 in SgAssignOp::accept (this=0xa20320,

visitor=...) at Cxx_Grammar.C:143069

#6 0x00002aaaadbcca0a in IntraUniDirectionalDataflow::runAnalysis

(this=0x7fffffffd9f0, func=..., fState=0xafbd18,

analyzeDueToCallers=true, calleesUpdated=...)

at ../../../../sourcetree/src/midend/programAnalysis/genericDataflow/an

alysis/dataflow.C:282

#7 0x00002aaaadbbf444 in IntraProceduralDataflow::runAnalysis

(this=0x7fffffffda00, func=..., state=0xafbd18)

at ../../../../sourcetree/src/midend/programAnalysis/genericDataflow/an

alysis/dataflow.h:74

#8 0x00002aaaadbb0966 in UnstructuredPassInterDataflow::runAnalysis

(this=0x7fffffffda50)

at ../../../../sourcetree/src/midend/programAnalysis/genericDataflow/an

alysis/analysis.C:467

#9 0x000000000040381a in main (argc=2, argv=0x7fffffffdba8)

at ../../../../../sourcetree/tests/roseTests/programAnalysisTests/gener

alDataFlowAnalysisTests/liveDeadVarAnalysisTest.C:101

 Control flow graph and call graph

The generic dataflow framework works on virtual control flow graph in ROSE

 Filtered virtual CFG

The raw virtual CFG may not be desirable for all kinds of analyses since it can have too

many administrative nodes which are not relevant to a problem.

So the framework provides a filter parameter to the Analysis class. A default filter will be

used unless you specify your own filter.

// Example filter funtion deciding if a CFGnNode should show up or not

bool gfilter (CFGNode cfgn)

{

 SgNode *node = cfgn.getNode();

 switch (node->variantT())

 {

 //Keep the last index for initialized names. This way the def of

the variable doesn't propagate to its assign initializer.

 case V_SgInitializedName:

 return (cfgn == node->cfgForEnd());

 // For function calls, we only keep the last node. The function is

actually called after all its parameters are evaluated.

 case V_SgFunctionCallExp:

 return (cfgn == node->cfgForEnd());

 //For basic blocks and other "container" nodes, keep the node that

appears before the contents are executed

 case V_SgBasicBlock:

 case V_SgExprStatement:

 case V_SgCommaOpExp:

 return (cfgn == node->cfgForBeginning());

 // Must have a default case: return interesting CFGNode by default

in this example

 default:

 return cfgn.isInteresting();

 }

}

// Code using the filter function

int

main(int argc, char * argv[])

{

 SgProject* project = frontend(argc,argv);

 initAnalysis(project);

 LiveDeadVarsAnalysis ldva(project);

 ldva.filter = gfilter; // set the filter to be your own one

 UnstructuredPassInterDataflow ciipd_ldva(&ldva);

 ciipd_ldva.runAnalysis();

}

 Analysis driver

Key function:

bool IntraUniDirectionalDataflow::runAnalysis(const Function& func, NodeState*

fState, bool analyzeDueToCallers, set<Function> calleesUpdated) // analysis/dataflow.C

Basic tasks: run the analysis by

 initialize data flow state: lattices and other information

 walk the CFG : find descendants from a current node

 call transfer function

 Class hierarchy

 Analysis -> IntraProceduralAnalysis -> IntraProceduralDataflow ->

IntraUnitDataflow --> IntraUniDirectionalDataflow (INTERESTING level)->

IntraBWDataflow -> LiveDeadVarsAnalysis

class Analysis {}; // an empty abstract class for any analysis

class IntraProceduralAnalysis : virtual public Analysis

//analysis/analysis.h , any intra procedural analysis, data flow or

not

{

 protected:

 InterProceduralAnalysis* interAnalysis;

 public:

 void setInterAnalysis(InterProceduralAnalysis* interAnalysis) //

connection to inter procedural analysis

 virtual bool runAnalysis(const Function& func, NodeState* state)=0;

// run this per function, NodeState stores lattices for each CFG node,

etc.

 virtual ~IntraProceduralAnalysis();

}

//No re-entry. analysis will be executed once??, data flow , intra-

procedural analysis

// now lattices are interested

class IntraProceduralDataflow : virtual public IntraProceduralAnalysis

//analysis/dataflow.h

{

// initialize lattice etc for a given dataflow node within a function

 virtual void genInitState (const Function& func, const DataflowNode&

n, const NodeState& state,

 std::vector<Lattice*>& initLattices, std::vector<NodeFact*>&

initFacts);

 virtual bool runAnalysis(const Function& func, NodeState* state, bool

analyzeDueToCallers, std::set<Function> calleesUpdated)=0; // the

analysis on a function could be triggered by the state changes of

function's callers, or callees.

 std::set<Function> visited; // make sure a function is initialized

once when visited multiple times

}

class IntraUnitDataflow : virtual public IntraProceduralDataflow

{

 // transfer function: operate on lattices associated with a dataflow

node, considering its current state

 virtual bool transfer(const Function& func, const DataflowNode& n,

NodeState& state, const std::vector<Lattice*>& dfInfo)=0;

};

// Uni directional dataflow: either forward or backward, but not both

directions!

class IntraUniDirectionalDataflow : public IntraUnitDataflow {

public:

 bool runAnalysis(const Function& func, NodeState* state, bool

analyzeDueToCallers, std::set<Function> calleesUpdated);

protected:

 bool propagateStateToNextNode (

 const std::vector<Lattice*>& curNodeState, DataflowNode

curDFNode, int nodeIndex,

 const std::vector<Lattice*>& nextNodeState, DataflowNode

nextDFNode);

 std::vector<DataflowNode> gatherDescendants(std::vector<DataflowEdge>

edges,

 DataflowNode

(DataflowEdge::*edgeFn)() const);

 virtual NodeState*initializeFunctionNodeState(const Function

&func, NodeState *fState) = 0;

 virtual VirtualCFG::dataflow*

 getInitialWorklist(const Function &func, bool firstVisit,

bool analyzeDueToCallers, const set<Function> &calleesUpdated,

NodeState *fState) = 0;

 virtual vector<Lattice*> getLatticeAnte(NodeState *state) = 0;

 virtual vector<Lattice*> getLatticePost(NodeState *state) = 0;

 // If we're currently at a function call, use the associated

inter-procedural

 // analysis to determine the effect of this function call on

the dataflow state.

 virtual void transferFunctionCall(const Function &func, const

DataflowNode &n, NodeState *state) = 0;

 virtual vector<DataflowNode> getDescendants(const DataflowNode

&n) = 0;

 virtual DataflowNode getUltimate(const Function &func) = 0; //

ultimate what? final CFG node?

};

class IntraBWDataflow : public IntraUniDirectionalDataflow {//BW:

Backward

 public:

 IntraBWDataflow()

 {}

 NodeState* initializeFunctionNodeState(const Function &func,

NodeState *fState);

 VirtualCFG::dataflow*

 getInitialWorklist(const Function &func, bool firstVisit,

bool analyzeDueToCallers, const set<Function> &calleesUpdated,

NodeState *fState);

 virtual vector<Lattice*> getLatticeAnte(NodeState *state);

 virtual vector<Lattice*> getLatticePost(NodeState *state);

 void transferFunctionCall(const Function &func, const

DataflowNode &n, NodeState *state);

 vector<DataflowNode> getDescendants(const DataflowNode &n); //

next CFG nodes, depending on the direction

 { return gatherDescendants(n.inEdges(),

&DataflowEdge::source); }

 DataflowNode getUltimate(const Function &func); // the last CFG

should be the start CFG of the function for a backward dataflow problem

 { return cfgUtils::getFuncStartCFG(func.get_definition()); }

};

foward intra-procedural data flow analysis: e.g. reaching definition ()

 class IntraFWDataflow : public IntraUniDirectionalDataflow

 Initialization: InitDataflowState

Used to initialized the lattices/facts for CFG nodes. It is an analysis by itself. unstructured

pass

// super class: provides the driver of initialization: visit each CFG

node

class UnstructuredPassIntraAnalysis : virtual public

IntraProceduralAnalysis

{

public:

 // call the initialization function on each CFG node

 bool runAnalysis(const Function& func, NodeState* state);

 // to be implemented by InitDataflowState

 virtual void visit(const Function& func, const DataflowNode& n,

NodeState& state)=0;

}

bool UnstructuredPassIntraAnalysis::runAnalysis(const Function& func,

NodeState* state)

{

 DataflowNode funcCFGStart =

cfgUtils::getFuncStartCFG(func.get_definition());

 DataflowNode funcCFGEnd =

cfgUtils::getFuncEndCFG(func.get_definition());

 if(analysisDebugLevel>=2)

 Dbg::dbg <<

"UnstructuredPassIntraAnalysis::runAnalysis() function

"<<func.get_name().getString()<<"()\n";

 // iterate over all the nodes in this function

 for(VirtualCFG::iterator it(funcCFGStart);

it!=VirtualCFG::dataflow::end(); it++)

 {

 DataflowNode n = *it;

 // The number of NodeStates associated with the given

dataflow node

 //int numStates=NodeState::numNodeStates(n);

 // The actual NodeStates associated with the given

dataflow node

 const vector<NodeState*> nodeStates =

NodeState::getNodeStates(n);

 // Visit each CFG node

 for(vector<NodeState*>::const_iterator itS =

nodeStates.begin(); itS!=nodeStates.end(); itS++)

 visit(func, n, *(*itS));

 }

 return false;

}

//-------------------- derived class provide link to a concrete

analysis, and visit() implementation

class InitDataflowState : public UnstructuredPassIntraAnalysis

{

 IntraProceduralDataflow* dfAnalysis; // link to the dataflow

analysis to be initialized

 public:

 InitDataflowState(IntraProceduralDataflow* dfAnalysis/*,

std::vector<Lattice*> &initState*/)

 {

 this->dfAnalysis = dfAnalysis;

 }

 void visit(const Function& func, const DataflowNode& n,

NodeState& state);

};

void InitDataflowState::visit (const Function& func, const

DataflowNode& n, NodeState& state)

{

 ...

 dfAnalysis->genInitState(func, n, state, initLats, initFacts);

 state.setLattices((Analysis*)dfAnalysis, initLats);

 state.setFacts((Analysis*)dfAnalysis, initFacts);

}

 worklist

list of CFG nodes, accessed through an iterator interface

auto_ptr<VirtualCFG::dataflow> workList(getInitialWorklist(func, firstVisit,

analyzeDueToCallers, calleesUpdated, fState));

class iterator //Declared in cfgUtils/VirtualCFGIterator.h

{

public:

 std::list<DataflowNode> remainingNodes;

 std::set<DataflowNode> visited;

 bool initialized;

 protected:

 // returns true if the given DataflowNode is in the

remainingNodes list and false otherwise

 bool isRemaining(DataflowNode n);

 // advances this iterator in the given direction. Forwards if

fwDir=true and backwards if fwDir=false.

 // if pushAllChildren=true, all of the current node's unvisited

children (predecessors or successors,

 // depending on fwDir) are pushed onto remainingNodes

 void advance(bool fwDir, bool pushAllChildren);

 public:

 virtual void operator ++ (int);

 bool eq(const iterator& other_it) const;

 bool operator==(const iterator& other_it) const;

 bool operator!=(const iterator& it) const;

...

};

void iterator::advance(bool fwDir, bool pushAllChildren)

{

 ROSE_ASSERT(initialized);

 /*printf(" iterator::advance(%d) remainingNodes.size()=%d\n",

fwDir, remainingNodes.size());

 cout<<" visited=\n";

 for(set<DataflowNode>::iterator it=visited.begin();

it!=visited.end(); it++)

 cout << " <"<<it->getNode()->class_name()<<"

| "<<it->getNode()<<" | "<<it->getNode()->unparseToString()<<">\n";*/

 if(remainingNodes.size()>0)

 {

 // pop the next CFG node from the front of the list

 DataflowNode cur = remainingNodes.front();

 remainingNodes.pop_front();

 if(pushAllChildren)

 {

 // find its followers (either successors or

predecessors, depending on value of fwDir), push back

 // those that have not yet been visited

 vector<DataflowEdge> nextE;

 if(fwDir)

 nextE = cur.outEdges();

 else

 nextE = cur.inEdges();

 for(vector<DataflowEdge>::iterator

it=nextE.begin(); it!=nextE.end(); it++)

 {

 DataflowNode nextN((*it).target()/*

need to put something here because DataflowNodes don't have a default

constructor*/);

 if(fwDir) nextN = (*it).target();

 else nextN = (*it).source();

 /*cout << " iterator::advance

"<<(fwDir?"descendant":"predecessor")<<": "<<

"<"<<nextN.getNode()->class_name()<<" | "<<nextN.getNode()<<" |

"<<nextN.getNode()->unparseToString()<<">, "<<

"visited="<<(visited.find(nextN) != visited.end())<<

 "

remaining="<<isRemaining(nextN)<<"\n";*/

 // if we haven't yet visited this node

and don't yet have it on the remainingNodes list

 if(visited.find(nextN) == visited.end()

&&

 !isRemaining(nextN))

 {

 //printf(" pushing back node

<%s: 0x%x: %s> visited=%d\n", nextN.getNode()->class_name().c_str(),

nextN.getNode(), nextN.getNode()->unparseToString().c_str(),

visited.find(nextN)!=visited.end());

remainingNodes.push_back(nextN);

 }

 }

 }

 // if we still have any nodes left remaining

 if(remainingNodes.size()>0)

 {

 // take the next node from the front of the

list and mark it as visited

 //visited[remainingNodes.front()] = true;

 visited.insert(remainingNodes.front());

 }

 }

}

class dataflow : public virtual iterator {};

class back_dataflow: public virtual dataflow {};

void back_dataflow::operator ++ (int)

{

 advance(false, true); // backward, add all children

}

class IntraUniDirectionalDataflow : public IntraUnitDataflow

{ ...

 virtual VirtualCFG::dataflow*

 getInitialWorklist(const Function &func, bool firstVisit,

bool analyzeDueToCallers, const set<Function> &calleesUpdated,

NodeState *fState) = 0;

}

Implemented in derived classes:

 VirtualCFG::dataflow* IntraFWDataflow::getInitialWorklist ()

 VirtualCFG::dataflow* IntraBWDataflow::getInitialWorklist()

 apply transfer function

b is a basic block in CFG

 // information goes into b is the union/join of

information comes out of all predecessor nodes of b

 // information goes out out S is

the information generated by b minus information killed by b. This is the transfer

function operating on b!!

bool IntraUniDirectionalDataflow::runAnalysis(const Function& func,

NodeState* fState, bool analyzeDueToCallers, set<Function>

calleesUpdated)

{

 // Iterate over the nodes in this function that are downstream

from the nodes added above

 for(; it != itEnd; it++)

 {

 DataflowNode n = *it;

 SgNode* sgn = n.getNode();

 ...

 for(vector<NodeState*>::const_iterator itS =

nodeStates.begin(); itS!=nodeStates.end();)

 {

 state = *itS;

 const vector<Lattice*> dfInfoAnte =

getLatticeAnte(state); // IN set

 const vector<Lattice*> dfInfoPost =

getLatticePost(state); // OUT set

 // OUT = IN first // transfer within

the node: from IN to OUT,

 // Overwrite the Lattices below this node with

the lattices above this node.

 // The transfer function will then operate on

these Lattices to produce the

 // correct state below this node.

 vector<Lattice*>::const_iterator itA, itP;

 int j=0;

 for(itA = dfInfoAnte.begin(), itP =

dfInfoPost.begin();

 itA != dfInfoAnte.end() && itP !=

dfInfoPost.end();

 itA++, itP++, j++)

 {

 if(analysisDebugLevel>=1){ //

 Dbg::dbg << " Meet Before:

Lattice "<<j<<": \n "<<(*itA)->str(" ")<<endl;

 Dbg::dbg << " Meet After:

Lattice "<<j<<": \n "<<(*itP)->str(" ")<<endl;

 }

 (*itP)->copy(*itA);

 /*if(analysisDebugLevel>=1){

 Dbg::dbg << " Copied Meet

Below: Lattice "<<j<<": \n "<<(*itB)->str(" ")<<endl;

 }*/

 }

 // =================== TRANSFER FUNCTION

===================

 // (IN - KILL) + GEN

 if (isSgFunctionCallExp(sgn))

 transferFunctionCall(func, n, state);

 boost::shared_ptr<IntraDFTransferVisitor>

transferVisitor = getTransferVisitor(func, n, *state, dfInfoPost);

 sgn->accept(*transferVisitor);

 modified = transferVisitor->finish() ||

modified;

 // =================== TRANSFER FUNCTION

===================

 ...//

 }

}

 propagate state to next (meetUpdate)

This is prove to be essential to propagate information along the path. Cannot commenting

it out!!

??? not sure about the difference between this step and the step before (Meet Before () /

Meet After)

meetUpdate() is called here also

// Propagates the dataflow info from the current node's NodeState

(curNodeState) to the next node's

// NodeState (nextNodeState).

// Returns true if the next node's meet state is modified and false

otherwise.

bool IntraUniDirectionalDataflow::propagateStateToNextNode(

 const vector<Lattice*>& curNodeState,

DataflowNode curNode, int curNodeIndex,

 const vector<Lattice*>& nextNodeState,

DataflowNode nextNode)

{

 bool modified = false;

 vector<Lattice*>::const_iterator itC, itN;

 if(analysisDebugLevel>=1){

 Dbg::dbg << "\n Propagating to Next Node:

"<<nextNode.getNode()<<"["<<nextNode.getNode()->class_name()<<" |

"<<Dbg::escape(nextNode.getNode()->unparseToString())<<"]"<<endl;

 int j;

 for(j=0, itC = curNodeState.begin(); itC !=

curNodeState.end(); itC++, j++)

 Dbg::dbg << " Cur node: Lattice "<<j<<":

\n "<<(*itC)->str(" ")<<endl;

 for(j=0, itN = nextNodeState.begin(); itN !=

nextNodeState.end(); itN++, j++)

 Dbg::dbg << " Next node: Lattice

"<<j<<": \n "<<(*itN)->str(" ")<<endl;

 }

 // Update forward info above nextNode from the forward info

below curNode.

