ROSE Compiler Framework/Print
version

Contents
ROSE Compiler Framework/Print VEISIONcccveiveiieiieieesie et se e 1
ADOUL TN BOOK ...ttt sttt ste et sreenbeenee s 10
HOW 10 CONEIIDULE ... e 10
Tracking WIKI CRaNQESccoviiieiieii e sre e 11
Enable Email Notifications for Changes to this booK............cccceveiiiiiiiiiiis 11
ROSE'S DOCUMENTALIONSivieiieiieieiesie ettt sttt sbe bbb nreens 12
ODBtAINING ROSE ..ottt et e e e be s aaesaeereene e 12
Virtual Maching IMAGEoiiiiiee s 12
git 1.7.10 or later for github.COMcooiiiie e 13
INSTAITATION. ...t bbb 13
Platform REQUITEMENT.........i i 13
SOftWare REQUITEMENTc.eiiiieiieieie et 14
INSEAIIING DOOST.......eeeeieeece e 14
INSEAllING JAVA DK ... 15
o101 o SR 15
CONTFIGUIE .ottt e st e et e e re e s be e beereesaeereenee e 15
T L= S 16
MAKE CRECK ...ttt sreeeeenee e 16
MAKE INSTAIL ... 16
Set enVIrONMENt VAriahIScveiieieie e 17
try OUL @ 10SE traNSIALON ... s 17
Virtual Maching IMAGEcoviiiie e sre et re e 17
How to use the virtual maching IMage..........ccocvvriiiien e 17
Obtain the Virtual Maching IMageccoiiiiiriiieie e 17
Content 0f the VIM IMAQJEooveeiie et 18
INSEAll VIMIWAIE PIAYET ...t 18
Open/Play the virtual machine...........ccooooiiiiii s 19
How was the virtual maching Made ... 19

HOST IMIACIINE ...ttt eennnnnen 19

CONTIGUIALIONS. ...ttt ettt st e b st e b e e teenee e 19

Within the virtual machine...........cccoooiiiiiii 20
ROSE T00IS. ... ettt bbb bbbttt e bbbt reens 20
TAENEIEY TIANSIALON ...ttt nre e 20

L LT RTP PR UPRPPPPTRTRN 20
SOUICE COUR ...ttt et bbbttt ettt bbb enes 21
LIMIEALIONS ..ottt sb et et bease e sreetesreesbeenee s 21
TODO .t bbb bbbttt bbb 21
Supported Programming LANQUAGESccueiueeveiiereeiesiesreeieseesseessesseesseessesssesseessesneenns 21
OPENMP SUPPOIT ...t 22
(61U 1D N H o] o [0} o OSSPSR 22
Abstract Syntax Tree (Intermediate Representation)...........cccocveveveeiieiesie v 22
SANILY CRECK ...t bbb 22
ViISUBHZATION OF AST ..ot re s 23
TEXE OULPUL OF AST ..ot te e e reeabeeee s 24
PreproCeSSING INTO.couiiiiiiiii et 24
AST CONSITUCTION <.ttt ettt se bbb nre e 24
Program TranSlation...........c.coioiiiiiecc et 25
Expected behavior of a ROSE Translator ..o 25
SageBuilder and SagelnterfaCe ..o 25
Steps for Writing tranSIAtorS..........cc.oiiiiiiicie e 25
OFder 10 trAVEISE AST ..o eieiiieie ettt se et e e te e e sreesteeneesreeaeeneesreeneeanee e 25
EXAMPIE TrANSIALONS ... 26
PrOgram ANAIYSIS......couieieieieie ettt ettt et et e st et a e re et areens 26
CONEIOL FIOW Grapi......oviiieee e 26
virtual control FIOW graph ..o 26
static control FIOW graphccooeeiiei e 27
static and iNterproCeAUral CFGS........cccoiiiiiiriiicce e 27
Virtual fuNCtion @NAIYSIScoiiiiiiiiee e 27
AEf-USE ANAIYSIS....cciiiiiicciie et 28
POINEET ANAIYSIS ..ttt bbb ene s 28

S A ettt ettt et et Rttt et e naentenreareareeren 29
Generic dataflow frameWOrK ..o 29

Generic Dataflow FrameWOTK..........ooov oo 30

Ty (0T [N T3 AT] o USRS 30
Function, nodeState and FUNCHONSTALE.............ccviieiieieiie e 31
L1011] o I USSR PPR 31
N0 [=T e o USSR 32
N0 Lo - LSS 32
FUNCHONSTALE ..ot ettt e e e sre e s e e reeene e 33
L LIRS .. ettt e et ar e e te et et e nreereeraenreenaeas 35
2 7T Lo OSSR 35
Delow/above VS INJOUTooicecce et 36
COmMMON ULHHILY TattICESviieeie e 36
LIVEVAISLALICE. .. cuviiviciecie ettt e reeae e e re e 36
TranSTer TUNCHION........coiiiec e e 37
CONSEANT PrOPAGALIONevveveeie ettt sre e reeae e sreesreenee e 38
lIVe AU VANTADIEeeiice e 39
(0721 Y (ot USSP 40
Control flow graph and call graphccoooviiiiiei e 41
Filtered VIrtUal CFG ..o 41
ANAIYSIS AFIVET L.ttt bbb 42
ClaSS NIBTAICNY ... s 42
Initialization: INItDataflOWSTHate.cccveiiiiiecce e 45
WOTKIIST ..ot e e s e s e e s ba e s ee e saeesnbeesrneenneeas 46
APPIY transTer TUNCHIONoiiiec s 49
propagate state to next (MeetUpdate)cccovveveiieie i 50
SEOP CONTITION ...ttt b 52
live dead Variablec.oooii i 52
Inter-procedural @NAIYSIS...........coviiiiiiiie e 53
tranSTer TUNCHIONooi e 53
InterProceduralDataflow.............ccoviiiiiiie e 54
Simplest FOrmM:UNSTIUCTUIEdooiiieie e 54
ContextlnsensitivelnterProceduralDataflow.............ccccevveveiieiiciccicc e 56
HOW t0 USE ONE @NAIYSIS.....evieiieiieieie et 56
Call AIFECHIY ... e 56

Through inter-procedural @analySiScocoiiiiiiiiiii e 56

R T TIEV LA I TS ...ttt eneeenennnnnnen 57

HOW 10 GBIOUG ..ot 57
TracCe the @NAIYSIS.......ecveiieii ettt e e e e sreeee s 57
Dump cfg dot graph With TattiCes............coiiiiiiiie 59
EXAMPIE USE ... oottt ettt e e 60

Program OPtiMIZAtIONSccviiie et re et esteeaesreenrs 61
DEVEIOPEI'S GUIR ...ttt bbbttt 61

Basic SKills for ROSE JEVEIOPEISccuveiicieiieeie et 61

Milestones for a8 ROSE UEVEIOPEISccuviiiiieiiiie ittt 61

COUR TBVIBW ...tttk sttt ettt e se et e e st e nbe et e ene e et e e nbeeneesreeeeenee e 62

WWOTKFIOW ..ottt bbbt nrenre s 62

MOtIVatioN AN GOAIS.........cciiiiieiiie et 62

DEVEIOPMENT GUITE ...ttt 62
Incremental DEVEIOPMENL.........ccooiiiie e 62
COUE REVIEW ...ttt bbbttt bbbt ens 63
CoNtINUOUS INTEGIALION.......c.eiiiiiieiiitc e 63

High LeVel WOIKFIOWoouiiiece e 63
ReqQUIrEMENT ANAIYSIScviiieiiecie et re e e e 63
DIBSIGN ..ttt ettt 64
IMPIEMENTALION ... bbb 64
LIS Lo TSR SSURTTOPOSN 64
DOCUMENTALION ...ttt e st e ste e e snaesreeseeereeseeaneenreeneas 64
PUBIICITY .. 64

Proposing WOrkflow Changescoveieiieiicie et 64

Reviewing Workflow Change Proposals ... 65
A oY ol €1 4 - OSSP 65

CodiNG STANAAIG.........ccveeiiciieceee et nre e re e 66

What to Expect and What 10 AVOIccooiiiiiiiiiiciecee e 66
FIVE PIINCIPIES ..o bbb 66
AVv0id Coding Standard WAocviiiiiiieiie et 66
Y OTS] g Lo U1 o =T a 1o K O o R 67
GOt New 1deas, SUGGESTIONSc.eiviriiiiriiiieieie et 67

Programming LANGUAGEScouveireeiiieiiieitie st esieesteesiee et estaestaesbeestaesneesseeanseesseas 67

COrE LANGQUAGES ..ottt ettt ettt ettt bt nb e e 67

SCIIPLING LANGQUAGES. ... e iveeteeiieiiie sttt sttt sttt be e sbeeeeenee e 68

NaMING CONVENTIONSeeveiiieiieeie ettt e e e saaeste e e e s reenteaneesneenrs 68
(G T | OSSR 68
ADbbreviations and ACIONYMSoiveieiieiieie et re e be e e es 68
1 [=T T (<Tox (o] Y SRR 68
N AMIESPACES. ...ttt ettt ettt bb e st e e ssbe e e sb b e e e nbb e e s nbbe e s nbneennreean 69
Y PBS e 69
VATTADIES ... e reere s 69
Methods and FUNCHIONScooiiiiiic e 72

[=Tod (0] =SSP PSRRI 73
NamMING CONVENTIONcvviieiiicie ettt et e sre e e sneenas 73
[Y 11 | TSP 73

IS et e e e s e e te e sa e beenreeare e 74
NamMING CONVENTIONSccveiiiiieeieiie sttt e e sre et esteenaesreenas 74
LINE LENGLN . 74
[L= g1 v UL o] o USSP 74
(0T o (=] USSR 75
HEAAET TIES ... e 75
SOUICE FIIES...eeee e e ae e e aeeareas 76

README ...ttt sttt r e saer e ettt e e tenrenreene e 76
REQUITEA CONLENLcveiiiiic ettt re e nas 76
0] 1| SRR SUTRRP 77
EXAMPIES ...t 77

Source Code DOCUMENTALIONcceeiviiiiiieiie et 77
GeNEral GUIEIINES.ociuieiie ettt et ae e e aeenneas 77
USE /ITODO ...ttt ettt sttt saa e s be e sbe e st e e sbeesbeesreeenne e 78
EXAMPIES ...ttt araens 78

FUNCHIONS ...ttt e s et e e b e et e e sas e e ste e e beeenteesraeenbeesrneanneens 80
(©0] 1101017 o1 £ TR 80
(@701 [oo USSP 80

L0 1T TSSO RRPPR 80
Name after What It IScooiiiiiie e 81
EXPIICHIE BCCESS. ..ttt ettt e e reeere e 81

PUBDIIC MEIMDEIS FIlST ..o 81

ClaSS VarIabIES ... 81

AVOIA STTUCES ... te e e st e st e et e s e e nreeeesneenreeneens 81

) 21 (=] 4 1=] 0 OSSP TPR 81
00, et 81
TYPE CONVEISIONS ...uvevieciieieesiesteesteeste st e te e e st e s teesbesseesaeeseeaseesseestessaesseessesneenseeneens 82
CONAITIONAIS ... 82
Statements t0 be aVOIdedc.coovi i 83
AST IFANSIALOIS ...t te e e reenre e 83
L] s L S PP UPRTPRTPPTPIN 83
RETEIEINCESottt e s e e e e s te e e te e s e e e b e e n e e are e 83
COUE REVIEW PIOCESS........eiveeieeiieiteeite e st e steete st e ste e st e beete s e steesteeneesteetesnnesreeneenne e 84
V0] V7 L1 o] o USSR 84
LC 0T LTSS 85
10 1177 =SSOSR 85
GIENUD e 85
DeVeloper ChECKIIST...........iiiiieeee e 85
COodiNG STANAAIASccveieiecieee et a e e 85
ONE TIME SELUPD .veveeier ettt ettt et e et e s et e e e e e beeae e st e sraereenee e 86
Daily WOTIK PIOCESSeeviiiiiieiieietesie ettt bbbttt 87
REVIEW TESUILS ...ttt e et e e e e e ne e 88
REVIEWET ChECKIISE......cviiiiieicceee sttt 88
WHhEE t0 ChECK ... et ne e 88
COMMENTING ...ttt bbbttt et bbbt 89
=T oT] o] TSSO 90
WhO Should reVIEW WHALccoeiiiiiiccecc et 90
WHAE t0 @VOIA ...ttt s be st e b e e sre e s e e beeenne e 90
(O3 4101 1Y TSSOSO 90
TrOUBIESNOOTING ... s 91
MASEEN 1S OUL-OT-SYNC ...ttt 91
master cannot be SYNCNIONIZEdcoviiiiiiii i 91
RETEIEINCES ... ettt st e et e e sae e e be e s beeeteesaeeebeesreeereen 92
CoNtINUOUS INTEGIALION.c.viiiieitiitesieeeie et eneas 92
IMIOTIVALION ...t e st e e e e st b e e te e sreeabeesreeateea 93