 // Compute the meet of the dataflow information along the

curNode->nextNode edge with the

 // next node's current state one Lattice at a time and save the

result above the next node.

 for(itC = curNodeState.begin(), itN = nextNodeState.begin();

 itC != curNodeState.end() && itN != nextNodeState.end();

 itC++, itN++)

 {

 // Finite Lattices can use the regular meet operator,

while infinite Lattices

 // must also perform widening to ensure convergence.

 if((*itN)->finiteLattice())

 modified = (*itN)->meetUpdate(*itC) ||

modified;

 else

 {

 //InfiniteLattice* meetResult =

(InfiniteLattice*)itN->second->meet(itC->second);

 InfiniteLattice* meetResult =

dynamic_cast<InfiniteLattice*>((*itN)->copy());

 Dbg::dbg << " *itN: " <<

dynamic_cast<InfiniteLattice*>(*itN)->str(" ") << endl;

 Dbg::dbg << " *itC: " <<

dynamic_cast<InfiniteLattice*>(*itC)->str(" ") << endl;

 meetResult->meetUpdate(*itC);

 Dbg::dbg << " meetResult: " <<

meetResult->str(" ") << endl;

 // Widen the resulting meet

 modified =

dynamic_cast<InfiniteLattice*>(*itN)->widenUpdate(meetResult);

 delete meetResult;

 }

 }

 if(analysisDebugLevel>=1) {

 if(modified)

 {

 Dbg::dbg << " Next node's in-data

modified. Adding..."<<endl;

 int j=0;

 for(itN = nextNodeState.begin(); itN !=

nextNodeState.end(); itN++, j++)

 {

 Dbg::dbg << " Propagated:

Lattice "<<j<<": \n "<<(*itN)->str(" ")<<endl;

 }

 }

 else

 Dbg::dbg << " No modification on this

node"<<endl;

 }

 return modified;

}

 stop condition

class IntraUniDirectionalDataflow : public IntraUnitDataflow

{

public:

 protected:

 // propagates the dataflow info from the current node's

NodeState (curNodeState) to the next node's NodeState (nextNodeState)

 // return true if any state is modified.

 bool propagateStateToNextNode(

 const std::vector<Lattice*>& curNodeState, DataflowNode

curDFNode, int nodeIndex,

 const std::vector<Lattice*>& nextNodeState, DataflowNode

nextDFNode);

}

 live dead variable

Backward Intra-Procedural Dataflow Analysis: e.g. liveness analysis (use --> backward -

-> defined)

 class IntraBWDataflow : public IntraUniDirectionalDataflow

class LiveDeadVarsAnalysis : public IntraBWDataflow {

 protected:

 funcSideEffectUses* fseu;

 public:

 LiveDeadVarsAnalysis(SgProject *project, funcSideEffectUses*

fseu=NULL);

 // Generates the initial lattice state for the given dataflow node, in

the given function, with the given NodeState

 void genInitState(const Function& func, const DataflowNode& n, const

NodeState& state,

 std::vector<Lattice*>& initLattices,

std::vector<NodeFact*>& initFacts);

 boost::shared_ptr<IntraDFTransferVisitor> getTransferVisitor(const

Function& func, const DataflowNode& n,

NodeState& state, const std::vector<Lattice*>& dfInfo)

 { return boost::shared_ptr<IntraDFTransferVisitor>(new

LiveDeadVarsTransfer(func, n, state, dfInfo, fseu)); }

 bool transfer(const Function& func, const DataflowNode& n, NodeState&

state, const std::vector<Lattice*>& dfInfo) { assert(0); return

false; }

};

 Inter-procedural analysis

Key: transfer function that is applied to call sites to perform the appropriate state transfers

across function boundaries.

 transfer function

void IntraFWDataflow::transferFunctionCall(const Function &func, const

DataflowNode &n, NodeState *state)

{

 vector<Lattice*> dfInfoBelow = state->getLatticeBelow(this);

 vector<Lattice*>* retState = NULL;

 dynamic_cast<InterProceduralDataflow*>(interAnalysis)->

 transfer(func, n, *state, dfInfoBelow, &retState, true);

 if(retState && !(retState->size()==0 || (retState->size() ==

dfInfoBelow.size()))) {

 Dbg::dbg << "#retState="<<retState->size()<<endl;

 for(vector<Lattice*>::iterator ml=retState->begin(); ml!=retState-

>end(); ml++)

 Dbg::dbg << " "<<(*ml)->str(" ")<<endl;

 Dbg::dbg << "#dfInfoBelow="<<dfInfoBelow.size()<<endl;

 for(vector<Lattice*>::const_iterator l=dfInfoBelow.begin();

l!=dfInfoBelow.end(); l++)

 Dbg::dbg << " "<<(*l)->str(" ")<<endl;

 }

 // Incorporate information about the function's return value into the

caller's dataflow state

 // as the information of the SgFunctionCallExp

 ROSE_ASSERT(retState==NULL || retState->size()==0 || (retState-

>size() == dfInfoBelow.size()));

 if(retState) {

 vector<Lattice*>::iterator lRet;

 vector<Lattice*>::const_iterator lDF;

 for(lRet=retState->begin(), lDF=dfInfoBelow.begin();

 lRet!=retState->end(); lRet++, lDF++) {

 Dbg::dbg << " lDF Before="<<(*lDF)->str(" ")<<endl;

 Dbg::dbg << " lRet Before="<<(*lRet)->str(" ")<<endl;

 (*lDF)->unProject(isSgFunctionCallExp(n.getNode()), *lRet);

 Dbg::dbg << " lDF After="<<(*lDF)->str(" ")<<endl;

 }

 }

}

 InterProceduralDataflow

InterProceduralDataflow::InterProceduralDataflow(IntraProceduralDataflo

w* intraDataflowAnalysis) :

InterProceduralAnalysis((IntraProceduralAnalysis*)intraDataflowAnalysis

)

 // !!! NOTE: cfgForEnd() AND cfgForBeginning() PRODUCE THE SAME

SgFunctionDefinition SgNode BUT THE DIFFERENT INDEXES

 // !!! (0 FOR BEGINNING AND 3 FOR END).

AS SUCH, IT DOESN'T MATTER WHICH ONE WE CHOOSE. HOWEVER, IT DOES MATTER

 // !!! WHETHER WE CALL genInitState TO

GENERATE THE STATE BELOW THE NODE (START OF THE FUNCTION) OR ABOVE IT

 // !!! (END OF THE FUNCTION). THE

CAPABILITY TO DIFFERENTIATE THE TWO CASES NEEDS TO BE ADDED TO

genInitState

 // !!! AND WHEN IT IS, WE'LL NEED TO CALL

IT INDEPENDENTLY FOR cfgForEnd() AND cfgForBeginning() AND ALSO TO MAKE

 // !!! TO SET THE LATTICES ABOVE THE

ANALYSIS

TODO: begin and end func definition issue is mentioned inside of this

 simplest form:unstructured

Simplest form: No transfer action at call sites at all

class UnstructuredPassInterDataflow : virtual public

InterProceduralDataflow

{

 public:

 UnstructuredPassInterDataflow(IntraProceduralDataflow*

intraDataflowAnalysis)

 :

InterProceduralAnalysis((IntraProceduralAnalysis*)intraDataflowAnalysis

), InterProceduralDataflow(intraDataflowAnalysis)

 {}

 // the transfer function that is applied to SgFunctionCallExp

nodes to perform the appropriate state transfers

 // fw - =true if this is a forward analysis and =false if this

is a backward analysis

 // n - the dataflow node that is being processed

 // state - the NodeState object that describes the dataflow

state immediately before (if fw=true) or immediately after

 // (if fw=false) the SgFunctionCallExp node, as

established by earlier analysis passes

 // dfInfo - the Lattices that this transfer function operates

on. The function propagates them

 // to the calling function and overwrites them with

the dataflow result of calling this function.

 // retState - Pointer reference to a Lattice* vector that will

be assigned to point to the lattices of

 // the function call's return value. The callee may

not modify these lattices.

 // Returns true if any of the input lattices changed as a

result of the transfer function and

 // false otherwise.

 bool transfer(const Function& func, const DataflowNode& n,

NodeState& state,

 const std::vector<Lattice*>& dfInfo,

std::vector<Lattice*>** retState, bool fw)

 {

 return false;

 }

 void runAnalysis();

};

// simply call intra-procedural analysis on each function one by one.

void UnstructuredPassInterDataflow::runAnalysis()

{

 set<FunctionState*> allFuncs =

FunctionState::getAllDefinedFuncs();

 // iterate over all functions with bodies

 for(set<FunctionState*>::iterator it=allFuncs.begin();

it!=allFuncs.end(); it++)

 {

 const Function& func = (*it)->func;

 FunctionState* fState =

FunctionState::getDefinedFuncState(func);

 // Call the current intra-procedural dataflow as if it

were a generic analysi

 intraAnalysis->runAnalysis(func, &(fState->state));

 }

}

 ContextInsensitiveInterProceduralDataflow

TODO

 How to use one analysis

 Call directly

Direct call: Runs the intra-procedural analysis on the given function and returns true if

the function's NodeState gets modified as a result and false otherwise state - the

function's NodeState

 bool IntraUniDirectionalDataflow::runAnalysis(const Function& func,

NodeState* state, bool analyzeDueToCallers, std::set<Function> calleesUpdated);

 direct call with a simpler parameter list : not feasible, all intra procedural analysis

has to have an inter procedural analysis set interally!

bool IntraProceduralDataflow::runAnalysis(const Function& func,

NodeState* state)

{

 // Each function is analyzed as if it were called directly by the

language's runtime, ignoring

 // the application's actual call graph

 bool analyzeDueToCallers = true;

 // We ignore the application's call graph, so it doesn't matter

whether this function calls other functions

 std::set<Function> calleesUpdated;

 return runAnalysis(func, state, analyzeDueToCallers,

calleesUpdated);

}

 Through inter-procedural analysis

Invoke a simple intra-procedural analysis through the unstructured pass inter-procedural

data flow class

int main()

{

 SgProject* project = frontend(argc,argv);

 initAnalysis(project);

 // prepare debugging support

 Dbg::init("Live dead variable analysis Test", ".", "index.html");

 liveDeadAnalysisDebugLevel = 1;

 analysisDebugLevel = 1;

 // basis analysis

 LiveDeadVarsAnalysis ldva(project);

 // wrap it inside the unstructured inter-procedural data flow

 UnstructuredPassInterDataflow ciipd_ldva(&ldva);

 ciipd_ldva.runAnalysis();

}

 Retrieve lattices

Sample code:

// Initialize vars to hold all the variables and expressions that are

live at DataflowNode n

//void getAllLiveVarsAt(LiveDeadVarsAnalysis* ldva, const DataflowNode&

n, const NodeState& state, set<varID>& vars, string indent)

void getAllLiveVarsAt(LiveDeadVarsAnalysis* ldva, const NodeState&

state, set<varID>& vars, string indent)

{

 LiveVarsLattice* liveLAbove =

dynamic_cast<LiveVarsLattice*>(*(state.getLatticeAbove(ldva).begin()));

 LiveVarsLattice* liveLBelow =

dynamic_cast<LiveVarsLattice*>(*(state.getLatticeBelow(ldva).begin()));

 // The set of live vars AT this node is the union of vars that

are live above it and below it

 for(set<varID>::iterator var=liveLAbove->liveVars.begin();

var!=liveLAbove->liveVars.end(); var++)

 vars.insert(*var);

 for(set<varID>::iterator var=liveLBelow->liveVars.begin();

var!=liveLBelow->liveVars.end(); var++)

 vars.insert(*var);

}

 How to debug

 Trace the analysis

Turn it on

 liveDeadAnalysisDebugLevel = 1;

 analysisDebugLevel = 1;

// find code with

 if(analysisDebugLevel>=1) ...

check the web page dump using a browser

 firefox index.html

How to read the trace file: start from the beginning: information is ordered based on the

CFG nodes visited. The order could be forward or backward order. Check if the order is

correct first, then for each node visited

 ==================================

 Copying incoming Lattice 0:

 [LiveVarsLattice: liveVars=[b]]

 To outgoing Lattice 0:

 [LiveVarsLattice: liveVars=[]]

 ==================================

 Transferring the outgoing Lattice ...

 liveLat=[LiveVarsLattice: liveVars=[b]]

 Dead Expression

 usedVars=<>

 assignedVars=<>

 assignedExprs=<>

 #usedVars=0 #assignedExprs=0

 Transferred: outgoing Lattice 0:

 [LiveVarsLattice: liveVars=[b]]

 transferred, modified=0

 ==================================

 Propagating/Merging the outgoing Lattice to all descendant nodes ...

 Descendants (1):

    ~~~~~~~~~~~~ 

    Descendant: 0x2b9e8c47f010[SgIfStmt | if(flag == 0) c = a;else c = 

b;] 

 

        Propagating to Next Node: 0x2b9e8c47f010[SgIfStmt | if(flag == 

0) c = a;else c = b;] 

        Cur node: Lattice 0:  

            [LiveVarsLattice: liveVars=[b]] 

        Next node: Lattice 0:  

            [LiveVarsLattice: liveVars=[a]] 

        Next node's in-data modified. Adding... 

        Propagated: Lattice 0:  

            [LiveVarsLattice: liveVars=[a, b]] 

    propagated/merged, modified=1 

    ^^^^^^^^^^^^^^^^^^  

 

A real example: if (flag)  c = a; else c = b;  // liveness analysis, a, 

b are live in two branches, they are propagated backward to if-stmt 

 

   ------------------ 

    Descendants (1):  // from c =a back to if-stmt (next node) 

    ~~~~~~~~~~~~ 

 Descendant: 0x2ac8bb95c010[SgIfStmt | if(flag == 0) c = a;else c =

b;]

 Propagating to Next Node: 0x2ac8bb95c010[SgIfStmt | if(flag ==

0) c = a;else c = b;]

 Cur node: Lattice 0:

 [LiveVarsLattice: liveVars=[a]] // current node's lattice

 Next node: Lattice 0:

 [LiveVarsLattice: liveVars=[]] // next node's lattice

before propagation

 Next node's in-data modified. Adding...

 Propagated: Lattice 0:

 [LiveVarsLattice: liveVars=[a]] // propagate a into if-

stmt's lattice

 propagated, modified=1

 ^^^^^^^^^^^^^^^^^^

 Descendants (1): // from c = b --> if-stmt

    ~~~~~~~~~~~~ 

    Descendant: 0x2ac8bb95c010[SgIfStmt | if(flag == 0) c = a;else c = 

b;] 

 

        Propagating to Next Node: 0x2ac8bb95c010[SgIfStmt | if(flag == 

0) c = a;else c = b;] 

        Cur node: Lattice 0:  

            [LiveVarsLattice: liveVars=[b]] 

        Next node: Lattice 0:  

            [LiveVarsLattice: liveVars=[a]]  

        Next node's in-data modified. Adding... 

        Propagated: Lattice 0:  

            [LiveVarsLattice: liveVars=[a, b]]  // now both a and b are 

propagated/ merged 

    propagated, modified=1 

    ^^^^^^^^^^^^^^^^^^  

 Dump cfg dot graph with lattices 

A class analysisStatesToDot is provided generate a CFG dot graph with lattices 

information. 

//AnalysisDebuggingUtils.C 

 

  class analysisStatesToDOT : public UnstructuredPassIntraAnalysis 

  { 

    private: 

      //    LiveDeadVarsAnalysis* lda; // reference to the source 

analysis 

      Analysis* lda; // reference to the source analysis 

      void printEdge(const DataflowEdge& e); // print data flow edge 

      void printNode(const DataflowNode& n, std::string state_string); 

// print date flow node 

      void visit(const Function& func, const DataflowNode& n, 

NodeState& state); // visitor function 

    public: 

      std::ostream* ostr;  

      analysisStatesToDOT (Analysis* l):  lda(l){ }; 

  }; 

 

namespace Dbg 

{  

//.... 

 void dotGraphGenerator (::Analysis *a)  



  { 

    ::analysisStatesToDOT eas(a); 

    IntraAnalysisResultsToDotFiles upia_eas(eas); 

    upia_eas.runAnalysis(); 

  } 

 

} // namespace Dbg 

 

 Example use 

// Liao, 12/6/2011 

#include "rose.h" 

 

#include <list> 

#include <sstream> 

#include <iostream> 

#include <fstream> 

#include <string> 

#include <map> 

 

using namespace std; 

 

// TODO group them into one header 

#include "genericDataflowCommon.h" 

#include "VirtualCFGIterator.h" 

#include "cfgUtils.h" 

#include "CallGraphTraverse.h" 

#include "analysisCommon.h" 

#include "analysis.h" 

#include "dataflow.h" 

#include "latticeFull.h" 

#include "printAnalysisStates.h" 

#include "liveDeadVarAnalysis.h" 

 

int numFails = 0, numPass = 0; 

 

//----------------------------------------------------------- 

int 

main( int argc, char * argv[] ) 

   { 

 

     SgProject* project = frontend(argc,argv); 

 

     initAnalysis(project); 

 

   // generating  index.html for tracing the analysis 

     Dbg::init("Live dead variable analysis Test", ".", "index.html"); 

     liveDeadAnalysisDebugLevel = 1; 

     analysisDebugLevel = 1; 

 

     LiveDeadVarsAnalysis ldva(project); 

     UnstructuredPassInterDataflow ciipd_ldva(&ldva); 

     ciipd_ldva.runAnalysis(); 

   // Output the dot graph  ********************* 

    Dbg::dotGraphGenerator (&ldva); 



      return 0; 

   } 

 

 Program Optimizations 

ROSE provides the following program optimizations and tranformations: 

 loop transformation, including loop fusion, fisson, unrolling, blocking, loop 

interchange, etc. 

 inlining 

 outlining 

 constant folding 

 partial redundancy elimination 

 Developer's Guide 

We briefly describe the workflow of ROSE developers. 

 Basic skills for ROSE developers 

These are some basic skills that ROSE developers should have, or acquire: 

 Shell programming: Bash (Bourne Again Shell) is the default shell for ROSE. 

 Unix commands: grep, find, ssh, etc. 

 C++ programming: be conscious of applying consistent coding-style 

conventions and writing code that will be maintainable when you leave 

 Debugging: GDB will be invaluable to make sure your code works as expected 

 Git - Source code management (SCM): get familiar with the basics of Git: 

http://git-scm.com/ 

 Build systems: GNU Autotools (autoconf, automake), GNU Make, GNU libtool  

o CMake: (primarily so you won't break our existing Windows port) 

 LaTex: Document your work in ROSE/docs 

 ROSE Documentation: Be familiar with ROSE documents (tutorials, 

installation, and developer guides): http://rosecompiler.org/documents.html. This 

also includes the project's Doxygen documentation. 

 Compilers: ROSE is a compiler project, after all. Take some compiler courses!  

o Read free online course materials related to compilers 

o Keep learning topics related to your projects 

 Milestones for a ROSE developers 

Having been working with some interns with us, we roughly identify the following 

milestones for a ROSE developer 

http://git-scm.com/
http://rosecompiler.org/documents.html


 Development environment: pick a platform of your choice (Linux or Mac OS), 

and get familiar with that specific platform (shell, editors, environment variable 

setting, etc.) 

 Installing ROSE: being able to smoothly configure, compile, and install ROSE 

 Build system: being able to add a project (first skeleton) into ROSE by modifying 

Makefile.am, etc. 

 Contribution following ROSE Coding Standard and passing code review  

o Documentation: sufficient documentation about what you work is about 

o Software Engineering:  

 Style guidelines: Doxygen comments, naming conventions, where 

to put things, etc. 

 Algorithm design: documented by source comments how things 

are expected to work 

 Coding implementation: correctly implement the designed 

algorithm 

o Tests: Each contribution must have the accompanying tests to make sure it 

works as expected 

 Continuous integration: pass Jenkins tests  

o Add a new test job if none of the existing ones tests your project 

 code review 

see Code Review for details 

 Workflow 

 Motivation and Goals 

Quality comes from a good process. 

The goal is to have a streamlined, simplified, and automated workflow involving both 

users and developers to 

 improve the qualify of ROSE: source codes and documentations 

 improve our productivity: optimize and simplify our daily work process so we can 

do more quality work using less time and other resources 

 Development Guide 

Developing a big, sophisticated project entails many challenges. To mitigate some of 

these challenges, we have adopted several best practices: incremental development, code 

review, and continuous integration. 

 Incremental Development 

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Coding_Standard
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Code_Review
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Code_Review


Developing new functionality in small steps, where the resulting code at each step is a 

useful improvement over the previous state. Contrast to developing an entire feature fully 

elaborated, with no points along the way at which it's externally usable. 

Each ROSE developer is expected to push his/her work at least once every three weeks. 

Major benefits of doing things incrementally 

 You can have intermediate results along the path. So your sponsors will sleep 

better. 

 You will get feedback early and frequently about if you are heading to the right 

direction. 

 Your work will be tested and merged often into the master branch, avoiding the 

risks of merge conflicts. 

See more tips about How to incrementally work on a project 

 Code Review 

See Code Review in ROSE. 

 Continuous Integration 

Incorporating changes from work in progress into a shared mainline as frequently as 

possible, in order to identify incompatible changes and introduced bugs as early as 

possible. The integrated changes need not be particular increments of functionality as far 

as the rest of the system is concerned. 

In other words, incremental development is about making one's work valuable as early as 

possible, and potentially about getting a better sense of what direction it should take, 

while continuous integration is about reducing the risks that result from codebase 

divergence as multiple people do development in parallel. 

The question of whether to conditionalize new code is an interesting one. By doing so, 

one narrows the scope of continuous integration to just checking for surface 

incompatibilities in merging the changed code. Without actually running the new code 

against the existing tests, the early detection of introduced bugs is lost. In exchange, 

multiple people working in the same part of the codebase become less likely to step on 

each other's toes, because the relevant code changes are distributed more rapidly. 

 High Level Workflow 

 Requirement Analysis 

 External (https://github.com/rose-compiler/rose): start an issue to be discussed 

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_incrementally_work_on_a_project
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Code_Review
https://github.com/rose-compiler/rose


 Wikibook:  

o collect community input 

 mailing list: interaction with users, feel users' need 

 Design 

 Wikibook: community-based design documents and provoke discussion 

 Powerpoint slides: more formal communication about what is the design 

 Implementation 

 Redmine (http://hudson-rose-30:3000/): create projects based on milestones and 

user input, create and track tasks  

o Project-Specific Tasks 

o Private Issue Tracking 

o Private Documentation  

 Using redmine's wiki 

 Github:  

o Internal (http://github.llnl.gov/): for code review only, 

o External (https://github.com/rose-compiler/rose): public hosting code, 

pubic issue tracking for general ROSE bugs and features. 

o "Rosebot" to automate Github workflow: preliminary testing, policies (git-

hooks), automatically add reviewers, etc. 