OV IV W .. 93

TESES ON JENKINS ..ot se e s s s eeeseesnnnnnnnnnnnnnns 94

Check TeStiNG RESUILS.ccveiiiiieiie e 95
Frequently Failed JODS ..o e 95
CB-ROSE-AISICNECKecuiiiieieiiie ettt 95
C2-ROSE-language-matriX-lNUXc.cccueieiiieiieriesieseesie e e eseeseesie e ssae e 96
CoNNECHION 10 COUE REVIEWouviiiiiiieiiisiesiieeeie ettt 96
LI] 5 SR R 97
RETEIBNCES ... ettt bbbttt bbbt 97
Frequently Asked QUESEIONS (FAQ) ..ovveiiveieiieiie ettt 97
(C 1T 0T | R TRS U SRPR 98
How to search rose-public mailinglist for previously asked questions?................... 98
How many lines of source code does ROSE have?cccccveveveeiv e ieece e 98
HOW 1arge IS ROSE? ..o 99
(@00 0] o] | =1 {0 o OSSR 102
How to speedup compiling ROSE?ccocoiiiiiiee e 102
Can ROSE accept inCOMPIEte COURY........uoiiieiiieieie e 102
Can ROSE analyze Linux Kernel SOUICES?cccoveiiiiieenieie i 103
Can ROSE compile C++ B0oost lHBrary?cccccoevveveiieerece s 103
N) SR 103
HOW 10 fINA XY Z IN AST 2ottt ne s 103
How to filter out header files from AST traversals?...........ccoovvieieieieni i 104
Should SgIfStmt::get_true_body() return SgBasicBlock?...........ccooiiiiiiiinns 104
How to handle #include "header.h”, #if, #define €tC. ?ccevvevv i 105
SgClassDeclaration::get_definition() returns NULL?c.cocovvieviiieiiccece e 105
HOW t0 add NEW AST NOUES?......cueiieiieie et 105
How does the AST MEIge WOIK?coiiiiiiiiieiee e 106
TEANSIALION ...t be e nre s 106
Can ROSE identityTranslator generate 100% identical output file? 106
How to build a tool inserting function callS? ... 106
How to copy/clone @ fUNCLION?coooii i 107
Can I transform code within a header file?..........c.cccoveiievi i 108
How to work with formal and actual arguments of functions?..............ccoccocevenee. 109
How to translate multiple files scattered in different directories of a project?....... 109

DAY WOTK ..ttt bbb 109

git clone returns error: SSL certificate problem?..........ccccoovviiiiiiniiii e, 110

What is the best IDE for ROSE deVelopers?ccoevveieiieie e 110
POITADIIITY ... e 110
What is the status for supporting Windows?ccceieriieninieienese s 111
HOW-TOS .. et e b n e e e r e nne e 111
HOW t0 WITEE 8 HOW-TO ...oviiiiieicee s 111
Create @ NEW PAGEeeviieiiieetisire ittt b e 111
RUIES OF the CONTENT ..o 112
How to incrementally WOrk 0N @ ProjeCt.........cccveieiieiieeie e seese e 112
DiVIide aN0 CONQUETouiiiiiieiieieiesee ettt bbb 112
COUE REVIEW ...ttt bbbttt ettt bt ene s 113
HOW t0 Create a tranSIatorcccoiveieiiiiiiseseeie s 113
(@] T SRR 113
T B (=T o USSP 114
DeSIigN CONSIAEIALIONScveivieiieeie ettt s te e e e s re e e 114
Searching for the AST NOGE.........ooiiiiiiiee e 114
Performing TranSIationcccooveiiiiiiee e 115
VErifY the COMTECINESSocviiivieie et 116
How to set up the makefile for a translator.............cocooeiiiiiiiiicic e 116
ENVIironment variabIesooveiie i 116
TrANSIAtOr COUR.c.viiiiieiticiee ettt ens 116
MAKETTIE ...ttt e et esre e teeneesreenreeneeas 117
A COMPIELE EXAMPIE ..o 118
How to debug a transSlator............cooviiiiiicc e 119
A translator not built by ROSE'S build SYStem ..o 119
A translator shipped With ROSE...........cccooi i 120
How to add a NeW Project direCIONYcccvcuiiieiicie et 120
A DASIC EXAMPIE ... 120
HOW 10 FIX @ 0UQ ..o s 121
REProducCe the DUQGeevee e e 121
Find causes of the DUQG........ccoi e 121
FIX TNE UG c.eeeee et 122
LESSONS LBAMET.ccueiiietieiteeiie ittt ettt ettt et ne e b et ene e 122

Formatting/Indenting other people’s COE. ..o 122

Using branches of a same repository for different tasks...........c.ccccevvviveeiiiiiicinenn, 122

Create Exacting Tests Early and Often.........cccccooveiieiiiic i 122
LIS €L o OSSP 123
MOOENA TESE SUITE ...ttt sttt et reenneenne s 123
JEINKINS. ...ttt ettt ere s 124
using external BENCNMArKS............ccoiiii i 124
LEEICES ..ttt Rt Rttt n e Re e be et ne e nre et enee e 124
L i oo [0 Tod o] o TSRS PRUPTP PRSI 124
POSEL ...t 124
LattiCe DEFINITION ..o et 126
INfinite VS. FINItE TatTICES.oiiiiiieiee e 126
Example: Bit VECIOr LattiCES.......ccvcveiiiiecic e 127
[ggloal0] (oTaT= (1] Tox 1 To] o ISR 128
TUPIES OF TAHICES ... 129
INEGET VAIUE: TCP ..o st esreenne s 129
Relevance to data Flow analysis...........cooiiiiiiiiiii s 129
€.0. [IVENESS ANAIYSISiiviiiieeciecie et 129
reaching defiNItiONcovoiiiii e e 130
CA PrOGIramIMING ...oeoueeeeeeieeieesie st sb bbbt ne bbb 131
GOOU APT DESIGN ...ttt ettt bbbttt bbb b 131
Characteristics 0f @ GOOU APooi i 131
The Process OF AP DESIGNcuiiiiiiiiiiiiieieeeee e 131
GeNEral PrINCIPIESeiiiiiieeee e 132
DocUMENTAtION IMALEEIS.......cuieiieieieie e 132

API VS, IMPIEMENTATION ..o 132

B 100010 0T USSR 133
NAIMES IMALLET ...ttt r e nnees 133
INPUE PAFAMETETS ... 133
RETUIMN VAIUBS. ..ottt e e e e e reenee s 134
EXCBPLIONS ... ettt 134
WHhO IS USING ROSE ...ttt bbbttt 134
UNIVEISITIES ..ottt e st e et e e te s esteeeeeneente e aeeneesneesteeneesreenneenneas 134
DOE national [aboratories.coiiiiiiiiiieie e 134

TODO LIS ..ttt bbbt bbbttt bbb 135

How to backup/mirror this WikKiDOOK? ... 135

Maintain the Print VEISIONvciiiie et sae e 135
Maintain the better paf filecccooeie i 135
SANUDOX. ..ttt r e b e es 136
HOW 10 Create @ NEW PAJEvvieiiiie ittt ettt bn e bn e 136
HOW t0 dO XY Z INWIKI? ..ooiiiiiiieiie e 137
How to add comments which are only visible to editor, not readers of a page? 137
SyntaxX NighIIghtiNgcovoiie s 137
MaALh TOMMUIA ..o bbb 138

About the Book

The goal of this book is to have a community documentation providing extensive and
up-to-date instructional information about how to use the open-source ROSE compiler
framework, developed at Lawrence Livermore National Laboratory .

While the ROSE project website (http://www.rosecompiler.org) already has a variety of
official documentations, having a wikibook for ROSE allows anybody to contribute to
gathering instructional information about this software.

Again, please note that this wikibook is not the official documentation of ROSE. It is the
community efforts contributed by anyone just like you.

How to contribute

If you want to contribute, please first tell if your contributions are relevant to this
wikibook about ROSE

« Welcomed contributions:
o Fix typos, grammar of existing pages to improve quality, clarity, and
readability.
o Add new pages about ROSE-specific tutorials, how-tos, FAQ, workflow
o start discussions on the Discussion Tab of an existing page about new
suggestions of how things can be done better than the current practice.
o What will be not be kept: Copy& paste of general guidelines of doing things:
Please just summary them in the ROSE-relevant wikibook page and give
reference, URL to it.

http://en.wikipedia.org/wiki/ROSE_(compiler_framework)
http://en.wikipedia.org/wiki/ROSE_(compiler_framework)
http://en.wikipedia.org/wiki/Lawrence_Livermore_National_Laboratory
http://www.rosecompiler.org/

Once you are certain the relevance of your contributions. Please read how to do one
example contribution.

e http://en.wikibooks.org/wiki/ROSE_Compiler Framework/How_to_write a Ho
w-to
e You can just test water how to edit in wikibook using
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Sandbox
e Occasionally, you may want to insert figures into a wiki page. You can do this by
uploading file first through Left menu -> Toolbox->upload file
o The upload link will direct you to Media Commons, more at link
« Bottomline: make sure your contributions are visible in the print version of this
book and are logically consistent with the rest of the content.
o Link
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Print_version
e Thank you!

Tracking Wiki Changes

Learn how to "Track Changes": http://en.wikibooks.org/wiki/Help:Tracking_changes

Enable Email Notifications for Changes to this book

If you want to be notified of changes to this book, WikiBooks provides email
notifications for changes to Wiki pages that you explicitly choose to watch.

To use this feature:

1. Create an account with WikiBooks:
http://en.wikibooks.org/w/index.php?title=Special:UserLogin&returnto=Main+Page&typ

e=signup

2. Login to WikiBooks and set your preferences (top right corner of the web page) for
both email notifications and your watch list:

« Email notification settings
o Preferences-> User profile-> E-mail notifications -> E-mail me when a
page on my watchlist is changed (check this on)
o Define your watchlist
o Preferences->Watchlist -> Advanced options -> you can select the options
you want, such as "Add pages | edit to my watchlist” and "Add pages I
create to my watchlist"
o you can also individually watch and unwatch any wiki page: by click on
the star on the page's tab list (after View history)

Caveat: we don't know if wikibooks supports users to watch one entire book. So far, you
have to do this one page after another by editing them at some points.

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_write_a_How-to
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_write_a_How-to
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Sandbox
http://en.wikipedia.org/wiki/Wikipedia:Wikimedia_Commons#Embedding_Wikicommons.27_media_in_Wikipedia_articles
file:///C:/Users/Acer/Desktop/workspace/1.rose/ROSE%20Compiler%20Framework%20Print%20version%20-%20Wikibooks,%20open%20books%20for%20an%20open%20world_files/ROSE%20Compiler%20Framework%20Print%20version%20-%20Wikibooks,%20open%20books%20for%20an%20open%20world.htm
http://en.wikibooks.org/wiki/Help:Tracking_changes
http://en.wikibooks.org/wiki/Wikibooks:WATCH#Watching_pages
http://en.wikibooks.org/w/index.php?title=Special:UserLogin&returnto=Main+Page&type=signup
http://en.wikibooks.org/w/index.php?title=Special:UserLogin&returnto=Main+Page&type=signup

ROSE's Documentations

ROSE uses a range of materials to document the project.

o ROSE manual: the design, algorithm, and implementation details. Written in
LaTeX, the content of the manual can come from published papers. It may
contain intense academic citations and math formula.

o ROSE tutorial: code examples for tools built on top of ROSE, step-by-step
instructions for doing things

o Doxygen web reference: class/namespace references of source code

« this wikibook: non-official, community documentation. Editable by anyone,
aimed to supplement official documents and to collect tutorials, FAQ and quick
pointers to important topics.