 Testing 

 Jenkins ((http://hudson-rose-30:8080/)): continuous integration of new features, 

bugfixes 

 Documentation 

 See more at ROSE Compiler Framework/Documentation 

 Publicity 

 Website (http://www.rosecompiler.org): content management system hooked up 

with all other components 

 Proposing Workflow Changes 

Major workflow improvements and changes should be thoroughly tested and reviewed by 

staff members before deployment since they may have profound impact on the project 

How to propose a workflow change 

http://hudson-rose-30:3000/
http://github.llnl.gov/
https://github.com/rose-compiler/rose
http://hudson-rose-30:8080/
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Documentation
http://www.rosecompiler.org/


 Submit a ticket on github.com's rose-public/rose issue tracker. In the ticket, 

provide the following information:  

o What is it: Explain what change is proposed 

o Why the changes: the long-term benefits for our productivity and quality 

of work 

o The cost of the changes: learning curve, maintainability, purchase cost 

 Reviewing Workflow Change Proposals 

 Review criteria 

 Optimize  

o Optimize our workflow to allow us to do more quality and use less time 

and other resources. 

o Address what is slowing us down or distracting us. 

o Simplify daily life. Compare how we can eliminate or automate using the 

proposed workflow improvements.  

 It is counterproductive to improve workflow by adding more 

hoops/steps/clicks into daily work. 

 Improve:  

o Allows the improvement of the quality of work incrementally: 

o Accepting incremental improvements is more realistic than asking for 

perfection in the first try. 

o Workflow should allow quick new contributions and fast revision of 

existing contributions 

 Automate:  

o Additions to the workflow should be automated as much as possible. 

 Preserve:  

o It must preserve existing work:  

 No creation of anything from scratch 

o Does it interact well with existing workflow 

o Is there a way to convert existing code/documents into the new form 

 Simplicity:  

o The more software tools we depend on, the harder to use and maintain our 

workflow. Similarly, the more formats/standards we enforce, the harder 

for developers to do their daily work 

o Adopting new required software components and new required technical 

formats/standards in our workflow should be very carefully reviewed for 

the associated long-term benefits and costs. Long-term means the range 

of 5 to 10 years and is not tied to a temporary thing we use now. 

 Preference of major contributors: Whoever contributes the most should has a little 

bit more weight to say 

 Documentation: We require major changes to be documented and reviewed before 

deployment. Writing down things can help us clarify details and solicit wider 

comments (instead of limited to face-to-face meeting) 



 Coding Standard 

 What to Expect and What to Avoid 

This page documents the current recommended practice of how we should write code 

within the ROSE project. It also serves as a guideline for our code review process. 

New code should follow the conventions described in this document from the very 

beginning. 

Updates to existing code that follows a different coding style should only be performed if 

you are the maintainer of the code. 

The order of sections in coding standard follows a top-down approach: big things first, 

then drill down to fine-grain details. 

 Five Principles 

We use coding standard to reflect the principal things we value for all contributions to 

ROSE 

 Documentation: What are the commits about? Is this reflected in README, 

source comments, or LaTex files within the same commits? 

 Style: Is the coding style consistent with the required and recommended formats? 

Is the code clean and pleasant and easy to read? 

 Algorithm: Does the code has sufficient comments about what algorithm is used? 

Is the algorithm correct and efficient(space and time complexity)? 

 Implementation: Does the implementation correctly implement the documented 

algorithms? 

 Testing: Does the code has the accompanying test translator and input to ensure 

the contributions do what they are supposed to do?  

o Is Jenkins being configured to trigger these tests? Local tests on 

developer's workstation do not count. 

 Avoid Coding Standard War 

We directly quote text from http://www.parashift.com/c++-faq/coding-std-wars.html, as 

follows: 

"Nearly every software engineer has, at some point, been exploited by someone who used 

coding standards as a power play. Dogmatism over minutia is the purvue of the 

intellectually weak. Don't be like them. These are those who can't contribute in any 

meaningful way, who can't actually improve the value of the software product, so instead 

of exposing their incompetence through silence, they blather with zeal about nits. They 

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Code_Review
http://www.parashift.com/c++-faq/coding-std-wars.html


can't add value in the substance of the software, so they argue over form. Just 

because "they" do that doesn't mean coding standards are bad, however. 

Another emotional reaction against coding standards is caused by coding standards set by 

individuals with obsolete skills. For example, someone might set today's standards 

based on what programming was like N decades ago when the standards setter was 

writing code. Such impositions generate an attitude of mistrust for coding standards. As 

above, if you have been forced to endure an unfortunate experience like this, don't let it 

sour you to the whole point and value of coding standards. It doesn't take a very large 

organization to find there is value in having consistency, since different programmers can 

edit the same code without constantly reorganizing each others' code in a tug-of-war over 

the "best" coding standard." 

 Must, Should and Can 

The terms must, should and can have special meaning. 

 A must requirement must be followed, 

 A should is a strong recommendation, 

 A can is a general guideline. 

 Got New Ideas, Suggestions 

This is not a place to write down the new ideas/concepts/suggestions to be used in the 

future. If you have suggestions, put into the discussion tab link of this page. 

We do welcome suggestions for improvements and changes so we can do things faster 

and better. 

 For suggestions, please follow the procedure defined in 

Proposing_Workflow_Changes 

 The suggestions will be reviewed by the criteria defined in 

Reviewing_Workflow_Change_Proposals 

 Programming Languages 

 Core Languages 

Only C++ is allowed. Any other programming language is an exception on a case-by-

case basis. 

Question: But Programming language XYZ is much better than C++ and I am really 

good at XYZ!!! 

Answer: we can allow XYZ only if 

http://en.wikibooks.org/wiki/Talk:ROSE_Compiler_Framework/Coding_Standard
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Workflow#Proposing_Workflow_Changes
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Workflow#Reviewing_Workflow_Change_Proposals


 you can teach at least one of old dogs (staff members) of our team the new tricks 

to efficiently use XYZ 

 you will be around in our team in the next 5 to 10 years to maintain all the code 

written in XYZ if none of the old dogs have time/interest to switch to XYZ 

 you can prove that XYZ can interact well with the existing C++ codes in ROSE 

 Scripting Languages 

Only two scripting languages are allowed 

 bash shell scripting 

 perl 

Again, this is just a preference of the staff members and what we have now. Allowing 

uncontrolled number of scripting languages in a single project will make the project 

impossible to maintain and hard to learn. 

 

 Naming Conventions 

The order of sub-sections reflects a top-down approach for how things are added during 

the development cycle: from directory --> file --> namespace --> etc. 

 General 

 Language: all names should be written in English since it is the preferred 

language for development, internationally 

 fileName; // NOT: filNavn 

 Abbreviations and Acronyms 

Avoid ambiguous abbreviations: obtain good balance between user-clarity and -

productivity. 

Abbreviations and acronyms should NOT be uppercase when used as name 

 exportHtmlSource(); // NOT: exportHTMLSource(); 

 openDvdPlayer(); // NOT: openDVDPlayer(); 

 File/Directory 

Case: 



 camelCase like fileName.hpp: This is consistent with existing names used in 

ROSE 

File Extension: 

 Header files: .h or .hpp 

 Source files: .cpp or .cxx  

o .C should be avoided to work with file systems which do not distinguish 

between lower or upper case. 

 Namespaces 

 A namespace should represent a logical unit, usually encapsulated in a single 

header file within a specific directory. 

 CamelCase for namespaces, such as SageInterface, SageBuilder, etc.  

o avoid lower case names, bad names: sage_interface 

 use singular for nouns within namespace names, avoid plural 

 use full words, avoid abbreviations 

Reason: the name convention of namespace is meant to be compatible with existing code 

and consistent with function names within namespaces. 

 CamelCase namespace can nice be used with doSomething() like: 

NameSpace::doSomething() 

 lower case namespace names may look inconsistent, such as 

name_space_1::doSomething() 

 many existing namespaces in ROSE already follow CamelCase, as shown at link 

[Note] Leo: I believe this should be more discussed with ROSE Compiler 

Framework/ROSE API. 

 Types 

MUST be in mixed case starting with an uppercase letter, as in SavingsAccount 

 Variables 

 Length: variables with a large scope should have long names, variables with a 

small scope can have short names 

 Temporary variables used for temporary storage (e.g. loop indices) are best kept 

short. A programmer reading such variables should be able to assume that its 

value is not used outside of a few lines of code. Common scratch variables for 

integers are i, j, k, m, n. Optionally, you can use ii, jj, kk, mm, and nn, which are 

easier to highlight when looking for indexing bugs. 

 Case: camelCase--mixed case starting with lowercase letter, as in functionDecl  

http://rosecompiler.org/ROSE_HTML_Reference/namespaces.html
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/ROSE_API
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/ROSE_API


o Variables are purposely to start with lowercase letter as compared to upper 

case letter for Types. So it is clear by looking at the first letter to know if a 

name is a variable or a type. 

 Booleans 

Negated boolean variable names must be avoided. The problem arises when such a name 

is used in conjunction with the logical negation operator as this results in a double 

negative. It is not immediately apparent what !isNotFound means. 

bool isError; // NOT: isNoError 

bool isFound; // NOT: isNotFound 

 Collections 

Plural form should be used on names representing a collection of objects. This enhances 

readability since the name gives the user an immediate clue as to the type of the variable 

and the operations that can be performed on its elements. 

For example, 

vector<Point> points; 

int values[]; 

 Constants 

Named constants (including enumeration values): MUST be all uppercase using 

underscore to separate words. 

For example: 

int MAX_ITERATIONS, COLOR_RED; 

double PI; 

In general, the use of such constants should be minimized. In many cases implementing 

the value as a method is a better choice: 

int getMaxIterations() // NOT: MAX_ITERATIONS = 25 

{ 

    return 25; 

} 

 Generic 

Generic variables should have the same name as their type. This reduces complexity by 

reducing the number of terms and names used. Also makes it easy to deduce the type 

given a variable name only. If for some reason this convention doesn't seem to fit it is a 

strong indication that the type name is badly chosen. 



void setTopic(Topic* topic) // NOT: void setTopic(Topic* value) 

                            // NOT: void setTopic(Topic* aTopic) 

                            // NOT: void setTopic(Topic* t)  

  

void connect(Database* database) // NOT: void connect(Database* db) 

                                 // NOT: void connect (Database* 

oracleDB) 

Non-generic variables have a role. These variables can often be named by combining 

role and type: 

Point  startingPoint, centerPoint; 

Name   loginName; 

 Globals 

Must always be fully qualified, using the scope-resolution operator ::. 

For example, ::mainWindow.open() and ::applicationContext.getName() 

In general, the use of global variables should be avoided. Instead, 

 Place variable into a namespace 

 Use singleton objects 

 Private class variables 

Private class variables should have underscore suffix. Apart from its name and its type, 

the scope of a variable is its most important feature. Indicating class scope by using 

underscore makes it easy to distinguish class variables from local scratch variables. 

For example, 

class SomeClass { 

  private: 

    int length_; 

} 

An issue is whether the underscore should be added as a prefix or as a suffix. Both 

practices are commonly used, but the latter is recommended because it seem to best 

preserve the readability of the name. A side effect of the underscore naming convention 

is that it nicely resolves the problem of finding reasonable variable names for setter 

methods and constructors: 

  void setDepth (int depth) 

  { 

    depth_ = depth; 

  } 



 Methods and Functions 

Names representing methods or functions: MUST be verbs and written in mixed case 

starting with lower case to indicate what they return and procedures (void methods) after 

what they do. 

 e.g. getName(), computeTotalWidth(), isEmpty() 

A method name should avoid duplicated object name. 

 e.g. line.getLength(); // NOT: line.getLineLength(); 

The latter seems natural in the class declaration, but proves superfluous in use, as shown 

in the example. 

The terms get and set must be used where an attribute is accessed directly. 

 e.g: employee.getName(); employee.setName(name); matrix.getElement(2, 4); 

matrix.setElement(2, 4, value); 

The term compute can be used in methods where something is computed. 

 e.g: valueSet->computeAverage(); matrix->computeInverse() 

Give the reader the immediate clue that this is a potentially time-consuming operation, 

and if used repeatedly, he might consider caching the result. Consistent use of the term 

enhances readability. 

The term find can be used in methods where something is looked up. 

 e.g.: vertex.findNearestVertex(); matrix.findMinElement(); 

Give the reader the immediate clue that this is a simple look up method with a minimum 

of computations involved. Consistent use of the term enhances readability. 

The term initialize can be used where an object or a concept is established. 

 e.g: printer.initializeFontSet(); 

The american initialize should be preferred over the English initialise. Abbreviation init 

should be avoided. 

The prefix is should be used for boolean variables and methods. 

 e.g: isSet, isVisible, isFinished, isFound, isOpen 



There are a few alternatives to the is prefix that fit better in some situations. These are 

the has, can and should prefixes: 

 bool hasLicense(); 

 bool canEvaluate(); 

 bool shouldSort(); 

 Directories 

 Naming Convention 

List of common names 

 src: to put source files, headers 

 include: to put headers if you have many headers and don't want to put them all 

into ./src 

 tests: put test inputs 

 docs: detailed documentation not covered by README 

Please use camelCase for your directory name. 

 you should avoid leading Capitalization 

Examples of preferred names 

 roseExtensions 

 roseSupport 

 roseAPI 

What to avoid 

 rose_api 

 rose_support 

 Layout 

TODO: big picture about where to put things within the ROSE git repository. 

 

For each project directory under ./projects, it is our convention to have subdirectories for 

different files 

 README: must have this 

 ./src: for all your source files 

 ./include: for all your headers if you don't want to put them all into ./src 



 ./tests: for your test input files 

 ./doc: for your more extensive documentation if README is not enough 

 Files 

A single file should contain one logical unit, or feature. Keep it modular! 

 Naming Conventions 

A file name should be specific and descriptive about what it contains. 

You should use camelCase (lowercase character in the beginning) 

 good example: fileName.h 

What should be avoided 

 start with capitalization, 

 bad example using underscore: file_name.h 

Bad file name 

 functions.h 

 file_name.h 

References 

 http://geosoft.no/development/cppstyle.html/cppstyle.html#Files 

 A couple good points: 

http://www.records.ncdcr.gov/erecords/filenaming_20080508_final.pdf 

 Line length 

 File content should be kept within 80 columns. 

80 columns is a common dimension for editors, terminal emulators, printers and 

debuggers, and files that are shared between several people should keep within these 

constraints. It improves readability when unintentional line breaks are avoided when 

passing a file between programmers. 

 Indentation 

Avoid tabs for your code indentation, except in cases where tabs (\t) are required, e.g. 

Makefiles. 

http://geosoft.no/development/cppstyle.html/cppstyle.html#Files
http://www.records.ncdcr.gov/erecords/filenaming_20080508_final.pdf


2 or 4 spaces is recommended for code indentation. 

for (i = 0; i < nElements; i++)  

  a[i] = 0; 

Indentation of 1 is too small to emphasize the logical layout of the code. Indentation 

larger than 4 makes deeply nested code difficult to read and increases the chance that the 

lines must be split. 

 Characters 

 Special characters like TAB and page break must be avoided. 

These characters are bound to cause problem for editors, printers, terminal emulators or 

debuggers when used in a multi-programmer, multi-platform environment. 

We already have a built-in perl script to enforce this policy. 

 Header files 

File name: 

 must be camelCase: such as fileName.h or fileName.hpp 

 avoid file_name.h 

Suffix 

 For C header files: Use .h 

 For C++ header files: Use .h or .hpp 

Must have 

 protected preprocesssing directives to prevent the header from being included 

more than once, example 

#ifndef _HEADER_FILE_X_H_ 

#define _HEADER_FILE_X_H_ 

 

#endif //_HEADER_FILE_X_H_ 

 try to put your variables, functions, classes within a descriptive namespace. 

 Include statements must be located at the top of a file only.  

o Avoid unwanted compilation side effects by "hidden" include statements 

deep into a source file. 

What to avoid 



 global variables, functions, or classes ; // they will pollute the global scope 

 using namespace std;  

o this will pollute the global scope for each .cpp file which includes this 

header. using namespace should only be used by .cpp files. More 

explanations are at link and link2 

 function definitions 

 

References: 

 http://www.parashift.com/c++-faq/hdr-file-ext.html 

 Source files 

Again, file names should follow the name convention 

 camelCase file name: e.g. sageInterface.cpp 

 Avoid capitalization, spaces, special characters 

Preferred suffix 

 Use .c for C source files 

 Use .cpp or .cxx for C++ source files 

What to avoid 

 capitalized .C for source files. This will cause some issue when porting ROSE to 

case-insensitive file systems. 

References 

 http://www.parashift.com/c++-faq/src-file-ext.html 

 README 

File name should be README 

what to avoid 

 README.txt 

 readme 

 Required Content 

For all major directories in ROSE, there should be a README explaining 

http://www.parashift.com/c++-faq/using-namespace-std.html
http://www.possibility.com/Cpp/CppCodingStandard.html#dgdu
http://www.parashift.com/c++-faq/hdr-file-ext.html
http://www.parashift.com/c++-faq/src-file-ext.html


 What is in this directory 

 What does this directory accomplish 

 Who added it and when 

Each project directory must have a README to explain: 

 What this project is about  

o Name of the project 

o Motivation: Why do we have this project 

o Goal: What do we want to achieve 

 Design/Implementation: So next person can quickly catch up and contribute to 

this project  

o How do we design/implement it. 

o What is the major algorithm 

 Brief instructions about how to use the project  

o Installation 

o Testing 

o Or point out where to find the complete documentation 

 Status  

o What works 

o What doesn't work 

 Known limitations 

 References and citations: for the underlying algorithms 

 Authors and Dates 

 Format 

Format of README 

 text format with clear sections and bullets 

 optionally, you can use styles defined by w:Markdown 

 Examples 

An example README can be found at 

 https://github.com/rose-

compiler/rose/blob/master/projects/OpenMP_Translator/README 

 Source Code Documentation 

The source code of ROSE is documented using the Doxygen documentation system. 

 General Guidelines 

http://en.wikipedia.org/wiki/Markdown
https://github.com/rose-compiler/rose/blob/master/projects/OpenMP_Translator/README
https://github.com/rose-compiler/rose/blob/master/projects/OpenMP_Translator/README
https://github.com/rose-compiler/rose
http://www.rosecompiler.org/ROSE_HTML_Reference/index.html
http://www.stack.nl/~dimitri/doxygen/


 English only 

 Use valid Doxygen syntax (see "Examples" below) 

 Make the code readable for a person who reads your code for the first time:  

o Document key concept, algorithm, functionalities 

o Cover your project, file, class/namespace, functions, and variables. 

o State your input and output clearly, specifically the meaning of the input 

or output  

 Users are more likely to use your code if they don't have to think 

about what the output means or what the input should be 

TODO, not ready yet 

 Test your documentation by generating it on your machine and then manually 

inspecting it to confirm its correctness 

TODO: Generating Local Documentation 

This does not work sometimes since we have a configuration file to indicate which 

directories to be scanned to generate the web reference html files 

  $ make doxygen_docs -C ${ROSE_BUILD}/docs/Rose/ 

 Use //TODO 

This is a recommended way to improve your code's comments. 

While doing incremental development, it is often to have something you decide to do in 

the next iterations or you know your current implementation/functions have some 

limitations to be fixed in the future. 

A good way is to immediately put a TODO source comments (// TODO blar blar ..) into 

the relevant code when you make such kind of decisions so you won't forget here is 

something you want to do next time. 

The TODOs also serve as some handy flags within the code for other people if they want 

to improve your work after you are gone. 

 Examples 

 Single Line 

Often a brief single line comment is enough 

//! Brief description. 

 Multiple lines 



Doxygen supports comments with more than one lines. 

/** 

  

   ... text.. 

  

 */ 

  

/** 

 * 

 *  ... text.. 

 * 

 */ 

  

  

/*******************************//** 

 *         text 

*********************************/ 

  

///////////////////////////////////// 

///  ... text <= 80 columns in length 

////////////////////////////////////// 

 Combined single line and multiple lines 

Doxygen can generate a brief comment for a function and optionally show detailed 

comments if users click on the function. 