Obtaining ROSE

ROSE's source files are managed by git, a distributed revision control and source code
management system. There are several ways to download the source tree:

e Private Git repos within LLNL
o Private Git repository hosted within Lawrence Livermore National
Laboratory: the internal file path is /usr/casc/overture/ROSE/git/ROSE.qgit:
central repo of ROSE, mostly automatically updated by Jenkins only after
incoming commits pass all regression tests
o Private Git repository hosted by github.lInl.gov: used for daily pushes and
code review
e Public repositories
o Public Git repository hosted at https://github.com/rose-compiler/rose: the
content is identical to the private Git repository at LLNL, except that the
proprietary EDG submodule is not released.
o Downloadable packages and a subversion repository (synchronized with
stable snapshots of ROSE's git repository):
https://outreach.scidac.gov/projects/rose/

Virtual machine image

It can take quite some time to install ROSE for the first time. We provide a virtual
machine image with a Ubuntu 10.04 OS and an installed ROSE within it.

You can just download it and play it using VMware Player
Download the virtual machine image:

o http://www.rosecompiler.org/Ubuntu-ROSE-Demo.tar.qgz

https://github.com/rose-compiler/rose
https://outreach.scidac.gov/projects/rose/
http://www.rosecompiler.org/Ubuntu-ROSE-Demo.tar.gz

« Demonstration user account (sudo user in Ubuntu):
o account: demo
o password: password

e Warning: it is a huge file of 4.8 GB

More information is at ROSE virtual machine image

git 1.7.10 or later for github.com

github requires git 1.7.10 or later to avoid HTTPS cloning errors, as mentioned at
https://help.github.com/articles/https-cloning-errors

Ubuntu 10.04's package repository has git 1.7.0.4. So building later version of git is
needed. But you still need an older version of git to get the latest version of git.

apt-get install git-core
Now you can clone the latest git

git clone https://github.com/git/git.git

Install all prerequisite packages needed to build git from source files(assuming you
already installed GNU tool chain with GCC compiler, make, etc.)

sudo apt-get install gettext zliblg-dev asciidoc libcurl4-openssl-dev
$ cd git # enter the cloned git directory

$ make configure ;# as yourself

$./configure --prefix=/usr ;# as yourself

$ make all doc ;# as yourself

make install install-doc install-html;# as root

Installation

ROSE is released as an open source software package. Users are expected to compile and
install the software.

Platform Requirement

ROSE is portable to Linux and Mac OS X on 1A-32 and x86-64 platforms. In particular,
ROSE developers often use the following development environments:

o Red Hat Enterprise Linux 5.6 or its open source equivalent Centos 5.6

e Ubuntu 10.04.4 LTS. Higher versions of Ubuntu are NOT supported due to the
GCC versions supported by ROSE.

e MacOS X 10.5and 10.6

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Virtual_Machine_Image
https://help.github.com/articles/https-cloning-errors
https://github.com/git/git.git
http://www.centos.org/

Software Requirement

Here is a list for prerequisite software packages for installing ROSE

e GCC4.0.xto 4.4.x, the range of supported GCC versions is checked by support-
rose.m4 during configuration
o (gcc
1) g++
o gfortran (optional for Fortran support)
GNU autoconf >=2.6 and automake >=1.9.5, GNU m4 >=1.4.5
libtool
bison (byacc),
flex
glibc-devel
Sun Java JDK
git
boost library: version 1.36 to 1.47. Again the range of supported Boost versions is
checked by support-rose.m4 during configuration
e ZGRViewer, a GraphViz/DOT Viewer: essential to view dot graphs of ROSE
AST
o install Graphviz first - Graph Visualization Software

Optional packages for additional features or advanced users

libxml2-devel
sglite
texlive-full, need for building LaTeX docs

Installing boost
The installation of Boost may need some special attention.

Download a supported boost version from
http://sourceforge.net/projects/boost/files/boost/

For version 1.36 to 1.38

./configure --prefix=/home/usera/opt/boost-1.35.0
make
make install

Ignore the warning like : Unicode/ICU support for Boost.Regex?... not found.
For version 1.39 and 1.48: create the boost installation directory first

In boost source tree

https://github.com/rose-compiler/rose/blob/master/config/support-rose.m4
https://github.com/rose-compiler/rose/blob/master/config/support-rose.m4
https://github.com/rose-compiler/rose/blob/master/config/support-rose.m4
http://sourceforge.net/projects/boost/files/boost/

o ./bootstrap.sh --prefix=your_boost_install_path
e ./bjam install --prefix=your_boost_install_path --
libdir=your_boost_install_path/lib

Remember to export LD_LIBRARY_PATH for the installed boost library, for example

LD LIBRARY PATH=SLD LIBRARY PATH:/home/leo/opt/boost 1.45.0 inst/lib
export PATH LD LIBRARY PATH

Installing Java JDK

Download Java SE JDK from
http://www.oracle.com/technetwork/java/javase/downloads/index.html

For example, you can download jdk-7u5-linux-i586.tar.gz for your Linux 32-bit system.

After untar it to your installation path, remember to set environment variables for Java
JDK

jdk path should be search first before other paths
PATH=/home/leo/opt/jdkl.7.0 05/bin:$PATH

1ib path for libjvm.so
LD LIBRARY PATH=$LD LIBRARY PATH:/home/leo/opt/jdkl.7.0 05/jre/lib/i386

/server

Don't forget to export both variables!!
export PATH LD LIBRARY PATH

Jbuild

In general, it is better to rebuild the configure file in the top level source directory of
ROSE. Just type:

rose_sourcetree>./build

configure

The next step is to run configure in a separated build tree. ROSE will complain if you try
to build it within its source directory.

There are many configuration options. You can see the full list of options by
typing ../sourcetree/configure --help . But only --prefix and --with-boost are required as
the minimum options.

mkdir buildrose
cd buildrose

http://www.oracle.com/technetwork/java/javase/downloads/index.html

../rose_sourcetree/configure --prefix=/home/user/opt/rose tux284 --
with-boost=/home/user/opt/boost-1.36.0/

ROSE's configure turns on debugging option by default. The generated object files
should already have debugging information.