Here are the options to support combined single-line and multiple-line source comments. 

Option 1: 

/** 

 * \brief Brief description. 

 *        Brief description continued. 

 * 

 * [Optional detailed description starts here.] 

 */ 

Option 2: 

/** 

 \brief Brief description. 

        Brief description continued. 

  

 [Optional detailed description starts here.] 

 */ 

--- 

Single line comment followed by multiple line comments': 



You may extend an existing single line comment with a multiple line comments (Option 

1 or 2). For example: 

//! Brief description. 

/** 

 * Detailed description starts here. 

 */ 

 

TODO: provide a full, combined example. 

 Functions 

Rules 

 Except for simple functions like getXX() and setXX(), all other functions should 

have at least one line comment to explain what it does 

 Avoid global functions and global variables. Try to put them into a namespace. 

 A function should not have more than 100 lines of code. Please refactor a big 

function into smaller, separated functions. 

 Limit the unconditional printf() so your translator will print to screen hundreds 

lines of text output when processing multiple input files  

o use if condition to control printf() for debugging purposes such as if 

( SgProject::get_verbose() > 0 ) 

 Comments 

Rules 

 Please follow Doxygen style comments 

 Please explain in sufficient details about how your function works: the algorithm 

steps.  

o Reviewers will check your algorithms in comments first then read your 

code to see if the code implements the algorithm correctly and efficiently. 

 Coding 

Correctly implement the designed/documented algorithms 

Code should be efficient in terms of both time and space (memory) complexity. 

Please be aware that your translator may handle thousands of statements with even more 

AST nodes. 

 Classes 



Try to use namespace when possible, avoid global variables or classes. 

 Name after what it is 

Name the class after what it is. If you can't think of what it is that is a clue you have not 

thought through the design well enough. 

 a class name should be a noun. 

Compound names of over three words are a clue your design may be confusing various 

entities in your system. Revisit your design. Try a CRC card session to see if your objects 

have more responsibilities than they should. 

 Explicit access 

All sections (public, protected, private) should be identified explicitly. Not applicable 

sections should be left out. 

 Public members first 

The parts of a class should be sorted public, protected and private. 

The ordering is "most public first" so people who only wish to use the class can stop 

reading when they reach the protected/private sections. 

 Class variables 

Class variables should NOT be declared public. 

The concept of C++ information hiding and encapsulation is violated by public variables. 

Use private variables and access functions instead. One exception to this rule is when the 

class is essentially a data structure, with no behavior (equivalent to a C struct). In this 

case it is appropriate to make the class' instance variables public. 

 Avoid structs 

Structs are kept in C++ for compatibility with C only, and avoiding them increases the 

readability of the code by reducing the number of constructs used. Use a class instead. 

 Statements 

 Loops 

Only loop control statements must be included in the for() construction. 



// Recommended way 

sum = 0;  

for (i = 0; i < 100; i++)  

  sum += value[i]; sum += value[i]; 

 

// NOT allowed  

 for (i = 0, sum = 0; i < 100; i++)  

Increase maintainability and readability. Make a clear distinction of what controls and 

what is contained in the loop. 

Loop variables should be initialized immediately before the loop. 

 Type conversions 

Type conversions must always be done explicitly. Never rely on implicit type conversion. 

  // recommended way 

  floatValue = static_cast<float>(intValue);  

  // NOT allowed  

  floatValue = intValue; 

By this, the programmer indicates that he is aware of the different types involved and that 

the mix is intentional. 

 Conditionals 

The conditional should be put on a separate line. 

 if (isDone)  

 // NOT: if (isDone) doCleanup(); doCleanup(); 

This is for debugging purposes. When writing on a single line, it is not apparent whether 

the test is really true or not. 

Complex conditional expressions must be avoided. Introduce temporary boolean 

variables instead 

//recommended way 

bool isFinished = (elementNo < 0) || (elementNo > maxElement);  

bool isRepeatedEntry = elementNo == lastElement;  

if (isFinished || isRepeatedEntry) { : }  

 

// NOT: if ((elementNo < 0) || (elementNo > maxElement)|| elementNo == 

lastElement) { : } 

 

By assigning boolean variables to expressions, the program gets automatic 

documentation. The construction will be easier to read, debug and maintain. 



 Statements to be avoided 

The following statements should usually be avoided 

 goto should not be used. Goto statements violate the idea of structured code. Only 

in some very few cases (for instance breaking out of deeply nested structures) 

should goto be considered, and only if the alternative structured counterpart is 

proven to be less readable. 

 Executable statements in conditionals should be avoided. Conditionals with 

executable statements are just very difficult to read. 

  File* fileHandle = open(fileName, "w");  

  if (!fileHandle) { : }  

  // NOT: if (!(fileHandle = open(fileName, "w"))) { : } 

 AST translators 

All ROSE-based translators should call AstTests::runAllTests(project) after all the 

transformation is done to make sure the translated AST is correct. 

This has a higher standard than just correctly unparsed to compilable code. It is common 

for an AST to go through unparsing correctly but fail on the sanity check. 

More information is at Sanity_check 

 Test cases 

All contributions MUST have the accompanying test translator and input files to 

demonstrate the contributions work as expected. 

 All tests MUST be triggered by the "make check" rule 

 All test should have self-verification to make sure the correct results are generated 

 All tests MUST be activated by at least one of the integration tests of Jenkins  

o This will ensure that no future commits can break your contributions. 

 References 

We list some external resources which are influential for us to define ROSE's coding 

standard 

 http://www.possibility.com/Cpp/CppCodingStandard.html 

 Sutter and Alexandrescu, C++ Coding Standards, 220 pgs, Addison-Wesley, 

2005, ISBN 0-321-11358-6. 

 http://www.parashift.com/c++-faq/coding-standards.html 

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Abstract_Syntax_Tree#Sanity_check
http://www.possibility.com/Cpp/CppCodingStandard.html
http://en.wikibooks.org/wiki/Special:BookSources/0321113586
http://www.parashift.com/c++-faq/coding-standards.html


 http://geosoft.no/development/cppstyle.html/ 

 Code Review Process 

 

 
Code review using github.llnl.gov 

 

 
Connection between github and Jenkins 

 Motivation 

Without code review, developers have: 

 added files into wrong directories, with improper names 

 committed hundreds of reformatted files 

 disabled tests to subvert our stringent Jenkins CI regression tests 

 re-invented the wheel by implementing features that already exist 

 added 160MB MPI trace files into the git repository 

http://geosoft.no/development/cppstyle.html/
http://commons.wikimedia.org/wiki/File:Rose-compiler-code-review-1.png
http://en.wikibooks.org/wiki/File:Rose-compiler-code-review-1.png
http://commons.wikimedia.org/wiki/File:Rose-compiler-code-review-2.png
http://en.wikibooks.org/wiki/File:Rose-compiler-code-review-2.png


 Goals 

Our primary goals for code reviewing ROSE are to: 

 share knowledge about the code: coder + reviewer will know the code, instead of 

just the coder 

 group-study: learn through studying other peoples' code 

 enforce policies for consistent usability and maintainability of ROSE code 

 avoid reinventing the wheel and eliminating unnecessary redundancy 

 safe-guarding the code: disallowing subversive attempts to disable or remove 

regression tests 

 Software 

We are currently testing Github Enterprise and looking into the possibility of leveraging 

Redmine for internal code review. 

In the past, we have looked at Google's Gerrit code review system. 

 Github 

Releases: https://enterprise.github.com/releases 

Support: https://support.enterprise.github.com 

 rosebot 

(Under development) 

An automated pull request analyzer to perform various tasks: 

 Automatically add reviewers to Pull Requests based on hierarchical configuration 

 "Pre-receive hook" analyses: file sizes, quantity of files, proprietary source, etc. 

 more... 

 Developer Checklist 

Read these tips and guidelines before sending a request for code review. 

 Coding Standards 

Please go to Coding Standard for the complete guideline. Here we only summary some 

key points. 

https://enterprise.github.com/dashboard
http://www.redmine.org/
http://code.google.com/p/gerrit/
https://enterprise.github.com/releases
https://support.enterprise.github.com/
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Coding_Standard


Your code should be written in a way that makes it easily maintainable and reviewable: 

 write easy to understand code; avoid using exotic techniques which nobody can 

easily understand. 

 add sufficient documentation (source-code comments, README, etc.) to aid the 

understandability of your code, your documentation should cover  

o why do you do this (motivation) 

o how do you do it (design and/or algorithm) 

o where are the associated tests (works as expected) 

 before submission of your code for review, make sure  

o you have merged with the latest central repository's master branch without 

conflicts 

o your working copy can pass local tests via: make, make check, and make 

distcheck 

o you have fixed all compiler warnings of your code whenever possible 

 submit a logical unit of work (one or more commits); something coherent like a 

bug fix, an improvement of documentation, an intermediate stage for reaching a 

big new feature. 

 balance code submissions with a good ratio of [lines of code] and [complexity of 

code]. A good balance needs to be achieved to make the reviewer's life easier.  

o the time needed to review your code should not exceed 1 hour. Please 

avoid pushing thousands of lines at a time. 

o Please also avoid pushing any trivial (fixed a typo, commented out a 

single line etc.) to be reviewed. 

 One time setup 

Steps for initializing code review: 1. Login to http://github.llnl.gov using your OUN and 

PAC. 

2. Fork your own clone of the ROSE repository from http://github.llnl.gov/rose-

compiler/rose. 

 Go to http://github.llnl.gov/rose-compiler/rose 

 Click the Fork button at the upper right corner of the webpage 

3. Add Collaborators: 

 Go to http://github.llnl.gov/<your_account>/rose  

o Click Admin 

o Click Collaborators  

 Add candidate code reviewers: liao6, too1. These developers will 

review and merge your work. 

 Add admins: hudson-rose. This user will automatically 

synchronize your master branch with 

/nfs/casc/overture/ROSE/git/ROSE.git:master. 

http://github.llnl.gov/
http://github.llnl.gov/rose-compiler/rose
http://github.llnl.gov/rose-compiler/rose
http://github.llnl.gov/rose-compiler/rose
http://github.llnl.gov/


4. Create your public-private SSH key pair using ssh-keygen, and add it to your 

github.llnl.gov account. (github.llnl.gov only supports the SSH protocol for now; HTTPS 

is not yet supported.) 

 Daily work process 

 have a local git repo to do your work and submit local commits, you have two 

choices:  

o clone it from /nfs/casc/overture/rose/rose.git as we usually do before 

o clone your fork on github.llnl.gov to a local repo: use the ssh URL option 

for now since the https option won't work. 

o don't use branches, use separated git repositories for each of your tasks. So 

status/progress of one task won't interfere with other tasks. 

 When ready to push your commits, synchronize with the latest rose-

compiler/master to resolve merge conflicts, etc.  

o type: git pull origin master # this should always work since master 

branches on github.llnl.gov are automatically kept up-to-date 

o make sure your local changes can pass 1)make -j8, 2)make check -j8, and 

3)make distcheck -j8 

 push your commits to your fork's non-master branch, like bugfix-rc , featurex-rc. 

You have total freedom in creating any branches in your forked repo, with any 

names you like 

  # If your local repository was cloned from 

/nfs/casc/overture/ROSE/rose.git.  

  # There is no need to discard it. You can just add the github.llnl's 

repo as an additional remote repository and push things there: 

  git remote add github-llnl-youraccount-rose 

http://github.llnl.gov/youraccount/rose.git 

  git push github-llnl-youraccount-rose HEAD:refs/heads/bugfix-rc 

 add a pull(merge) request to merge bugfix-rc into your own fork's master,  

o please note that the default pull request will use rose-compiler/rose's 

master as the base branch (destination of the merge). Please change it to be 

your own fork's master branch instead. 

o Also make sure the source (head) branch of the pull (merge) request is the 

one your want (bugfix-rc in this example) 

o Double check the diff tab of your pull request only shows the differences 

you made, without other things brought in from the central repo. Or your 

own repo's master is out-of-sync with the central repo's master. Notify 

system admin (too1) for the problem or manually fix it using the 

troubleshooting section of this page. 

 notify a reviewer that you have a pull request (requesting to merge your bugfix-rc 

into your master branch)  

o You can assign the pull request to the reviewer so an email notification 

will be automatically sent to the reviewer 

o Or you can add discussion within the pull request using 

@revieweraccount. NOTE: please only click "Comment on this issue" 



once and manually refresh the web page. Github Enterprise has a bug so it 

cannot automatically shown the newly added comment. bug79 

o Or you can just email the reviewer 

 waiting for reviewer's feedback: 

 Review results 

 There might be three kinds of results  

o if passes, reviewer should have merged your bugfix-rc into your master. 

Jenkins will automatically poll your master and do the testing/merging 

o if reviewer wants additional changes such as better naming, better places 

to put files, more source comments, accompanying regression tests, etc. 

Just repeat the process: do local edits, local commits, push to your remote 

branch, send merge request again 

o A third possible outcome is that reviewers may accept the commits. But 

some additional tasks are needed in the future to improve the code. 

 What to do next  

o please look through the reviewer comments and try your best to address 

them 

o some of the comments should indicate some mandatory changes, please 

follow them 

o some of the comments may be just suggestions. Use your own judgement. 

The bottomline is the balance between quality and productivity. 

o Please do not close the pull request. You can push your new commits to 

the same branch again and comment on the pull request to indicate there 

are new updates. Please review them again. So the reviewer would not 

need to go to another pull request to see what were the previous comments 

before. 

 Reviewer Checklist 

What to look out for as a code reviewer? 

 Be familiar with the current Coding Standard as a general guideline to perform 

the code review. 

 Allocate up to 1 hour at a time to review approximately 500-1000 lines of code: a 

longer time may not pay off due to the attention span limits of human brains 

 What to check 

Five major things to check: 

 Documentation: What are the commits about? Is this reflected in README, 

source comments, or LaTex files? 

 Style: Does the coding style follow our standard? Is the code clean, robust, and 

maintainable? 

https://github.com/rose-compiler/rose/issues/79
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Coding_Standard


 Algorithm: Does the code have sufficient comments about what algorithm is 

used? Is the algorithm correct and efficient (space and time complexity)? 

 Implementation: Does the code correctly implement the documented 

algorithm(s)? 

 Testing: Does the code have the accompanying test translator and input test codes 

to ensure the contributions do what they are supposed to do?  

o Is Jenkins being configured to trigger these tests (your work may require 

new pre-requisite software or configure options)? Local tests on 

developer's workstation do not count. 

More details: 

 Naming conventions: File and directory names follow our standards; clear and 

intuitive  

o Directory structure: source code, test code, and documentation files are 

added into the correct locations 

 Maintainability: clarity of code; can somebody who did not write the code easily 

understand what the code does?  

o No looong functions: a function with hundreds of lines of code is a no-no 

o Architecture/design: the reasons and motivations for writing the code, 

and its design. 

 No duplication: similar code may already exist or can be extended 

 Re-use: can part of the code be refactored to be reusable by others? 

 Unit tests: make check rules are associated with each new feature to ensure the 

new feature will be tested and verified for expected behaviors 

 Sanity: no turning off, or relaxing, other tests to make the developer's commits 

pass Jenkins. In other words, no cheating. 

 Commenting 

Reviewer comments should be clearly delimited into these three well-defined sections: 

1. Mandatory: the details of the comment must be implemented in a new commit and 

added to the Pull Request before the code review can be completed. 

2. Recommended: the details of the comment could represent a best-practice or, simply, 

it could be intended to provide some insight to the developer that they may have not 

thought about. 

Both Mandatory and Recommended can be accompanied by the keyword Nitpick: 

3. Nitpick: the details of the comment represent a fix that usually involves a 

spelling/grammatical or coding style correction. The main purpose of the nitpick 

indication is to let the developer know that you're not trying to be on their case and make 

their life difficult, but an error is an error, or there's a better way to do something. 



 Decisions 

Make a clear and definitive decision for the code review: 

 Pass: The code does what it is supposed to do with clear documentation and test 

cases. Merge and close the pull request. 

 Pass but with future tasks. The commits are accepted. But some additional tasks 

are needed in the future to improve the code. They can be put into a separate set 

of commits and pushed later on. 

 Fail. Additional work is needed, such as better naming, better places to put files, 

more source comments, add regression tests, etc. Notify the developers of the 

issues and ask for a new set of commits to be pushed addressing the corrections or 

improvements. 

 Who should review what 

Ideally, every ROSE contributor should participate in code review as a reviewer at some 

point so the benefits of peer-review can fully be fulfilled. 

However, due to the limited access to our internal github enterprise server, we currently 

have a centralized review process in which ROSE staff members (liao6, too1) serve as 

the default code reviewers. They are responsible for either reviewing the code themselves 

or delegate to other developers who either has better knowledge about the contributions 

or should be aware of the contributions. 

We am actively looking at better options and will gradually expand the pool of reviewers 

so the reviewing step won't become a bottleneck. 

TODO: use rosebot to automatically assign reviewers according to a hierarchical 

configuration of the source-tree. 

 What to avoid 

 Judging code by whether it's what the reviewer would have written  

o Given a problem, there are usually a dozen different ways to solve it. And 

given a solution, there's a million ways to render it as code. 

 degenerating into nitpicks:  

o perfectionism may hurt the progress. we should allow some non-critical 

improvements to be done in the next version/commits. 

 feel obligated to say something critical: it is perfectly fine to say "looks good, 

pass" 

 delay in review: we should not rush it but we should keep in mind that somebody 

is waiting for the review to be done to move forward 

 Criticism 



Code reviews often degenerate into nitpicks. Brainstorming and design reviews to be 

more productive. 

 This makes sense, the early we catch the problems, the better. Design happens 

earlier. Design should be reviewed. The same idea applies to requirement analysis 

also. 

 Troubleshooting 

 master is out-of-sync 

The master branch of each developer's git repository (http://github.llnl.gov) should be 

automatically synchronized with the central git repository's master branch 

(/nfs/casc/overture/ROSE/git/ROSE.git). In rare cases, it could be out-of-sync. 

Here is an example to perform a manual synchronization: 

1. Clone your Github repository: 

$ cd ~/Development/projects/rose 

$ git clone git@github.com:<user_oun>/rose.git 

Cloning into ROSE... 

remote: Counting objects: 216579, done. 

remote: Compressing objects: 100% (55675/55675), done. 

remote: Total 216579 (delta 159850), reused 211131 (delta 155786) 

Receiving objects: 100% (216579/216579), 296.41 MiB | 35.65 MiB/s, 

done. 

Resolving deltas: 100% (159850/159850), done. 

2. Add the central repository as a remote repository: 

$ git remote add central /nfs/casc/overture/ROSE/git/ROSE.git 

$ git fetch central 

From /nfs/casc/overture/ROSE/git/ROSE.git 

 * [new branch]      master     -> central/master 

 ... 

3. Push the central master branch to your Github's master branch: 

-bash-3.2$ git push central central/master:refs/heads/master 

Total 0 (delta 0), reused 0 (delta 0) 

To git@github.llnl.gov:<user_oun>/rose.git 

   16101fd..563b510  central/master -> master 

 master cannot be synchronized 

In rare cases, your repository's master branch cannot be automatically synchronized. This 

is most likely due to merge conflicts. You will receive an error message through an 

automated email, resembling the following (last updated on 7/24/2012): 

http://github.llnl.gov/


To git@github.llnl.gov:lin32/rose.git 

! [rejected]        origin/master -> master (non-fast forward) 

error: failed to push some refs to 'git@github.llnl.gov:lin32/rose.git' 

 

--- 

 

Your master branch at [github.llnl.gov:lin32/rose.git] cannot be 

automatically updated with 

[/nfs/casc/overture/ROSE/git/ROSE.git:master] 

 

Please manually force the update: 

 

Add the central repository as a remote, call it "nfs": 

 

  $ git remote add nfs /nfs/casc/overture/ROSE/git/ROSE.git 

 

1. First, try to manually perform a merge in your local repository: 

 

  # 1. Checkout and update your Github's master branch 

  $ git checkout master 

  $ git pull origin master 

 

  # 2. Merge the central master into your local master 

  $ git pull nfs master 

  <no merge conflicts> 

 

  # 3. Synchronize your local master to your Github's master 

  $ git push origin HEAD:refs/head/master 

 

2. Otherwise, try to resolve the conflict. 

 

3. Finally, if all else fails, force the synchronization: 

 

  $ git push --force origin nfs/master:refs/heads/master 

 

  WARNING: your master branch on Github will be overriden so make sure 

  you have sufficient backups, and take precaution. 