Additional useful configure options

e Specify where a gcc's OpenMP runtime library libgomp.a is located. Only GCC
4.4's gomp lib should be used to have OpenMP 3.0 support
o --with-gomp_omp_runtime_library=/usr/apps/gcc/4.4.1/1ib/

make

In ROSE's build tree, type

cd buildrose
make -j4

will build the entire ROSE, including librose.so, tutorials, projects, tests, and so on. -j4
means to use four processes to perform the build. You can have bigger numbers if your
machine supports more concurrent processes. Still, the entire process will take hours to
finish.

For most users, building librose.so should be enough for most of their work. In this case,
just type

make -C src/ -3j4

make check

Optionally, you can type make check to make sure the compiled rose pass all its shipped
tests. This takes hours again to go through all make check rules within projects, tutorial,
and tests directories.

To save time, you can just run partial tests under a selected directory, like the
buildrose/tests

make -C tests/ check -j4
make install
After "make", it is recommended to run "make install" so rose's library (librose.so),

headers (rose.h) and some prebuilt rose-based tools can be installed under the specified
installation path using --prefix.

set environment variables

After the installation, you should set up some standard environment variables so you can
use rose. For bash, the following is an example:

ROSE_INS=/home/userx/opt/rose installation tree
PATH=$PATH: $ROSE_INS/bin

LD LIBRARY PATH=SLD LIBRARY PATH:$ROSE INS/lib
Don't forget to export variables !!!

export PATH LD LIBRARY PATH

try out a rose translator

There are quite some pre-built rose translators installed under SROSE_INS/bin.

You can try identityTranslator, which just parses input code, generates AST, and
unparses it back to original code:

identityTranslator -c helloWorld.c

It should generate an output file named rose_helloWorld.c, which should just look like
your input code.

Virtual machine image

The goal of this page is to document

e How users can download the virtual machine image (or virtual appliance) and use
ROSE out of box.
e how the virtual machine image for a fully installed ROSE is created.

How to use the virtual machine image

Obtain the Virtual Machine Image
Download the virtual machine image created by using VMware Player:

e http://www.rosecompiler.org/Ubuntu-ROSE-Demao.tar.gz
e Warning: it is a huge file of 4.8 GB.
« Demonstration user account (sudo user in Ubuntu):

o account: demo

o password: password

LLNL users may not be able to download it due to limitations to max downloaded file
size within LLNL.

http://www.rosecompiler.org/Ubuntu-ROSE-Demo.tar.gz

Content of the VM Image
Copy&paste from README within the virtual machine
This is a virtual machine image for the ROSE source-to-source compiler framework.
sourcetree, cloned from github.com/rose-compiler/rose on July 21, 2012
o /home/demol/rose
buildtree
o /home/demo/buildrose
installation tree (--prefix path)
e /home/demo/opt/rose-inst
A script to set environment variables to use the installed ROSE tools
« /home/demol/set.rose.env
A test translator
e /home/demo/myTranslator
Some dot graphs of a simplest function
e /home/demo/dotGraphs
Install VMware Player
You have to install VMware Player to your machine to use the virtual machine image.

Goto http://www.vmware.com/go/downloadplayer/

Select the right bundle for your platform. For example: VMware-Player-4.0.4-
744019.i386.txt

After downloading (assuming you are using Ubuntu 10.04)
e chmod a+x VMware-Player-4.0.4-744019.i386.txt
e sudo ./VMware-Player-4.0.4-744019.i386.txt

o follow the GUI to finish the installation

To start VMPlayer, goto Menu->Applications-> System Tools -> VMware Player

http://www.vmware.com/go/downloadplayer/

Open/Play the virtual machine

After downloading and untar the tar.gz package to a directory, use VMware player to
open the configuration file of the directory.

How was the virtual machine made

Host Machine

We used Ubuntu 10.04 LTS as a host machine to create the virtual machine image.

uname -a
Linux 8core-ubuntu 2.6.32-41-generic-pae #91-Ubuntu SMP Wed Jun 13
12:00:09 UTC 2012 1686 GNU/Linux

cat /etc/*release

DISTRIB_ID=Ubuntu

DISTRIB_RELEASE=IO .04
DISTRIB_CODENAME=luCid
DISTRIB_DESCRIPTION="Ubuntu 10.04.4 LTS"

Configurations

VVMware player has been installed onto the host machine, as described above.
Basic configuration for the virtual machine

Hardware

e Memory:2GB
e Processors: 2
o Hard Disk size: 15 GB: We would like to keep it small while having enough
space for users.
o 5GB is used for Ubuntu system files and
o 10GB for the demonstration user's home directory
o Network Adapter: NAT: share the host's IP address

(ON)

e OS: Ubuntu 10.04 LTS

o Demonstration user account (sudo user in Ubuntu):
o account: demo
o password: password

e screen size: 1280x960 (4:3)

Download Ubuntu 10.04 LTS http://releases.ubuntu.com/lucid/ We currently use the i386
desktop ISO as the start point

http://releases.ubuntu.com/lucid/

o http://releases.ubuntu.com/lucid/ubuntu-10.04.4-desktop-i386.iso

Within the virtual machine
We installed Software Prerequisites
« sudo apt-get install gcc g++ gfortran
e sudo apt-get install autoconf automake libtool
« sudo apt-get install git-core bison flex texlive-full graphviz python-all-dev

We then installed ROSE

o See ROSE installation for details about how this was done.

ROSE tools

ROSE is a compiler framework to build customized compiler-based tools. A set of
example tools are provided as part of the ROSE release to demonstrate the use of ROSE.
Some of them are also useful for daily work of ROSE developers.

We list and briefly explain some tools built using ROSE. They are installed under
ROSE_INSTALLATION_TREE/bin .

identity Translator

Source: http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf (chapter 2)

This is the simplest tool built using ROSE. It takes input source files , builds AST, and
then unparses the AST back to compilable source code. It tries its best to preserve
everything from the input file.