Please simply follow the email's instructions to force the update of your Github's master 

branch. 

 References 

 http://www.possibility.com/wiki/index.php?title=CodeReviews 

 http://scientopia.org/blogs/goodmath/2011/07/06/things-everyone-should-do-

code-review/ 

 http://stackoverflow.com/questions/3730527/workflow-for-github-based-code-

review 

 http://stackoverflow.com/questions/4262693/what-to-look-for-in-a-code-review 

 LLNL Internal URL: http://github.llnl.gov/ 

 Continuous Integration 

http://www.possibility.com/wiki/index.php?title=CodeReviews
http://scientopia.org/blogs/goodmath/2011/07/06/things-everyone-should-do-code-review/
http://scientopia.org/blogs/goodmath/2011/07/06/things-everyone-should-do-code-review/
http://stackoverflow.com/questions/3730527/workflow-for-github-based-code-review
http://stackoverflow.com/questions/3730527/workflow-for-github-based-code-review
http://stackoverflow.com/questions/4262693/what-to-look-for-in-a-code-review
http://github.llnl.gov/


 

 
ROSE Continuous integration using Git and Jenkins (Code Review Omitted for simpler 

explanation) 

 Motivation 

Without automated continuous integration, we had frequent incidents like: 

 Developer A commits something to our central git repository's master branch. The 

commits contain some bugs which break our build and take a long time to have a 

fix. Then the central master branch is left to a corrupted state for weeks so nobody 

can check out/in anything. 

 Developer A does a lot of wonderful work offline for months. But his work later 

is found to be incompatible with another developer's work. His work has 

unsolvable merge conflicts. 

 Overview 

The ROSE project uses a workflow that automates the central principles of continuous 

integration in order to make integrating the work from different developers a non-event. 

Because the integration process only integrates with ROSE the changes that passes all 

tests we encourage all developers to stay in sync with the latest version. 

A high level overview of the development model used by ROSE developers. 

 Step 1: Taking advantage of the distributed source code repositories based on git, 

each developer should first clone his/her own repository from our central git 

repository (or its mirrors/clones/forks). 

http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Continuous_integration
http://commons.wikimedia.org/wiki/File:ROSE_Continuous_integration_using_Git_and_Jenkins.png
http://en.wikibooks.org/wiki/File:ROSE_Continuous_integration_using_Git_and_Jenkins.png


 Step 2: Then a feature or a bugfix can be developed in isolation within the private 

repository. He can create any number of private branches. Each branch should 

relate to a feature that this developer is working on and be relatively short-lived. 

The developer can commit changes to the private repository without maintaining 

an active connection to the shared repository. 

 Step 3: When work is finished and locally tested, he can pull the latest commits 

from the central repo's master branch 

 Step 4: He then can push all accumulated commits within the private repository to 

his branch within the shared repository. We create a dedicated branch within the 

central repository for each developer and establish access control of the branch so 

only an authorized developer can push commits to a particular branch of the 

shared repository. 

 Step 5-6 (automated): Any commits from a developer’s private repository will not 

be immediately merged to the master branch of the shared repository. 

In fact, we have access control to prevent any developer from pushing commits to the 

master branch within the shared repository. A continuous integration server called 

Jenkins is actively monitoring each developer’s branch within the central repository and 

will initiate comprehensive commit tests upon the branch once new commits are detected. 

Finally, Jenkins will merge the new commits to the master branch of the central 

repository if all tests pass. If a single test fails, Jenkins will report the error and the 

responsible developer should address the error in his private repository and push 

improved commits again. 

As a result, the master branch of the central git repository is mostly stable and can be a 

good candidate for our external release. On top of the master branch of the central git 

repository, we further have more comprehensive release tests in Jenkins. If all the release 

tests pass, an external release based on the master branch will be made available outside. 

 Tests on Jenkins 

We use Jenkins ( http://hudson-rose-30:8080/ ) to test commits added to developer's 

release candidate branches at the central git repository. 

The tests are organized into three categories 

 Integration: tests used to check if the new commits can pass various "make 

check" rules, compatibility tests, portability tests, configuration tests, and so on. If 

all tests pass, the commits will be merged (or integrated) into the master branch 

of the central repository. 

 Release: tests used to test the updated master branch of the central repository for 

additional set of tests using external benchmarks. If all tests pass, the head of the 

master will be released as a stable snapshot for public file package 

releases(generated by "make dist"). 

 Others: for informational purpose now, not being used in our production 

workflow. 

http://hudson-rose-30:8080/


So for each push (one or more commits to a -rc branch), it will go through two stages: 

Integration test and Release test stage. 

It is each developer's responsibility to make sure their commits can pass BOTH stage by 

fixing any bugs discovered by the tests. 

 Check Testing Results 

It is possible to manually tracking down how you commits are doing within the test 

pipeline within Jenkins (http://hudson-rose-30:8080/). But it can be tedious and 

overwhelming. 

So we provide a dashboard ( http://sealavender:4000/) to summarize the commits to your 

release candidate branch(-rc) and the pass/fail status for each integration tests 

 Frequently Failed Jobs 

 C6-ROSE-distcheck 

http://hudson-rose-30:8080/job/C6-ROSE-distcheck/ 

Problem: 

make[3]: *** No rule to make target `README', needed by `distdir'.  

Stop. 

... 

make: *** [distdir] Error 1 

 

***********************************************************************

********* 

*** FAILED make distcheck step 

***********************************************************************

********* 

The problem is that some files are not automatically added into the software distribution 

during "make dist". For example, input test code files, README files, and configuration 

files. 

Prognosis: 

Overview of "make distcheck": 

1. "make dist": ensure that you can successfully create a tarball distribution of the 

software package. 

2. The tarball distribution is un-tarred (unpackaged) and the tests are then carried out on 

this distribution source tree. 

http://hudson-rose-30:8080/
http://sealavender:4000/
http://hudson-rose-30:8080/job/C6-ROSE-distcheck/


3. "$ROSE/configure": configure the software package. 

4. "make all": build the software package. 

5. "make check": execute the software package's regression tests. 

Files are not always automatically added into the distribution tarball (during "make 

dist"). However, most source and header files will be automatically added if they are 

used to build libraries and executables (specified within Automake makefiles, 

Makefile.am). 

Solution: 

 Add the culprit files into the EXTRA_DIST Automake variable in the appropriate 

Makefile.am file. 

 Test "make distcheck" on your local machine before you push next time! 

Reference: 

 Basics of distribution: 

http://www.delorie.com/gnu/docs/automake/automake_91.html 

 C2-ROSE-language-matrix-linux 

ROSE has configuration options to turn on desired language support. So this job is used 

to test -enable-only-LANGUAGE option for fortran, c-and-cxx, java, php, and binary-

analysis. 

Many new developers are not aware of this so their pushes often fail on this test. 

To pass this test, make sure you have conditionals in your Makefile.am to turn on 

language specific rules. 

For example, for your Fortran-specific work, using the following conditional 

if ROSE_BUILD_FORTRAN_LANGUAGE_SUPPORT 

 Fortran_to_C: 

  $(MAKE) -C ../src Fortran_to_C 

else 

  .. 

endif 

 Connection to Code Review 

http://www.gnu.org/software/automake/
http://www.delorie.com/gnu/docs/automake/automake_91.html


 

 
Connection between Github Enterprise and Jenkins 

In reality, most LLNL developers are now asked to push things to Github Enterprise for 

code review first instead of directly pushing to our central git repository. 

 Auto pull: we have another Jenkins at (https://hudson-rose-30:8443/jenkins/) 

which serves as the bridge between Github Enterprise and Jenkins.  

o For each private repositories on Github Enterprise, we have a Jenkins job 

to monitor the master branch for approved pull (merge) request. If there is 

any new approved commits, the job will transfer the commits to the 

central repository's -reviewed-rc branch for that developer. 

 Auto push: A Jenkins job is responsible for propagating latest central master 

contents to all private repositories on github.llnl.gov  

o http://hudson-rose-30:8080/job/Commit-sync-github 

 TODO 

High priority 

 enable email notification for the final results of each test: 

 incrementally add more compilation tests using external benchmarks to be 

integration tests. 

 References 

 Files used to generate the figure: feel free to add new versions as new slides: link 

 Frequently Asked Questions (FAQ) 

We collect a list of frequently asked questions about ROSE, mostly from the rose-public 

mailing list link 

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Code_Review
https://hudson-rose-30:8443/jenkins/
http://hudson-rose-30:8080/job/Commit-sync-github
https://docs.google.com/presentation/d/1US3e9sXnjPvgRU9cyOfQgKZBHScGiCMODSsbQH80i8s/edit
https://mailman.nersc.gov/pipermail/rose-public/
http://commons.wikimedia.org/wiki/File:Rose-compiler-code-review-2.png
http://en.wikibooks.org/wiki/File:Rose-compiler-code-review-2.png


 General 

 How to search rose-public mailinglist for previously asked questions? 

google.com supports search things within the scope of a URL. For example, if you have a 

problem with a keyword MY PROBLEM, you can try to search the mailing list by using 

the following keyword in google.com: 

 "MY PROBLEM site:https://mailman.nersc.gov/pipermail/rose-public/" 

 How many lines of source code does ROSE have? 

Excluding the EDG submodule and all source code comments, the core of ROSE 

(rose/src) has about 674,000 lines of C/C++ source code as of July 11, 2012. 

Including tests, projects, and tutorial directories, ROSE has about 2 Million lines of code. 

Some details are shown below: 

[rose/src]./cloc-1.56.pl . 

    3076 text files. 

    2871 unique files.                                           

     716 files ignored. 

 

http://cloc.sourceforge.net v 1.56  T=26.0 s (91.7 files/s, 39573.3 

lines/s) 

-----------------------------------------------------------------------

-------- 

Language                     files          blank        comment           

code 

-----------------------------------------------------------------------

-------- 

C++                            908          75280          93960         

354636 

C                              123          12010           3717         

199087 

C/C++ Header                   915          28302          38412         

121373 

Bourne Shell                    17           3346           4347          

25326 

Perl                             4            743           1078           

7888 

Java                            18           1999           4517           

7096 

m4                               1            747             20           

6489 

Python                          34           1984           1174           

5363 

make                           148           1682           1071           

3666 

C#                              11            899            274           

2546 

https://mailman.nersc.gov/pipermail/rose-public/


SQL                              1              0              0           

1817 

Pascal                           5            650             31           

1779 

CMake                          168           1748           4880           

1702 

yacc                             3            352            186           

1544 

Visual Basic                     6            228            421           

1180 

Ruby                            11            281            181            

809 

Teamcenter def                   3              3              0            

606 

lex                              2            103             47            

331 

CSS                              1             95             32            

314 

Fortran 90                       1             34              6            

244 

Tcl/Tk                           2             29              6            

212 

HTML                             1              8              0             

15 

-----------------------------------------------------------------------

-------- 

SUM:                          2383         130523         154360         

744023 

-----------------------------------------------------------------------

-------- 

 

 How large is ROSE? 

To show top level information only (in MB): du -msl * | sort -nr 

170     tests 

109     projects 

90      src 

19      docs 

16      winspecific 

16      ROSE_ResearchPapers 

15      binaries 

7       scripts 

5       LicenseInformation 

4       tutorial 

4       autom4te.cache 

2       libltdl 

2       exampleTranslators 

2       configure 

2       config 

2       ChangeLog 

Sort directories by their sizes in MegaBytes 



 du -m | sort -nr >~/size.txt 

709     . 

250     ./.git 

245     ./.git/objects 

243     ./.git/objects/pack 

170     ./tests 

109     ./projects 

90      ./src 

76      ./tests/CompileTests 

50      ./tests/RunTests 

40      ./tests/RunTests/FortranTests 

34      ./tests/RunTests/FortranTests/LANL_POP 

29      ./tests/RunTests/FortranTests/LANL_POP/netcdf-4.1.1 

27      ./src/3rdPartyLibraries 

23      ./tests/roseTests 

23      ./src/frontend 

22      ./tests/CompileTests/Fortran_tests 

21      ./tests/CompilerOptionsTests 

19      ./docs 

18      ./tests/CompileTests/RoseExample_tests 

18      ./src/midend 

18      ./docs/Rose 

16      ./winspecific 

16      ./ROSE_ResearchPapers 

15      ./tests/CompileTests/Fortran_tests/gfortranTestSuite 

15      ./binaries/samples 

15      ./binaries 

14      ./tests/CompileTests/Fortran_tests/gfortranTestSuite/gfortran.d

g 

14      ./src/roseExtensions 

11      ./projects/traceAnalysis 

10      ./tests/CompileTests/A++Code 

10      ./tests/CompilerOptionsTests/testCpreprocessorOption 

10      ./tests/CompilerOptionsTests/A++Code 

10      ./src/roseExtensions/qtWidgets 

10      ./src/frontend/Disassemblers 

10      ./projects/symbolicAnalysisFramework 

10      ./projects/SATIrE 

10      ./projects/compass 

9       ./winspecific/MSVS_ROSE 

9       ./tests/RunTests/A++Tests 

9       ./tests/roseTests/binaryTests 

9       ./src/frontend/SageIII 

9       ./projects/symbolicAnalysisFramework/src 

9       ./docs/Rose/powerpoints 

8       ./winspecific/MSVS_project_ROSETTA_empty 

8       ./projects/simulator 

7       ./tests/RunTests/FortranTests/LANL_POP_OLD 

7       ./tests/CompileTests/Cxx_tests 

7       ./src/midend/programTransformation 

7       ./src/midend/programAnalysis 

7       ./src/3rdPartyLibraries/libharu-2.1.0 

7       ./scripts 

7       ./projects/symbolicAnalysisFramework/src/mpiAnal 

7       ./projects/RTC 

6       ./winspecific/MSVS_ROSE/Debug 

6       ./tests/RunTests/FortranTests/LANL_POP/netcdf-4.1.1/ncdap_test 



6       ./tests/roseTests/programAnalysisTests 

6       ./src/3rdPartyLibraries/ckpt 

6       ./src/3rdPartyLibraries/antlr-jars 

6       ./projects/SATIrE/src 

5       ./tests/RunTests/FortranTests/LANL_POP/pop-distro 

5       ./tests/RunTests/FortranTests/LANL_POP/netcdf-4.1.1/libcf 

5       ./tests/CompileTests/ElsaTestCases 

5       ./src/ROSETTA 

5       ./src/3rdPartyLibraries/qrose 

5       ./projects/DatalogAnalysis 

5       ./projects/backstroke 

5       ./LicenseInformation 

5       ./docs/Rose/AstProcessing 

To list files based on size 

 find . -type f -print0 | xargs -0 ls -s | sort -k1,1rn 

241568 ./.git/objects/pack/pack-

f366503d291fc33cb201781e641d688390e7f309.pack 

13484 ./tests/CompileTests/RoseExample_tests/Cxx_Grammar.h 

10240 ./projects/traceAnalysis/vmp-hw-part.trace 

6324 ./tests/RunTests/FortranTests/LANL_POP_OLD/poptest.tgz 

5828 ./winspecific/MSVS_ROSE/Debug/MSVS_ROSETTA.pdb 

4732 ./.git/objects/pack/pack-

f366503d291fc33cb201781e641d688390e7f309.idx 

4488 ./binaries/samples/bgl-helloworld-mpicc 

4488 ./binaries/samples/bgl-helloworld-mpixlc 

4080 ./LicenseInformation/edison_group.pdf 

3968 ./projects/RTC/tags 

3952 ./src/frontend/Disassemblers/x86-InstructionSetReference-NZ.pdf 

3908 ./tests/CompileTests/RoseExample_tests/trial_Cxx_Grammar.C 

3572 ./winspecific/MSVS_project_ROSETTA_empty/MSVS_project_ROSETTA_empt

y.ncb 

3424 ./src/frontend/Disassemblers/x86-InstructionSetReference-AM.pdf 

2868 ./.git/index 

2864 ./projects/compassDistribution/COMPASS_SUBMIT.tar.gz 

2864 ./projects/COMPASS_SUBMIT.tar.gz 

2740 ./ROSE_ResearchPapers/2007-

CommunicatingSoftwareArchitectureUsingAUnifiedSingle-ViewVisualization-

ICECC 

S.pdf 

2592 ./docs/Rose/powerpoints/rose_compiler_users.pptx 

2428 ./src/3rdPartyLibraries/ckpt/wrapckpt.c 

2408 ./projects/DatalogAnalysis/jars/weka.jar 

2220 ./scripts/graph.tar 

1900 ./src/3rdPartyLibraries/antlr-jars/antlr-3.3-complete.jar 

1884 ./src/3rdPartyLibraries/antlr-jars/antlr-3.2.jar 

1848 ./src/midend/programTransformation/ompLowering/run_me_defs.inc 

1772 ./src/3rdPartyLibraries/qrose/docs/QROSE.pdf 

1732 ./tests/CompileTests/Cxx_tests/longFile.C 

1724 ./src/midend/programTransformation/ompLowering/run_me_task_defs.in

c 

1656 ./ChangeLog 

1548 ./tests/roseTests/binaryTests/yicesSemanticsExe.ans 

1548 ./tests/roseTests/binaryTests/yicesSemanticsLib.ans 



1480 ./ROSE_ResearchPapers/1997-ExpressionTemplatePerformanceIssues-

IPPS.pdf 

1408 ./docs/Rose/powerpoints/ExaCT_AllHands_March2012_ROSE.pptx 

 

... 

 Compilation 

 How to speedup compiling ROSE? 

Question It takes hours to compile ROSE, how can I speed up this process? 

Answer: 

 if you have multi-core processors, try to use make -j4 (make by using four 

processes). 

 also try to only build librose.so under src/ by typing make -C src/ -j4 

 Or only try to build the language support you are interested in during configure, 

such as  

o ../sourcetree/configure --enable-only-c # if you are only interested in 

C/C++ support 

o ../sourcetree/configure --enable-only-fortran # if you are only interested in 

Fortran support 

o ../sourcetree/configure --help # show all other options to enable only a few 

languages. 

 Can ROSE accept incomplete code? 

https://mailman.nersc.gov/pipermail/rose-public/2011-July/001015.html 

ROSE does not handle incomplete code. Though this might be possible in the future. It 

would be language dependent and likely depend heavily on some of the language specific 

tools that we use internally. This is however, not really a priority for our work. If you 

want to for example demonstrate how some of the internal tools we are using or 

alternative tools that we could use might handle incomplete code, this might be 

interesting and we could discuss it. 

For example, we are not presently using Clang, but if it handled incomplete code that 

might be interesting for the future. I recall that some of the latest EDG work might handle 

some incomplete code, and if that is true then that might be interesting as well. I have not 

attempted to handle incomplete code with OFP, so I am not sure how well that could be 

expected to work. Similarly, I don't know what the incomplete code handling capabilities 

of ECJ Java support is either. If you know any of these questions we could discuss this 

further. 

https://mailman.nersc.gov/pipermail/rose-public/2011-July/001015.html


I have some doubts about how much meaningful information can come from incomplete 

code analysis and so that would worry me a bit. I expect it is very language dependent 

and there would be likely some constraints on the incomplete code. So understanding the 

subject better would be an additional requirement for me. 

 Can ROSE analyze Linux Kernel sources? 

https://mailman.nersc.gov/pipermail/rose-public/2011-April/000856.html 

Question: I'm trying to analyze the Linux kernel. I was not sure of the size of the code-

base that can be handled by ROSE, and could not find references as to whether it has 

been tried on the Linux kernel source. As of now I'm trying to run the identity translator 

on the source, and would like to know if it can be done using ROSE, and if it has been 

successfully tested before. 

Short answer: Not for now 

Long answer: We are using EDG 3.3 internally by default and this version of EDG does 

not handle the GNU specific register modifiers used in the asm() statements of the Linux 

Kernel code. There might be other problems, but that was at least the one that we noticed 

in previous work on this some time ago. But we are working on upgrading the EDG 

frontend to be a more recent version 4.4. 

 Can ROSE compile C++ Boost library? 

https://mailman.nersc.gov/pipermail/rose-public/2010-November/000544.html 

not yet. 

I know of a few cases where ROSE can't handle parts of Boost. In each case it is an EDG 

problem where we are using an older version of EDG. We are trying to upgrade to a 

newer version of EDG (4.x), but that version's use within ROSE does not include enough 

C++ support, so it is not ready. The C support is internally tested, but we need more time 

to work on this. 

 AST 

 How to find XYZ in AST? 

The usually steps to retrieve information from AST are: 

 prepare a simplest (preferrably 5-10 lines only), compilable sample code with the 

code feature you want to find (e.g array[i][j] if you are curious about how to find 

use of multi-dimensional arrays in AST), avoid including any headers (#include 

file.h) to keep the code small.  

https://mailman.nersc.gov/pipermail/rose-public/2011-April/000856.html
https://mailman.nersc.gov/pipermail/rose-public/2010-November/000544.html


o Please note: don't include any headers in the sample code. A header 

(#include <stdio.h> for example) can bring in thousands of nodes into 

AST. 

 use dotGeneratorWholeASTGraph to generate a detailed AST dot graph of the 

input code 

 use zgrviewer-0.8.2's run.sh to visulize the dot graph 

 visually/manually locate the information you want in the dot graph, understand 

what to look and where to look 

 use code (AST member functions, traversal, SageInteface functions, etc) to 

retrieve the information. 

 How to filter out header files from AST traversals? 

https://mailman.nersc.gov/pipermail/rose-public/2010-April/000144.html Question: I 

want to exclude functions in #include files from my analysis/transformations during my 

processing. 

By default, AST traversal may visit all AST nodes, including the ones come from 

headers. 

So AST processing classes provide three functions : 

 T traverse (SgNode * node, ..): traverse full AST , nodes which represent code 

from include files 

 T traverseInputFiles(SgProject* projectNode,..) traverse the subtree of AST 

which represents the files specified on the command line 

 T traverseWithinFile(SgNode* node,..): only the nodes which represent code of 

the same file as the start node 

 Should SgIfStmt::get_true_body() return SgBasicBlock? 

https://mailman.nersc.gov/pipermail/rose-public/2011-April/000930.html 

Both true/false bodies were SgBasicBlock before. 

Later, we decided to have more faithful representation of both blocked (with {...}) and 

single-statement (without { ..} ) bodies. So they are SgStatement (SgBasicBlock is a 

subclass of SgStatement) now. 

But it seems like the document has not been updated to be consistent with the change. 

You have to check if the body is a block or a single statement in your code. Or you can 

use the following function to ensure all bodies must be SgBasicBlock. 

https://mailman.nersc.gov/pipermail/rose-public/2010-April/000144.html
https://mailman.nersc.gov/pipermail/rose-public/2011-April/000930.html


//A wrapper of all ensureBasicBlockAs*() above to ensure the parent of s is a scope 

statement with list of statements as children, otherwise generate a SgBasicBlock in 

between. 

SgLocatedNode * SageInterface::ensureBasicBlockAsParent (SgStatement *s) 

 How to handle #include "header.h", #if, #define etc. ? 

It is called preprocessing info. within ROSE's AST. They are attached before, after, or 

within a nearby AST node (only the one with source location information.) 

An example translator is provided to traverse the input code's AST and dump information 

about the found preprocessing information, 

exampleTranslators/defaultTranslator/preprocessingInfoDumper -c 

main.cxx 

----------------------------------------------- 

Found an IR node with preprocessing Info attached: 

(memory address: 0x2b7e1852c7d0 Sage type: SgFunctionDeclaration) in 

file 

/export/tmp.liao6/workspace/userSupport/main.cxx (line 3 column 1) 

-------------PreprocessingInfo #0 ----------- : 

classification = CpreprocessorIncludeDeclaration: 

  String format = #include "all_headers.h" 

 

relative position is = before 

 

 SgClassDeclaration::get_definition() returns NULL? 

If you look at the whole AST graph carefully, you can find defining and non-defining 

declarations for the same class. 

A symbol is usually associated with a non-defining declaration. A class definition is 

associated with a defining declaration. 

You may want to get the defining declaration from the non-defining declaration before 

you try to grab the definition. 

 How to add new AST nodes? 

There is a section named "1.7 Adding New SAGE III IR Nodes (Developers Only)" in 

ROSE Developer’s Guide 

(http://www.rosecompiler.org/ROSE_DeveloperInstructions.pdf) 

But before you decide adding new nodes, you may consider if AstAttribute (user defined 

objects attached to AST) would be sufficient for your problem. 

http://www.rosecompiler.org/ROSE_DeveloperInstructions.pdf


For example, the 1st version of the OpenMP implementation in ROSE started by using 

AstAttribute to represent information parsed from pragmas. Only in the 2nd version we 

introduced dedicated AST nodes. 

 How does the AST merge work? 

tests that demonstrate the AST Merge are in the directory: 

    tests/CompileTests/mergeAST_tests 

(run "make check" to see hundreds of tests go by). 

 Translation 

 Can ROSE identityTranslator generate 100% identical output file? 

https://mailman.nersc.gov/pipermail/rose-public/2011-January/000604.html 

Questions: Rose identityTranslator performs some modifications, "automatically". 

These modifications are: 

 Expanding the assert macro. 

 Adding extra brackets around constants of typedef types (e.g. 

c=Typedef_Example(12); is translated in the output to c = 

Typedef_Example((12));) 

 Converting NULL to 0. 

How can I avoid these modifications? 

Answer: No. 

There is no easy way to avoid these changes currently. Some of them are introduced by 

the cpp preprocessor. Others are introduced by the EDG front end ROSE uses. 100% 

faithful source-to-source translation may require significant changes to preprocessing 

directive handling and the EDG internals. 

We have had some internal discussion to save raw token strings into AST and use them to 

get faithful unparsed code. But this effort is still at its initial stage as far as I know. 

 How to build a tool inserting function calls? 

https://mailman.nersc.gov/pipermail/rose-public/2010-July/000319.html 

Question: I am trying to build a tool which insert one or more function calls whenever in 

the source code there is a function belonging to a certain group (e.g. all functions 

https://mailman.nersc.gov/pipermail/rose-public/2011-January/000604.html
https://mailman.nersc.gov/pipermail/rose-public/2010-July/000319.html


beginning with foo_*). During the ast traversal, how can I find the right place, i.e., there 

is a function in ROSE that searches for a string pattern or something similar? 

Answers: 

 In Chapter 28 AST Construction of the ROSE tutorial, there are examples to 

instrument function calls into the AST using traversals or a queryTree. I would 

approach this by checking the node for the specific SgFunctionDefinition (or 

whatever you need) and then check the name of the node to find its location. 

 You can  

o use the AST query mechanism to find all functions and store them in a 

container. e.g Rose_STL_Container<SgNode*> nodeList = 

NodeQuery::querySubTree(root_node,V_Sg????); 

o Then iterate the container to check each function to see if the function 

name matches what you want. 

o use SageBuilder namespace's buildFunctionCallStmt() to create a function 

call statement. 

o use SageInterface namespace's insertStatement () to do the insertion. 

 How to copy/clone a function? 

https://mailman.nersc.gov/pipermail/rose-public/2011-April/000919.html 

We need to be more specific about the function you want to copy. Is it just a prototype 

function declaration (non-defining declaration in ROSE's term ) or a function with a 

definition (defining declaration in ROSE's term)? 

 Copying a non-defining function declaration can be achieved by using the 

following function instead: 

// Build a prototype for an existing function declaration (defining or 

nondefining is fine). 

SgFunctionDeclaration* SageBuilder::buildNondefiningFunctionDeclaration 

(const SgFunctionDeclaration *funcdecl, SgScopeStatement *scope=NULL) 

Copying a defining function declaration is semantically a problem since it introduces 

redefinition of the same function. It is at least a hack to first introduce something wrong 

and later correct it. Here is an example translator to do the hack (copy a defining 

function, rename it, fix its symbol): 

 

#include <rose.h> 

#include <stdio.h> 

using namespace SageInterface; 

 

int main(int argc, char** argv) 

{ 

  SgProject* project = frontend(argc, argv); 

  AstTests::runAllTests(project); 

https://mailman.nersc.gov/pipermail/rose-public/2011-April/000919.html


 

// Find a defining function named "bar" under project 

 

  SgFunctionDeclaration* func= 

findDeclarationStatement<SgFunctionDeclaration> (project, "bar", NULL, 

true); 

  ROSE_ASSERT (func != NULL); 

 

// Make a copy and set it to a new name 

  SgFunctionDeclaration* func_copy = 

isSgFunctionDeclaration(copyStatement (func)); 

  func_copy->set_name("bar_copy"); 

 

// Insert it to a scope 

  SgGlobal * glb = getFirstGlobalScope(project); 

  appendStatement (func_copy,glb); 

 

#if 1  // fix up the missing symbol, this should be optional now since 

SageInterface::appendStatement() should handle it transparently.  

  SgFunctionSymbol *func_symbol =  glb->lookup_function_symbol 

("bar_copy", func_copy->get_type()); 

  if (func_symbol == NULL); 

  { 

    func_symbol = new SgFunctionSymbol (func_copy); 

    glb ->insert_symbol("bar_copy", func_symbol); 

  } 

#endif 

  AstTests::runAllTests(project); 

  backend(project); 

  return 0; 

} 

 Can I transform code within a header file? 

https://mailman.nersc.gov/pipermail/rose-public/2011-May/000971.html 

No. ROSE does not unparse AST from headers right now. A summer project tried to do 

this. But it did not finish. 

https://mailman.nersc.gov/pipermail/rose-public/2010-August/000344.html 

I guess ROSE does not support writing out changed headers for safety/practical reasons. 

A changed header has to be saved to another file since writing to the original header is 

very dangerous (imaging debugging a header translator which corrupts input headers). 

Then all other files/headers using the changed header have to be updated to use the new 

header file. 

Also all files involved have to be writable by user's translators. 

As a result, the current unparser skips subtrees of AST from headers by checking file 

flags (compiler_generated and/or output_in_code_generation etc.) stored in Sg_File_Info 

objects. 

https://mailman.nersc.gov/pipermail/rose-public/2011-May/000971.html
https://mailman.nersc.gov/pipermail/rose-public/2010-August/000344.html


 How to work with formal and actual arguments of functions? 

https://mailman.nersc.gov/pipermail/rose-public/2011-June/001008.html 

     //Get the actual arguments 

     SgExprListExp* actualArguments = NULL; 

     if (isSgFunctionCallExp(callSite)) 

         actualArguments = isSgFunctionCallExp(callSite)->get_args(); 

     else if (isSgConstructorInitializer(callSite)) 

         actualArguments = isSgConstructorInitializer(callSite)-

>get_args(); 

     ROSE_ASSERT(actualArguments != NULL); 

 

     const SgExpressionPtrList& actualArgList =  

actualArguments->get_expressions(); 

 

     //Get the formal arguments. 

     SgInitializedNamePtrList formalArgList; 

     if (calleeDef != NULL) 

         formalArgList = calleeDef->get_declaration()->get_args(); 

 

     //The number of actual arguments can be less than the number of  

formal arguments (with implicit arguments) or greater 

     //than the number of formal arguments (with varargs) 

 How to translate multiple files scattered in different directories of a 

project? 

Expected behavior of a ROSE Translator: 

A translator built using ROSE is designed to act like a compiler (gcc, g++,gfortran ,etc 

depending on the input file types). So users of the translator only need to change the build 

system for the input files to use the translator instead of the original compiler. 

On 07/25/2012 11:20 AM, Fernando Rannou wrote: 

> > Hello 

> > 

> > We are trying to use ROSE to refactor  a big project consisting of 

> > several  *.cc and *.hh files, located at various directories. Each 

> > class is defined in a *.hh file and implemented in a *.cc file. 

> > Classes include (#include) other class definitions. But we have 

only 

> > found single file examples. 

> > 

> > Is this possible? If so, how? 

> > 

> > 

> > Thanks 

 Daily work 

https://mailman.nersc.gov/pipermail/rose-public/2011-June/001008.html


 git clone returns error: SSL certificate problem? 

Symptom: 

git clone https://github.com/rose-compiler/rose.git 

Cloning into rose... 

error: SSL certificate problem, verify that the CA cert is OK. Details: 

error:14090086:SSL routines:SSL3_GET_SERVER_CERTIFICATE:certificate 

verify failed while accessing https://github.com/rose-

compiler/rose.git/info/refs 

 

fatal: HTTP request failed 

The reason may be that you are behind a firewall which tweaks the original SSL 

certification. 

Solutions: Tell cURL to not check for SSL certificates: 

#Solution 1: Environment variable (temporary) 

      $ env GIT_SSL_NO_VERIFY=true git pull 

 

# Solution 2: git-config (permanent) 

      # set local configuration 

      $ git config --local http.sslVerify false 

 

# Solution 2:  set global configuration 

      $ git config --global http.sslVerify false 

 

 What is the best IDE for ROSE developers? 

https://mailman.nersc.gov/pipermail/rose-public/2010-April/000115.html 

There may not be a widely recognized best integrated development environment. But 

developers have reported that they are using 

 vim 

 emacs 

 KDevelop 

 Source Navigator 

 Eclipse 

 Netbeans 

The thing is that ROSE is huge and has some ridiculously large generated source file 

(CxxGrammar.h and CxxGrammar.C are generated in the build tree for example). So 

many code browsers may have trouble in handling ROSE. 

 Portability 

https://mailman.nersc.gov/pipermail/rose-public/2010-April/000115.html


 What is the status for supporting Windows? 

https://mailman.nersc.gov/pipermail/rose-public/2011-December/001349.html 

We have not finished the Windows work yet. IT is on our list of things to do. It was 

started and ROSE internally compiles using MS Visual Studio (using project files 

generated from the Cmake build that we maintain and test within our release process for 

ROSE) but does not pass our tests. So it is not ready. The distribution of the EDG 

binaries for Windows is another step that would come after that. We don't know at 

present when this will be done, it is important, but not a high priority for our DOE 

specific work, but important for other work. The effort required is something that we 

could discuss. If you want to call me that would be the best way to proceed. Send me 

email off of the main list and we can set that up. 

https://mailman.nersc.gov/pipermail/rose-public/2011-March/000798.html 

Under Windows ROSE uses CMake. This is a project that is currently under 

development. As of November 2010 we are able to compile and link the src directory. 

We are also able to run example programs that link against librose and execute the 

frontend and backend. {\em However, this is an internal capability and not available 

externally yet since we don't distribute the Windows generated EDG binaries that would 

be required. Also the current support for Windows is still incomplete, ROSE does not yet 

pass its internal tests under Windows.} 

 How-tos 

Quick, short, and focused tutorials about how to do common tasks as a ROSE developer. 

Please create a new wikibook page for each how-to topic. Each how-to wiki page should 

NOT contain any level one (=) or level two(==) heading so it can be included at the 

correct levels in the print version of this wikibook. 

 How to write a How-to 

Quick, short, and focused tutorials about how to do common tasks as a ROSE developer. 

Please create a new wikibook page for each how-to topic. Each how-to wiki page should 

NOT contain any level one (=) or level two(==) heading so it can be included at the 

correct levels in the print version of this wikibook. 

 Create a new page 

 optional step: create an account and log in 

 Goto: http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How-tos 

 Click on Edit tab on the right top of the How-tos page 

 Copy and paste one existing How-to to the end of the page, for example: 

https://mailman.nersc.gov/pipermail/rose-public/2011-December/001349.html
https://mailman.nersc.gov/pipermail/rose-public/2011-March/000798.html
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_write_a_How-to
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How-tos


==[[ROSE Compiler Framework/How to write a How-to|How to write a How-

to]]== 

{{:ROSE Compiler Framework/How to write a How-to}} 

 rename three places of the pasted text with the desired page name, for example 

==[[ROSE Compiler Framework/How to do XYZ|How to do XYZ]]== 

{{:ROSE Compiler Framework/How to do XYZ}} 

 click save page 

 You will see red text trying to link to the not yet existing How to do XYZ page 

 click any of the red text, it will bring you to an editing window to add content of 

your new how-to page 

 you can now add new content and save it.  

o Again, each how-to wiki page should NOT contain any level one (=) or 

level two(==) heading so it can be included at the correct levels in the 

print version of this wikibook. 

 Rules of the content 

 Only level three headings (===) and higher are allowed in a how-to page. This is 

necessary for the how-to page to be correctly included into the final one-page 

print version of this wikibook. Sorry about this restriction.  

o Again, please don't use level one (=) or level two (==) headings in a how-

to page! 

 Keep each how-to short and focused. Readers are expected to only spend 30-

minutes or much less to quickly learn how to do something using ROSE. 

 After you created a new how-to page and saved your contributions. Please go to 

the print version to make sure it shows up correctly.  

o Here is the link: 

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Print_version 

o Having new content show up in the print version will make sure it is really 

visible and consistent with the rest of the book. 

 please specify the how-to topic is the current practice or the proposed new ways 

of doing things. So we can have clear guideline for code review for what is 

mandatory and what is optional. 

 How to incrementally work on a project 

Developing a big, sophisticated project entails many challenges. To mitigate some of 

these challenges, we have adopted several best practices: incremental development, code 

review, and continuous integration. 

 Divide and Conquer 

file:///C:/Users/Acer/Desktop/workspace/1.rose/ROSE%20Compiler%20Framework%20Print%20version%20-%20Wikibooks,%20open%20books%20for%20an%20open%20world_files/ROSE%20Compiler%20Framework%20Print%20version%20-%20Wikibooks,%20open%20books%20for%20an%20open%20world.htm
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_incrementally_work_on_a_project


Here are some tips on how to divide up a big project into smaller, bite-sized pieces so 

each piece can be incrementally developed, code reviewed, and integrated. 

 Input: define different sets of test inputs based on complexity and difficulty. 

Tackle simpler sets first. 

 Output: define intermediate results leading to the final output. Often, results A 

and B are needed to generate C. So the project can have multiple stages, based on 

the intermediate results. 

 Algorithm: complex compiler algorithms are often just enhanced versions of 

more fundamental algorithms. Implement the fundamental algorithms first to gain 

insight and experience. Then, afterward, you can implement the full-blown 

versions. 

 Language: for projects dealing with multiple languages, focus on one language at 

a time. 

 Platform: limit the scope of supported platforms: Linux, Ubuntu, OS X (TODO: 

add reference to ROSE supported platforms) 

 Performance: Start with a basic, working implementation first. Then try to 

optimize its performance, efficiency. 

 Scope: your translator could first focus on working at a function scope, then grow 

to handle an entire source file, or even multiple files, at the same time. 

 Skeleton then meat: a project should be created with the major components 

defined first. Each component can be enriched separately later on. 

 Annotations (manual vs. automated): Performing one compiler task often 

requires results from many other tasks being developed. Defining source code 

annotations as the interface between two tasks can decouple these dependencies 

in a clean manner. The annotations can be first manually inserted. Later the 

annotations can be automatically generated by the finished analysis. 

 Optional vs. Default: introducing a flag to turn on/off your feature. Make it as a 

default option when it matures. 

 Code Review 

See Code Review in ROSE. 

 How to create a translator 

Translator basically converts one AST to another version of AST. The translation process 

may add, delete, or modify the information stored in AST. 

 Overview 

A ROSE-based translator usually has the following steps 

1. Search for the AST nodes you want to translate. 

2. Perform the translation action on the found AST nodes. This action can be one of 

two major variants 

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Code_Review
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_create_a_translator


 Updating the existing AST nodes 

 Creating new AST nodes to replace the original ones. This is usually 

cleaner approach than patching up existing AST and is better supported by 

SageBuilder and SageInterface functions. 

 Optionally update other related information for the translation. 

 First Step 

Get familiar with the ASTs before and after your translation. So you know for sure what 

your code will deal with and what AST you code will generate. 

The best way is to prepare simplest sample codes and carefully examine the whole dot 

graphs of them. 

 Design considerations 

It is usually a good idea to 

 separate the searching step from the translation step so one search (traversal) can 

be reused by all sorts of translations. 

 When design the order of searching and translation, be careful about if the 

translation will negatively impact on the searching  

o pre-order traversal may cause AST nodes to be visited are modified, 

similar to the effect of iterator invalidation. 

o please use post-order, or reverse order of pre-order for your traversal 

hooked up with translation 

 Searching for the AST node 

There are multiple ways to find things you want to translate in AST. 