Uses
Typical use cases

o without any options, test if ROSE can compile your code: replace the compiler
used by your Makefile with identityTranslator

e turn on some built-in analysis, translation or optimization phases, such as -
rose:openmp:lowering to support OpenMP

o type "identityTranslator --help" to see all options

o debug a ROSE-based translator: the first step is often to use identityTranslator to
rule out if it is a compilation problem using ROSE

« use the source of the identityTranslator as a start point to add custom analysis and
transformation. The code in the identityTranslator is indeed the minimum code
required for almost all kinds of ROSE-based tools.

http://releases.ubuntu.com/lucid/ubuntu-10.04.4-desktop-i386.iso
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Installation
http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf

Source code

identityTranslator.c

#include "rose.h"
int main (int argc, char *argvl[]) {
// Build the AST used by ROSE
SgProject *project = frontend(argc, argv);

// Run internal consistency tests on AST
AstTests::runAllTests (project);

// Insert your own manipulation of the AST here...

// Generate source code from AST and call the vendor's compiler
return backend (project) ;

}
Limitations

But due to limitations of the frontends and the internal processing, it cannot generate
100% identical output compared to the input file.

Some notable changes it may introduce include:

e "inta, b, c;" are transformed to three SgVariableDeclaration statements,

e macros are expanded.

o extra brackets are added around constants of typedef types (e.g.
c=Typedef_Example(12); is translated in the output to ¢ =
Typedef_Example((12));)

e Converting NULL to 0.

TODO

« refactor the tools into a dedicated rose/tools directory. So they will always be built
and available by default, regardless which languages are turned on or off

Supported Programming Languages

ROSE supports a wide range of main stream programming languages, with different
degrees of maturity. The list of supported languages includes:

e Cand C++: based on the EDG C++ frontend version 3.3.
o Anongoing effort is to upgrade the EDG frontend to its recent 4.4 version.
o Another ongoing effort is to use clang as an alternative, open-source
C/C++ frontend
« Fortran 77/95/2003: based on the Open Fortran Parser

http://www.edg.com/index.php?location=c_frontend
http://fortran-parser.sourceforge.net/

OpenMP 3.0: based on ROSE's own parsing and translation support for both
C/C++ and Fortran OpenMP programs.
UPC 1.1: this is also based on the EDG 3.3 frontend

OpenMP support

ROSE supports OpenMP 3.0 for C/C++ (and limited Fortran support).

The ROSE manual has a chapter (Chapter 12 OpenMP Support) explaining the
details. pdf

A paper was published for the uniqueness of the ROSE OpenMP Implementation
pdf

Frontend parsing source files (ompparser.yy and ompFortranParser.C) are located
under https://github.com/rose-compiler/rose/tree/master/src/frontend/Sagelll

The transformation of OpenMP into threaded code is located in
omp_lowering.cpp, under https://github.com/rose-
compiler/rose/blob/master/src/midend/programTransformation/ompLowering
The OpenMP runtime interface is defined in libxomp.h and xomp.c under the
same ompLowering directory mentioned above

CUDA support

ROSE has an experimental connection to EDG 4.0, which helps us support CUDA.

To enable parsing CUDA codes, please use the following configuration options:

--enable-edg-version=4.0 --enable-cuda --enable-edg-cuda

Chapter 16 of ROSE User Manual has more details about this.

Abstract Syntax Tree (Intermediate
Representation)

The main intermediate representation of ROSE is its abstract syntax tree (AST).

Sanity check

We provide a set of sanity check for AST. We use them to make sure the AST is
consistent. It is also highly recommended that ROSE developers to add a sanity check
after their AST transformation is done. This has a higher standard than just correctly

http://rosecompiler.org/ROSE_UserManual/ROSE-UserManual.pdf
http://rosecompiler.org/ROSE_ResearchPapers/2010-06-AROSEBasedOpenMP3.0ResearchCompiler-IWOMP.pdf
https://github.com/rose-compiler/rose/tree/master/src/frontend/SageIII
https://github.com/rose-compiler/rose/blob/master/src/midend/programTransformation/ompLowering
https://github.com/rose-compiler/rose/blob/master/src/midend/programTransformation/ompLowering

unparsed to compilable code. It is common for an AST to go through unparsing correctly
but fail on the sanity check.

The recommend one is

o AstTests::runAllTests(project); from src/midend/astDiagnostics. Internally, it
calls the following checks:

o TestAstForProperlyMangledNames
TestAstCompilerGeneratedNodes
AstTextAttributesHandling
AstCycleTest
TestAstTemplateProperties
TestAstForProperlySetDefiningAndNondefiningDeclarations
TestAstSymbolTables
TestAstAccessToDeclarations
TestExpressionTypes
TestMangledNames::test()
TestParentPointersinMemoryPool::test()
TestChildPointersinMemoryPool::test()
TestMappingOfDeclarationsinMemoryPool ToSymbols::test()
TestLValueExpressions
TestMultiFileConsistancy::test() /2009
TestAstAccessToDeclarations::test(*i); // named type test

O 0O 0O O 0O 0o 00 O o o0 o o o

There are some other functions floating around. But they should be merged into
AstTests::runAllTests(project)

o FixSgProject(*project); //in Qing's AST interface

o Utility::sanityCheck(SgProject*)
o Utility::consistencyCheck(SgProject*) // SgFile*

Visualization of AST

We provide ROSE_INSTALLATION_TREE/bin/dotGeneratorWholeASTGraph to
generate a dot graph of the detailed AST of input code.

To visualize the generated dot graph, you have to install

o ZGRViewer here: http://zvtm.sourceforge.net/zgrviewer.html#download.
e Graphviz: http://www.graphviz.org/Download.php.

A complete example

make sure the environment variables (PATH, LD LIBRARY PATH) for the
installed rose are correctly set

http://zvtm.sourceforge.net/zgrviewer.html#download
http://www.graphviz.org/Download.php

which dotGeneratorWholeASTGraph
~/workspace/masterClean/build64/install/bin/dotGeneratorWholeASTGraph

run the dot graph generator
dotGeneratorWholeASTGraph -c ttt.c

#see it
which run.sh
~/64home/opt/zgrviewer-0.8.2/run.sh

run.sh ttt.c WholeAST.dot

Text output of AST

just call: SgNode::unparseToString(). You can call it from any SgLocatedNode within the
AST to dump partial AST's text format.

Preprocessing info.

In addition to nodes and edges, ROSE AST may have some extra attributes attached for
preprocessing information like #include, #if .. #else. They are attached before, after, or
within a nearby IAST node (only the one with source location information.)