 Via AST Query: Node query returns a list of AST nodes in the same type. This is 

often enough to simple translations 

Rose_STL_Container<SgNode*> ProgramHeaderStatementList = 

NodeQuery::querySubTree (project,V_SgProgramHeaderStatement); 

for (Rose_STL_Container<SgNode*>::iterator i = 

ProgramHeaderStatementList.begin(); i != 

ProgramHeaderStatementList.end(); i++) 

{ 

    SgProgramHeaderStatement* ProgramHeaderStatement = 

isSgProgramHeaderStatement(*i); 

    ... 

} 

 Through AST traversal: walks through whole AST using different orders (pre-

order or post order). More sophisticated translations may need this. Also post-



order traversal is recommended to avoid modifying things the traversal will hit 

later on (similar problem as iterator invalidation in C++)  

o The AST traversal gives visit() functions to hook up your translation 

functions. A switch statement is can be used for handling different types 

of AST node. 

class f2cTraversal : public AstSimpleProcessing 

{ 

  public: 

    virtual void visit(SgNode* n); 

}; 

 

void f2cTraversal::visit(SgNode* n) 

{ 

  switch(n->variantT()) 

  { 

    case V_SgSourceFile: 

      { 

        SgFile* fileNode = isSgFile(n); 

        translateFileName(fileNode); 

      } 

      break; 

    case V_SgProgramHeaderStatement: 

      { 

        ... 

      } 

      break; 

    default: 

      break; 

  } 

} 

 Performing Translation 

The translations you want to do often depend on the types of the AST nodes you visit. 

For example you can have a set of translation functions defined in your namespace 

 void translateForLoop(SgForLoop* n) 

 void translateFileName(SgFile* n) 

 void translateReturnStatement(SgReturnStmt* n), and so on 

Other tips 

 Reference ROSE doxygen website for information of each AST node. 

 Use SageBuilder if you want to create new AST node. Update SageBuilder you 

cannot find the one you need. 

 Look up in SageInterface for the translation functions you need. If there is none, 

then write your own function. 

 Update the information, or create the new AST node you need. 

 Replace the existing AST node with your updated or new AST node. 



 Updating Tree 

 You might need to handle some details, like removing symbol, updating parent, 

and symbol table. 

 Be careful to use deepDelete() and deepCopy(). Some information might not be 

updated properly. For example, deepDelete might not update your symbol table. 

 Verify the correctness 

You can use wholeAST graph to verify your translation. 

All ROSE-based translators should call AstTests::runAllTests(project) after all the 

transformation is done to make sure the translated AST is correct. 

This has a higher standard than just correctly unparsed to compilable code. It is common 

for an AST to go through unparsing correctly but fail on the sanity check. 

More information is at Sanity_check 

 How to set up the makefile for a translator 

In this How-to, you will create a makefile to compile and test your own custom ROSE 

translator. 

You may want to first look at "How-to install ROSE": ROSE Compiler 

Framework/Installation. 

 Environment variables 

You must have the proper environment variable set so you translator can find the 

librose.so during execution. 

export 

LD_LIBRARY_PATH=${ROSE_INSTALL}/lib:${BOOST_INSTALL}/lib:$LD_LIBRARY_PA

TH 

 Translator Code 

Here is a simplest ROSE translator. 

// ROSE translator example: identity translator. 

// 

// No AST manipulations, just a simple translation: 

// 

//    input_code > ROSE AST > output_code 

 

#include <rose.h> 

 

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Abstract_Syntax_Tree#Sanity_check
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_set_up_the_makefile_for_a_translator
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Installation
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Installation


int main (int argc, char** argv) 

{ 

    // Build the AST used by ROSE 

    SgProject* project = frontend(argc, argv); 

 

    // Run internal consistency tests on AST 

    AstTests::runAllTests(project); 

 

    // Insert your own manipulations of the AST here... 

 

    // Generate source code from AST and invoke your 

    // desired backend compiler 

    return backend(project); 

} 

 Makefile 

Here is a sample makefile. Please make sure replacing some leading spaces of make rules 

with leading Tabs if you copy & paste this sample. 

## A sample Makefile to build a ROSE tool. 

## 

## Important: remember that Makefile recipes must contain tabs: 

## 

##     <target>: [ <dependency > ]* 

##         [ <TAB> <command> <endl> ]+ 

 

## ROSE installation contains 

##   * libraries, e.g. "librose.la" 

##   * headers, e.g. "rose.h" 

ROSE_INSTALL=/path/to/rose/installation 

 

## ROSE uses the BOOST C++ libraries, the --prefix path 

BOOST_INSTALL=/path/to/boost/installation 

 

## Your translator 

TRANSLATOR=my_translator 

TRANSLATOR_SOURCE=$(TRANSLATOR).cpp 

 

## Input testcode for your translator 

TESTCODE=input_code_ifs.cpp 

 

#------------------------------------------------------------- 

# Makefile Targets 

#------------------------------------------------------------- 

 

all: $(TRANSLATOR) 

 

# compile the translator and generate an executable 

# -g is recommended to be used by default to enable debugging your code 

$(TRANSLATOR): $(TRANSLATOR_SOURCE) 

        g++ -g $(TRANSLATOR_SOURCE) -o $(TRANSLATOR) -

I$(BOOST_INSTALL)/include -I$(ROSE_INSTALL)/include -

L$(ROSE_INSTALL)/lib -lrose 

 



# test the translator 

check: $(TRANSLATOR) 

        ./$(TRANSLATOR) -c -I. -I$(ROSE_INSTALL)/include $(TESTCODE)  

 

clean: 

        rm -rf $(TRANSLATOR) *.o rose_* *.dot 

 A complete example 

The sample Makefile prepared within ROSE virtual machine image. 

demo@ubuntu:~/myTranslator$ cat makefile  

## A sample Makefile to build a ROSE tool. 

## 

## Important: remember that Makefile recipes must contain tabs: 

## 

##     <target>: [ <dependency > ]* 

##         [ <TAB> <command> <endl> ]+ 

 

## ROSE installation contains 

##   * libraries, e.g. "librose.la" 

##   * headers, e.g. "rose.h" 

ROSE_INSTALL=/home/demo/opt/rose-inst 

 

## ROSE uses the BOOST C++ libraries 

BOOST_INSTALL=/home/demo/opt/boost-1.40.0 

 

## Your translator 

TRANSLATOR=myTranslator 

TRANSLATOR_SOURCE=$(TRANSLATOR).cpp 

 

## Input testcode for your translator 

TESTCODE=hello.cpp 

 

#------------------------------------------------------------- 

# Makefile Targets 

#------------------------------------------------------------- 

 

all: $(TRANSLATOR) 

 

# compile the translator and generate an executable 

# -g is recommended to be used by default to enable debugging your code 

$(TRANSLATOR): $(TRANSLATOR_SOURCE) 

        g++ -g $(TRANSLATOR_SOURCE) -I$(BOOST_INSTALL)/include -

I$(ROSE_INSTALL)/include -L$(ROSE_INSTALL)/lib -lrose -o $(TRANSLATOR) 

 

# test the translator 

check: $(TRANSLATOR) 

        ./$(TRANSLATOR) -c -I. -I$(ROSE_INSTALL)/include $(TESTCODE)  

 

clean: 

        rm -rf $(TRANSLATOR) *.o rose_* *.dot 

 

 

demo@ubuntu:~/myTranslator$ make check 

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Virtual_Machine_Image


g++ -g myTranslator.cpp -I/home/demo/opt/boost-1.40.0/include -

I/home/demo/opt/rose-inst/include -L/home/demo/opt/rose-inst/lib -lrose 

-o myTranslator 

./myTranslator -c -I. -I/home/demo/opt/rose-inst/include hello.cpp  

 How to debug a translator 

It is rare that your translator will just work after your finish up coding. Using gdb to 

debug your code is indispensable to make sure your code works as expected. This page 

shows examples of how to debug your translator. 

 A translator not built by ROSE's build system 

If the translator is built using a makefile using libtool. The debugging steps of your 

translator are just classic steps to use gdb. 

 make sure your translator is compiled with -g option so there is debugging 

information in your object codes 

A typical debugging session: 

 set a break point 

 examine the execution path to make sure the program goes the path your expect 

 examine the data to check the values are what you expect 

# how to print out information about a AST node 

#------------------------------------- 

(gdb) print n 

$1 = (SgNode *) 0xb7f12008 

(gdb) print n->sage_class_name() 

$2 = 0x578b3af "SgFile" 

(gdb) print n->get_parent() 

$7 = (SgNode *) 0x95e75b8   

 

#------------------------------------- 

# When displaying a pointer to an object, identify the actual (derived) 

type of the object  

# rather than the declared type, using the virtual function table.  

#------------------------------------- 

(gdb) set print object on 

(gdb) print astNode 

$6 = (SgPragmaDeclaration *) 0xb7c68008 

 

 

# unparse the AST from a node 

#------------------------------------- 

(gdb) print n->unparseToString() 

 

# print out Sg_File_Info  

#------------------------------------- 

(gdb) print n->get_file_info()->display() 

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_debug_a_translator


 

 A translator shipped with ROSE 

ROSE turns on debugging support by default so the translators shipped with ROSE 

should already have debugging information available. 

However, ROSE uses libtool so the executables in the build tree are not real. You have 

two choices: 

 Find the real executable in the .lib directory then debug the real executables there 

 Use libtool command line as follows: 

libtool --mode=execute gdb --args ./built_in_translator file1.c 

 How to add a new project directory 

Many work within ROSE start as a project. They will be moved/refactored into ROSE/src 

later on once they mature. 

Here we should how to add a new project into directory. 

 A basic example 

Many projects start as a translator, analyzer or optimizer, which takes into input code and 

generate output. 

A basic sample commit which adds a new project directory into ROSE: 

https://github.com/rose-

compiler/rose/commit/edf68927596960d96bb773efa25af5e090168f4a 

Please look through the diffs so you know what files to be added and changed for a new 

project. 

Essentially, a basic project should contain 

 a README file explaining what this project is about, algorithm, design, 

implementation, etc 

 a translator acts as a driver of your project 

 additional source files and headers as needed to contain the meat of your project 

 test input files 

 Makefile.am to  

o compile and build your translator 

o contain make check rule so your translator will be invoked to process 

your input files and generate expected results 

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_add_a_new_project_directory
https://github.com/rose-compiler/rose/commit/edf68927596960d96bb773efa25af5e090168f4a
https://github.com/rose-compiler/rose/commit/edf68927596960d96bb773efa25af5e090168f4a


To connect your project into ROSE's build system, you also need to 

 Add one more subdir entry into projects/Makefile.am for your project directory 

 Add one line into config/support-rose.m4 for EACH new Makefile (generated 

from each Makefile.am) used by your projects. 

 How to fix a bug 

If you are trying to fix a bug ( your own or a bug assigned to you to fix). Here are high 

level steps to do the work 

 Reproduce the bug 

You can only fix a bug when you can reproduce it. This step may be more difficult than it 

sounds. In order to reproduce a bug, you have to 

 find a proper input file 

 find a proper translator: a translator shipped with ROSE is easy to find. But be 

patient and sincere when you ask for a translator written by users. 

 find a similar/identical software and hardware environment: a bug may only 

appear on a specific platform when a specific software configuration is used 

Possible results for this step: 

 You can reproduce the bug reliably. Bingo! Go to the next step. 

 You cannot reproduce the bug. Either the bug report is invalid or you have to keep 

trying. 

 You can reproduce the bug once a while. Oops. This is kind of difficult situation. 

 Find causes of the bug 

Once you can reproduce the bug. You have to identify the root cause of the bug. 

Common steps involved 

 simplify the input code as much as possible: It can be very hard to debug a 

problem with a huge input. Always try to prepare the simplest possible code 

which can just trigger the bug.  

o Often, you have to use a binary search approach to narrow down the input 

code: only use half of the input at a time to try. Recursively cut the input 

file into two parts until no further cut is possible while you can still trigger 

the bug. 

 forward tracking: for the translator, it usually takes input and generate 

intermediate results before the final output is generated. Using a debugger to set 

break points at each critical stages of the code to check if the intermediate results 

are what you expect. 

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_fix_a_bug


 backwards tracking: similar to the previous techniques. But you just back tracking 

the problem. 

 Fix the bug 

Any bug fix commit should contain 

 a regression test: so make check rules can make sure the bug is actually fixed and 

no further code changes will make the bug relapse. 

 Lessons Learned 

Here we collect things we try to avoid: 

 Formatting/Indenting other people's code 

Lesson: 

 A developer tried to understand a staff member's source code. But he found that 

the code's indentation was not right for him. So he re-formatted the source files 

and committed the changes. Later, the staff member found that his codes were 

changed too much and he could not read the codes anymore. 

Solution: 

 Please don't reformat codes you do not own or will not maintain. 

 Using branches of a same repository for different tasks 

Lesson: 

 A developer used different branches of the same git repository to do different 

tasks: fixing bugs, adding a new feature, and documenting something. Later on he 

found that he could not commit and push the work for one task since the changes 

for other tasks are not ready. 

Solution: 

 using separated git repositories for different tasks. So the status of one task won't 

interfere with the progress of other tasks. 

 Create Exacting Tests Early and Often 

Lesson: 



 A developer created tests that were too broad, mostly because they were included 

late in development. This led to passes that should not have passed, that is passing 

all tests even though the code had been broken. 

Solution: 

 Make sure that tests check results carefully. This is made much easier by making 

sure your functions have precisely ONE intention. E.g. if you need to transform 

data and operate on the transformed data, split the transformation and the 

operation into two functions (at least). 

 Testing 

ROSE uses Jenkins to implement a contiguous integration software development process. 

It leverages a range of software packages to test its correctness, robustness, and 

performance. The software used by the ROSE's Jenkins include: 

 SPEC CPU 2006 benchmark: a subset is supported for now 

 SPEC OMP benchmark: a subset is supported for now 

 NAS parallel benchmark: developed by NASA Ames Research Center. Both C 

(customized version) and OpenMP versions are used 

 Plum Hall C and C++ Validation Test Suites: a subset is supported for now 

 Modena Test Suite 

1. Clone the Modena test suite repository: 

  $ git clone ssh://rose-dev@rose-git/modena 

2. Autotools setup 

  $ cd modena 

  $ ./build.sh 

  + libtoolize --force --copy --ltdl --automake 

  + aclocal -I ./acmacros -I ./acmacros/ac-archive -I 

/usr/share/aclocal 

  + autoconf 

  + automake -a -c 

  configure.ac:4: installing `./install-sh' 

  configure.ac:4: installing `./missing' 

3. Environment bootstrap 

  $ source /nfs/apps/python/latest/setup.sh 

4. Build and test! 

http://jenkins-ci.org/
http://en.wikipedia.org/wiki/NAS_Parallel_Benchmarks


  $ mkdir buildTree 

  $ cd buildTree 

  $ ../configure \ 

          --with-

sqlalchemy=${HOME}/opt/python/sqlalchemy/0.7.5/lib64/python2.4/site-

packages \ 

          --with-target-java-interpreter=java \ 

          --with-target-java-compiler=testTranslator \ 

          --with-target-java-compiler-flags="-ecj:1.6" \ 

          --with-host-java-compiler-flags="-source 1.6" 

 Jenkins 

 using external benchmarks 

The way we set it up is to 

 In the benchmark, we change the benchmark's build system to call the ROSE tool 

(identityTranslator or your RTED tool) installed. 

 In the Jenkins test job,  

o Build and install the tested ROSE, prepare environment variables. 

o Go to the benchmark with modified build system. Build and run the 

benchmark. 

Basically, the test job should simulate how a ROSE tool would be used by end-users, not 

by tweaking ROSE for each different benchmarks. 

 Lattices 

 Introduction 

Lattices are mathematical structures. They can be used as a general way to express an 

order among objects. This data can be exploited in data flow analysis. 

Lattices can describe transformations effected by basic blocks on data flow values also 

known as flow functions. 

Lattices can describe data flow frameworks when instantiated as algebraic structures 

consisting of a set of data flow values, a set of flow functions, and a merge operator. 

 Poset 

Partial ordering:  



A partial ordering is a binary relation over a set P which is reflexive, antisymmetric 

and transitive, i.e. 

 Reflexive x<=x 

 Anti-Symmetric, if then x=y 

 Transitive: if then  

Partial orders should not be confused with total orders. A total order is a partial order but 

not vice versa. In a total order any two elements in the set P can be compared. This is not 

required in a partial order. Two elements that can be compared are said to be comparable 

A partially ordered set, also known as a poset, is a set with a partial order. 

Given a poset there may exist an infimum or a supremum. However, not all posets 

contain these. 

Given a poset P with set X and order : 

An infimum of a subset S of X is an element a of X such that 

 for all x in S and 

 for all y in X, if for all x in S, then  

The dual of this notion is the supremum which has the definition of infimum if you 

switch with  

If we simply pick an element of X that satisfies the first condition we have a lower 

bound. The second condition ensures that we have (if it exists) the unique greatest lower 

bound. Similarly for suprema. 

A lattice is a particular kind of poset. In particular, a lattice L is a poset P(X, where For 

any two elements of the lattice a and b, the set {a, b} has a join and a meet 

The join and meet operations MUST satisfy the following conditions 

 1) The join and meet must commute 

 2) The join and meet are associative 

 3) The join and meet are idempotent, that is, x join itself or x meet itself are both 

x. 

If the lattice contains a meet it is a meet-semilattice, if a lattice contains a join it is a join-

semilattice, similarly there exists a meet-semilattice 

(Definitions obtained from wikipedia with minimal modification) 



 Lattice Definition 

Definition of a Lattice (L, , ) 

 L is a poset under such that  

o Every pair of elements has a unique greatest lower bound (meet) and least 

upper bound (join) 

o Not every poset is a lattice: greatest lower bounds and least upper bounds 

need not exist in a poset. 

 Infinite vs. Finite lattices 

 Infinite: An infinite lattice does not contain an 0 (bottom) or 1 (top) element, even 

though every pair of elements contains a greatest lower bound and a least upper 

bound on the entire underlying set. By the definition of unbounded or infinite sets 

we know that given X an unbounded set given any x in X we can find an x' that is 

greater than x (under some ordering, in this case the lattice). Similarly for greatest 

lower bounds. 

 a finite/bounded lattice: the underlying set itself has a greatest lower bound and a 

least upper bound, For now we will call the greatest lower bound 0 and the least 

upper bound 1.  

o if a  x, for all x in L, then a is the 0 element of L, , recall that this is a 

unique element 

o if a  x for all x from L, then a is the 1 element of L,  

 

Meet is a binary operation such that a b take the greatest lower bound of the set (this 

is guaranteed by the definition lattice. 

Similarly Join returns the least upper bound of the set, guaranteed to exist by the 

definition of a lattice. 

To recap, a lattice L is a triple {X, , } composed of a set, a Meet function, and a Join 

function 

Properties of Meet and . 

 We refer to the as and the as J 

 Closure: If x and y belong to L, then there exists a unique z and a unique w from 

L such that x y = z, and x y = w 

 Commutativity: for all x, y in L, x y = y meet x, x y = y x: 

 Associativity: (x y) z = x (y z), similarly in the operation 

 There are two unique elements of L called bottom ( _|_ ), and top (T) , such that 

for all x, x _|_ = _|_ and x T = T 



 Many lattices, with some exceptions, notably the lattice corresponding to constant 

propagatioin, are also distributive: x y z = (x z) (y z) 

Lattices and partial order: 

if and only if  

A strictly ascending chain is a sequence of elements of a set X such that, for x_i in X, 

has the property . The greatest is the 

chain with final index n such that n is the greatest such final index among all strictly 

ascending chains. 

The height of a lattice is defined as the length of the longest strictly ascending chain it 

contains. 

If a data-flow analysis lattice has a finite height and a monotonic flow function then we 

know that the associated data flow analysis algorithm will terminate. 

 Example: If the greatest strictly ascending chain of a lattice L is finite and it takes 

finitely many steps to reach the top, we can infer that the associated data flow 

algorithm terminates. 

(wikipedia used for definitions) 

 Example: Bit vector Lattices 

 The elements of the set are bit vectors 

 The bottom is the 0 vector 

 The top is a 1 vector 

 Meet is a bitwise And 

 Join is a bitwise Or 

denotes the lattice of bit vectors of length n. 

Constructing complex lattices from multiple less complex lattices 

 Example: The product operation which combines (concatenates) lattices 

elementwise  

o The product of two lattices L1 and L2 with meet operators M1, M2, 

respectively: L1 x L2 

o The elements in the lattice: {<x1, x2> | x1 from L1, x2 from L2} 

 The meet operator: <x1, x2> M <y1, y2> = <x1 M y1, x2 M y2> 

 The join operation: <x1, x2> J <y1, y2> = <x1 J y1, x2 J y2> 

 Example:  



o BV^n is the product of n copies of the trivial bit vector attice BV^1 with 

bottom 0 and top 1 

Graphical Representation BV^3 

          111 

     /     |    \ 

110       101      011 

 |    x        x   \ 

100       010      001 

    \     |     / 

          000 

 

Here meet and join operators induce a partial order on the lattice elements 

x is less than or equal to (<=) y if an only if x M y = x 

For the BV^3: 000<= 010 <= 101<=111 

 

The partial order on the lattice is: 

 Transitive x <= y and y <= z, then x <=z 

 Antisymmetric: if x<=y and y<=x, then x = y 

 Reflexive: for all x: x<=x: 

The height of the lattice is the length of its longest strictly ascending chain: 

 The maximal n such that there exists a strictly ascending chain x1, x2, ..., xn such 

that 

 Bottom = x1 < x2 < xn = Top 

For BV^3 lattice, height = 4 

 monotone function 

In mathematics, a monotonic function (or monotone function) is a function that preserves 

the given order. 

a function mapping a lattice to itself: f: L -> L, is monotone if for all x, y from L 

 x<=y ==> f(x)<=f(y) 

monotone -> order preserving 

example monotone function: f: BV^3 -> BV^3 



 f (<x1 x2 x3>) = <x1 1 x3> 

 tuples of lattices 

simple analyses may require very complex lattices 

e.g. reaching constants: V 2^(v*c) where v is number of variables and c is the constants 

solution: use a tuple of lattices, one per variable. 

V = coonstant U { Top, Bottom} 

 

 integer value: ICP 

e.g. used for constant propagation 

elements: Top, Bottom, all the integers, the Booleans 

 n M Bottom = Bottom 

 n J Top = Top 

 n J n = n M n = n 

 integers and Booleans m,n, if m != n, then m M n = Bottom, m J n = Top  

o as a result the lattice has three levels: top element, all other elements, 

bottom element 

o from higher level to lower level: join operation 

o from lower level to higher level: meet operation 

 Relevance to data flow analysis 

A lattice provides a set of flow values to a particular data flow analysis. 

Lattices are used to argue the existence of a solution obtainable through fixed-point 

iteration 

 At each program point a lattice represents an IN[p] or OUT[p] set (flow value) 

 meet: merge flow values, e.g. set union, deal with control flow branches merge 

 Top usually represents the best information (initial flow value). Note people can 

use top to represent worst-base information also!! 

 The bottom value represents the worst-base information 

 if BOTTOM <= x <= y <= TOP , then x is a conservative approximation of y. e.g. 

x is a superset 

 e.g. liveness analysis 



bitvector for all variables x_1, x_2, ..., x_n 

First step: design the lattice values 

 top value: empty set {}, initial value, knowing nothing 

 bottom value: all set {x_1, x_2, ..., x_n}: max possible value, knowing every 

variable is live 

n = 3, 3 variable case: a flow value==> a set of live variable at a point 

S = {v1, v2, v3} 

value set: 2^3 = { empty, {v1},{v2}, {v3}, {v1, v2}, {v1,v3}, {v2, v3}, {v1, v2, ve} } 

Design lattice 

 top value, best case: none live { T } // top 

 bottom value, worst ase: all live {v1, v2, v3} 

Design meet: set Union (Or operation): bring the value down to the bottom, context 

insensitive 

 design partial order <= -->  

 

In between, a partial order: inferior/conservative solutions are lower on the lattice 

         Top 

      /    |   \ 

   {v1}   {v2}  {v3} 

    |    x      x   |   

{v1, v2}  {v1,v3}  {v2,v3} 

      \     |      / 

      {v1, v2, v3} = Bottom 

 

Flow function F: } 

 reaching definition 

Value: 2^n n = number of all definitions 

top: empty set: knowing nothing, initial value 

bottom: all set: all definitions are reaching definition 

Meet operation: set union: bring down the levels of values, from unknowing to knowing 



 C++ Programming 

ROSE is written in C++. Some users have suggested to mention the major C++ 

programming techniques used in ROSE so they can have more focused learning 

experiences as C++ beginners. 

 

Design Patterns: ROSE uses some common design patterns 

 visitor pattern: used to create the AST traversal. 

 Good API Design 

Google: "How to Design a Good API and Why it Matters" by Joshua Bloch 

TODO: convert from Markdown 

 Characteristics of a Good API 

 Easy to learn 

 Easy to use, even without documentation 

 Hard to misuse 

 Easy to read and maintain code that uses it 

 Sufficiently powerful to satisfy requirements 

 Easy to extend 

 Appropriate to audience 

 The Process of API Design 

 Gather true requirements in the form of use-cases 

 Start with a short 1-page specification  

o Agility trumps completeness 

o Collect a lot of feedback 

 Use your API early and often  

o [Test-Driven Development (TDD)](http://en.wikipedia.org/wiki/Test-

driven_development) 

[T]he repetition of a very short development cycle: first the developer 

writes a failing automated test case that defines a desired improvement or 

new function, then produces code to pass that test and finally refactors the 

new code to acceptable standards. 

  

http://en.wikipedia.org/wiki/Visitor_pattern
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development


o Doubles as examples/tutorials and unit tests 

 Maintain realistic expectations  

o You won't be able to please everyone... aim to displease everyone equally 

o Expect to evolve API; mistakes happen; real-world usage is necessary 

 General Principles 

 When in doubt, leave it out. You can always add, but you can never remove. 

 Just because you can doesn't mean you should 
 [Power-to-weight ratio](http://en.wikipedia.org/wiki/Power-to-weight_ratio) 

  > [A] measurement of actual performance [power / weight] 

 Don't give users a gun to shoot themselves with  
o Information hiding: minimize the accessibility of everything 

 Documentation Matters 

 Class: what an instance represents 

* Method: contract between method and calling client (preconditions, 

postconditions, and side-effects) 

* Parameter: indicate units, form, ownership 

Pre- and Post- Conditions 

 The precondition statement indicates what must be true before the function is 

called. 

 The postcondition statement indicates what will be true when the function 

finishes its work. 

  /// \post <return_value>.empty() == false 

   

 API vs. Implementation 

Implementation details should not impact the API. Don't let implementation details "leak" 

into the API. 

Performance 

 Design for usability, refactor for performance 

 Do not warp the API to gain performance 

 Effects of API design decisions on performance are real and permanent:  

o Component.getSize() returns Dimension 

o Dimension is mutable 

http://en.wikipedia.org/wiki/Power-to-weight_ratio


o Each getSize call must allocate Dimension 

o Causes millions of needless object allocations 

 "Harmonize" 

 API must coexist peacefully with platform  

o Do what is customary (standard) 

o Avoid obsolete parameter and return types 

o Mimic patterns in core APIs and language 

o Take advantage of API-friendly features: generics, varargs, enums, default 

arguments 

 Don't make the client do anything the module could do  

o Reduce need for boilterplate code 

 Don't violate the [Principle of Least 

Astonishment](http://en.wikipedia.org/wiki/Principle_of_least_astonishment) 

  > The design should match the user's experience, expectations, and 

mental models...aims to exploit users' pre-existing knowledge as a way 

to minimize the learning curve 

 Provide programmatic access to all data available in string form => no client 

string parsing necessary 

 Overload with care: ambiguous overloadings 

 Names Matter 

 Largely self-explanatory (avoid cryptic abbreviations) 

 Be consistent (e.g. same word means same thing) 

 Strive for symmetry 

 Should read like [prose](http://en.wikipedia.org/wiki/Prose) 

 > [T]he most typical form of language, applying ordinary grammatical 

structure and natural flow of speech rather than rhythmic structure (as 

in traditional poetry). 

      if (car.speed() > 2 * SPEED_LIMIT) 

        generateAlert("Watch out for cops!"); 

     

 Input Parameters 

 interface types over classes: flexibility, performance 

 most specific possible type: moves error from runtime to compile time 

 use double (64 bits) rather than float (32 bits): precision loss is real, 

performance loss negligible 

 consistent ordering: 

      #include <string.h> 

      char *strcpy (char *dest, char *src); 

http://en.wikipedia.org/wiki/Principle_of_least_astonishment
http://en.wikipedia.org/wiki/Prose


      void bcopy   (void *src,  void *dst, int n); // bad! 

     

 short parameter lists: 3 or fewer; more and users will have to refer to docs; 

identically typed params harmful  

o Two techniques for shortening: 1) break up method, 2) create helper class 

to hold parameters 

 Return Values 

 Avoid values that demand exceptional processing 

 > For example, return a `zero-length array` or `empty collection`, not 

`null` 

 Exceptions 

 don't force client to use exceptions for control flow 

 don't fail silently 

 favor unchecked exceptions 

 include failure-capture diagnostic information 

 Fail fast: report errors ASAP  

o Compile time: static typing, generics 

o Run time: error on first bad method invocation (should be failure-

atomic) 

 Who is using ROSE 

We are aware of the following ROSE users (people who write their own ROSE-based 

tools). They are the reason of the ROSE's existence. Feel free to add your name if you are 

using ROSE. 

 Universities 

 University of California, San Diego, CUDA code generator link 

 University of Utah, compiler-based parameterized code transformation for 

autotuning 

 University of Oregon, performance tools 

 University of Wyoming, OpenMP error checking 

 DOE national laboratories 

 Argonne National Laboratory, performance modeling 

http://ege.ucsd.edu/dokuwiki-page/doku.php?id=didem:projects:mint


 TODO List 

What is missing (so you can help if you want) 

 How to backup/mirror this wikibook? 

Just in case this website is down, how to download a backup of this wiki book? 

How to set up a mirror wiki website containing the wikibook of ROSE? 

 Maintain the print version 

It is possible that new chapters are added but they are not reflected in the one-page print 

version. So periodical synchronization is needed by including more chapters or re-

arranging their order in the one-page print version. 

Observations: 

 A print version is similar to a source file with included contents, each included 

chapter will have a first level of heading 

 Because the first level heading (=) is used by the print version page to include all 

chapters, all included pages/chapters should NOT contain any first level heading. 

With the basic understanding of how this work, you can now edit the print version's wiki 

page: 

 Print version 

More at: http://en.wikibooks.org/wiki/Help:Print_versions 

 Maintain the better pdf file 

The pdf version automatically generated from the print version page is rudimentary. It 

has no table of content and pagination etc. 

So we used a manual process to generate better pdf file. We need to occasionally repeat 

this process to have a up-to-date and better pdf file. 

Here are the manual steps: 

 Use your web browser to open and save the print version to your own computer as 

"web page complete" 

 use the HTML-compatible word processor of your choice to open the html file, 

convert html to a format the word processor, and add paginate the book.  

http://en.wikibooks.org/wiki/Help:Print_versions


o In Microsoft Word, this can done by  

 opening the saved HTML file 

 saving it to a word file 

 adding table of content by selecting Insert > Field > Index and 

Tables > TOC or Preferences-> Table of contents for Word 2012 

or later. 

 adding page numbers to the footer 

 save it to a pdf file with a name like 

ROSE_Compiler_Framework.pdf 

 upload to wikibooks 

To add a link to your wikibook page, insert 

{{PDF version|pdf file name without .pdf|size kb, number pages|file 

description}} 

For example 

{{PDF version|ROSE_Compiler_Framework|840 kb, 48 

pages|ROSE_Compiler_Framework}} 

More background about pdf verions: at: http://en.wikibooks.org/wiki/Help:Print_versions 

 Sandbox 

Some common tricks to write things on wikibooks/wikipedia (both are using the 

mediawiki software). 

 How to create a new page 

Usually you have to start a new page from an existing wikipage. 

Go to the wiki page you want to have a link to the new page you want to create 

 click the edit tab the existing page 

 at the place you want to have a link to the new page, use  
  [[ROSE_Compiler_Framework/name of the page]] 

. 

 If there is already a page with the desired name. It will become a link to the page. 

 If not, the link is red so you can click the red link to enter editing model to add 

content to the page. 

Please link the new page to the print version of this wikibook so it can be visible in the 

print out. 

http://en.wikibooks.org/wiki/Help:Print_versions


 To edit the print version, go to 

http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_ve

rsion&action=edit 

 How to do XYZ in wiki? 

The best way is to goto en.wikipedia.com and find a page with the output you want. Then 

pretend to edit the page (by clicking edit) to see the source used to generate the output. 

For example, you want to know how C++ syntax highlighting is obtained in wikibook. 

Go to en.wikipedia.com and find the page for C++. There must be sample code snippet. 

Then you pretend to edit it to see the source: 

http://en.wikipedia.org/w/index.php?title=C%2B%2B&action=edit&section=6 

You will see the source code generating the syntax highlighting: 

<source lang="cpp"> 

 

# include <iostream> 

 

int main() 

{ 

   std::cout << "Hello, world!\n"; 

} 

</source> 

 How to add comments which are only visible to editor, 

not readers of a page? 

Use the HTML comments: for example, the following comment will not show up in the 

paper rendered. But it is visible to editor to reminder why things are done in certain way. 

<!-- Please keep the pixel size to 400 so they are clean in the pdf 

version, Thanks!  --> 

[[File:Rose-compiler-code-review-1.png|thumb|400px|Code review using 

github.llnl.gov]] 

 Syntax highlighting 

Copied from 

http://en.wikipedia.org/w/index.php?title=C%2B%2B&action=edit&section=6 

<source lang="cpp"> 

 

# include <iostream> 

 

int main() 

http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&action=edit
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&action=edit
http://en.wikipedia.org/w/index.php?title=C%2B%2B&action=edit&section=6
http://en.wikipedia.org/w/index.php?title=C%2B%2B&action=edit&section=6


{ 

   std::cout << "Hello, world!\n"; 

} 

</source> 

 

Can generate the following highlighted code: 

# include <iostream> 

  

int main() 

{ 

   std::cout << "Hello, world!\n"; 

} 

 Math formula 

You can pretend to edit this section to see how math formula are written. 

More resources are at 

 http://en.wikipedia.org/wiki/Help:Formula 

 http://www.mediawiki.org/wiki/Manual:Math 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Help:Formula
http://www.mediawiki.org/wiki/Manual:Math


Retrieved from 

"http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&

oldid=2384513"  

Category:  

 ROSE Compiler Framework 

What do you think of this page? Reliability:  
(unsure)

Completeness:  
(unsure)

Neutrality:  
(unsure)

Presentation:  
(unsure) Submit

 

Re-review this revision  

Quality:  poor/unrated  minimal  average  good  

Comment: Accept revision  Unaccept revision  

 

Personal tools 

 Liao 

 My discussion 

 My preferences 

 My watchlist 

 My contributions 

 Log out 

Namespaces 

 Book 

 Discussion 

Variants 

Views 

 Read 

 Latest draft 

 Edit 

 View history 

 Unwatch 

Actions 

 Move 

Search 

http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&oldid=2384513
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&oldid=2384513
http://en.wikibooks.org/wiki/Special:Categories
http://en.wikibooks.org/wiki/Category:ROSE_Compiler_Framework
http://en.wikibooks.org/wiki/User:Liao
http://en.wikibooks.org/wiki/User_talk:Liao
http://en.wikibooks.org/wiki/Special:Preferences
http://en.wikibooks.org/wiki/Special:Watchlist
http://en.wikibooks.org/wiki/Special:Contributions/Liao
http://en.wikibooks.org/w/index.php?title=Special:UserLogout&returnto=ROSE+Compiler+Framework%2FPrint+version
file:///C:/Users/Acer/Desktop/workspace/1.rose/ROSE%20Compiler%20Framework%20Print%20version%20-%20Wikibooks,%20open%20books%20for%20an%20open%20world_files/ROSE%20Compiler%20Framework%20Print%20version%20-%20Wikibooks,%20open%20books%20for%20an%20open%20world.htm
http://en.wikibooks.org/w/index.php?title=Talk:ROSE_Compiler_Framework/Print_version&action=edit&redlink=1
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&stable=1
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&stable=0&redirect=no
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&action=edit
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&action=history
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&action=unwatch&token=272ba1f6a41e75da60536f904e783453%2B%5C
http://en.wikibooks.org/wiki/Special:MovePage/ROSE_Compiler_Framework/Print_version


 

Navigation 

 Main Page 

 Help 

 Browse 

 Cookbook 

 Wikijunior 

 Featured books 

 Recent changes 

 Donations 

 Random book 

Community 

 Reading room 

 Community portal 

 Bulletin Board 

 Help out! 

 Policies and guidelines 

 Contact us 

Toolbox 

 What links here 

 Related changes 

 Upload file 

 Special pages 

 Permanent link 

 Cite this page 

 Page rating 

Sister projects 

 Wikipedia 

 Wikiversity 

 Wiktionary 

 Wikiquote 

 Wikisource 

 Wikinews 

 Commons 

Print/export 

 Create a collection 

 Download as PDF 

http://en.wikibooks.org/wiki/Main_Page
http://en.wikibooks.org/wiki/Help:Contents
http://en.wikibooks.org/wiki/Wikibooks:Card_Catalog_Office
http://en.wikibooks.org/wiki/Cookbook:Table_of_Contents
http://en.wikibooks.org/wiki/Wikijunior
http://en.wikibooks.org/wiki/Wikibooks:Featured_books
http://en.wikibooks.org/wiki/Special:RecentChanges
http://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=20120717SB001&uselang=en
http://en.wikibooks.org/wiki/Special:Randomrootpage
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Print_version
http://en.wikibooks.org/wiki/Wikibooks:Reading_room
http://en.wikibooks.org/wiki/Wikibooks:Community_Portal
http://en.wikibooks.org/wiki/Wikibooks:Reading_room/Bulletin_Board
http://en.wikibooks.org/wiki/Wikibooks:Maintenance
http://en.wikibooks.org/wiki/Wikibooks:Policies_and_guidelines
http://en.wikibooks.org/wiki/Wikibooks:Contact_us
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Print_version
http://en.wikibooks.org/wiki/Special:WhatLinksHere/ROSE_Compiler_Framework/Print_version
http://en.wikibooks.org/wiki/Special:RecentChangesLinked/ROSE_Compiler_Framework/Print_version
http://commons.wikimedia.org/wiki/Commons:Upload
http://en.wikibooks.org/wiki/Special:SpecialPages
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&oldid=2384513
http://en.wikibooks.org/w/index.php?title=Special:Cite&page=ROSE_Compiler_Framework/Print_version&id=2384513
http://en.wikibooks.org/w/index.php?title=Special:RatingHistory&target=ROSE_Compiler_Framework/Print_version
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Print_version
http://en.wikipedia.org/wiki/Main_Page
http://en.wikiversity.org/wiki/Wikiversity:Main_Page
http://en.wiktionary.org/wiki/Wiktionary:Main_Page
http://en.wikiquote.org/wiki/Main_Page
http://en.wikisource.org/wiki/Main_Page
http://en.wikinews.org/wiki/Main_Page
http://commons.wikimedia.org/wiki/Main_Page
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Print_version
http://en.wikibooks.org/w/index.php?title=Special:Book&bookcmd=book_creator&referer=ROSE+Compiler+Framework%2FPrint+version
http://en.wikibooks.org/w/index.php?title=Special:Book&bookcmd=render_article&arttitle=ROSE+Compiler+Framework%2FPrint+version&oldid=2384513&writer=rl


 Printable version 

 This page was last modified on July 26, 2012, at 22:23. 

 Text is available under the Creative Commons Attribution-ShareAlike License; 

additional terms may apply. See Terms of Use for details. 

 Privacy policy 

 About Wikibooks 

 Disclaimers 

 Mobile view 

  

  

 

http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&printable=yes
http://en.wikibooks.org/wiki/Wikibooks:Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
http://wikimediafoundation.org/wiki/Terms_of_Use
http://wikimediafoundation.org/wiki/Privacy_policy
http://en.wikibooks.org/wiki/Wikibooks:Welcome
http://en.wikibooks.org/wiki/Wikibooks:General_disclaimer
http://en.m.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&mobileaction=toggle_view_mobile
http://wikimediafoundation.org/
http://www.mediawiki.org/