An example translator will traverse the input code's AST and dump information about the
found preprocessing information,

exampleTranslators/defaultTranslator/preprocessingInfoDumper -c
main.cxx
Found an IR node with preprocessing Info attached:
(memory address: 0x2b7e1852c7d0 Sage type: SgFunctionDeclaration) in
file
/export/tmp.liac6/workspace/userSupport/main.cxx (line 3 column 1)
————————————— PreprocessingInfo #0 —-—-————-——-—--- :
classification = CpreprocessorIncludeDeclaration:

String format = #include "all headers.h"

relative position is = before

Source: http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf (Chapter 29 -
Handling Comments, Preprocessor Directives, And Adding Arbitrary Text to Generated
Code)

AST construction

SageBuilder and Sagelnterface namespaces provide functions to create AST pieces and
manipulate them.

http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf

Program Translation

With its high level intermediate representation, ROSE is suitable for building source-to-
source translators. This is achieved by re-structuring the AST of the input source code,
then unparsing the transformed AST to the output source code.

Expected behavior of a ROSE Translator

A translator built using ROSE is designed to act like a compiler (gcc, g++,gfortran ,etc
depending on the input file types).

So users of the translator only need to change the build system for the input files to use
the translator instead of the original compiler.

SageBuilder and Sagelnterface

The official guide for restructuring/constructing AST highly recommends using helper
functions from SageBuilder and Sagelnterface namespaces to create AST pieces and
moving them around. These helper functions try to be stable across low-level changes
and be smart enough to transparently set many edges and maintain symbol tables.

Users who want to have lower level control may want to directly invoke the member
functions of AST nodes and symbol tables to explicitly manipulate edges and symbols in
the AST. But this process is very tedious and error-prone.

Steps for writing translators
Generic steps:

o prepare a simplest source file (a.c) as an example input of your translator
o avoid including any system headers so you can visualize the whole AST
o Uuse ROSE_INSTALLATION_TREE/bin/dotGeneratorWholeASTGraph
to generate a whole AST for a.c
« prepare another simplest source file (b.c) as an example output of your translator
o again, avoid including any system headers
o Uuse ROSE_INSTALLATION_TREE/bin/dotGeneratorWholeASTGraph
to generate a whole AST for b.c
e compare the two dot graphs side by side
e use Sagelnterface or SageBuilder functions to restruct the source AST graph to be
the AST graph you want to generate

Order to traverse AST

Naive pre-order traversal is not suitable for building a translator since the translator may
change the nodes the traversal is expected to visit later on. Conceptually, this is
essentially the same problem with C++ iterator invalidation.

To safely transform AST, It is recommended to use a reverse iterator of the statement list
generated by a preorder traversal. This is different from a list generated from a post order
traversal.
For example, assuming we have a subtree of : parent <child 1, child 2>,

o Pre order traversal will generate a list: parent, child 1, child2

o Post order traversal will generate a list: child 1, child2, parent.

e Reverse iterator of the pre order will give you : child2, child 1, and parent.
Transforming using this order is the safest based on our experiences.

example translators

split one complex statement into multiple simpler statements

o ROSE/projects/backstroke/ExtractFunctionArguments.C

Program Analysis

ROSE have implemented the following compiler analysis

call graph analysis

control flow graph

data flow analysis: including liveness analysis, def-use analysis, etc.
dependence analysis

side effect analysis

control flow graph

ROSE provides several variants of control flow graphs

virtual control flow graph
The virtual control flow graph (vcfg) is dynamically generated on the fly when needed.
So there is no mismatch between the ROSE AST and its corresponding control flow
graph. The downside is that the same vcfg will be re-generated each time it is needed.

This can be a potentially a performance bottleneck.

Facts

e documentation: virtual CFG is documented in Chapter 19 Virtual CFG of
ROSE tutorial pdf
e source files:
o src/frontend/Sagelll/virtual CFG/virtual CFG.h
o Src/ROSETTA/Grammar/Statement.code // prototypes of member
functions for located nodes, etc.

o src/frontend/Sagelll/virtual CFG/memberFunctions.C // implementation of

virtual CFG related member functions for each AST node
= this file will help the generation of
buildTree/src/frontend/Sagelll/Cxx_Grammar.h
o test directory: tests/CompileTests/virtual CFG_tests
e adot graph generator: generator a dot graph for either the raw or interesting
virtual CFG.
o source: tests/CompileTests/virtual CFG _tests/generateVirtual CFG.C
o Installed under rose_ins/bin

static control flow graph

Due to the performance concern of virtual control flow graph, we developed another
static version which persistently exists in memory like a regular graph.

Facts:

e documentation: 19.7 Static CFG of ROSE tutorial pdf
o test directory: rose/tests/CompileTests/staticCFG _tests

static and interprocedural CFGs
Facts:

« documentation: 19.8 Static, Interprocedural CFGs of ROSE tutorial pdf
o test directory: rose/tests/CompileTests/staticCFG _tests

Virtual function analysis
Facts

e Original contributor: Faizur from UTSA, done in Summer 2011

o Code: at src/midend/programAnalysis/VirtualFunctionAnalysis.

o implemented with the techniques used in the following paper: "Interprocedural
Pointer Alias Analysis -
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2382". The paper
boils down the virtual function resolution to pointer aliasing problem. The paper
employs flow sensitive inter procedural data flow analysis to solve aliasing
problem, using compact representation graphs to represent the alias relations.

http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf
http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf
http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2382

o some test files in the roseTests folder of the ROSE repository and he told me that
the implementation supports function pointers as well as code which is written
across different files (header files etc).

o documentation: Chapter 24 Dataflow Analysis based Virtual Function Analysis,
of ROSE tutorial pdf

def-use analysis

If you want a def-use analysis, try this
http://www.rosecompiler.org/ROSE HTML Reference/classVariableRenaming.html

VariableRenaming v (project);
v.run () ;
v.getReachingDefsAtNode (...);

pointer analysis

https://mailman.nersc.qgov/pipermail/rose-public/2010-September/000390.html

On 9/1/10 11:49 AM, Fredrik Kjolstad wrote: > Hi all, > > | am trying to use Rose as the
analysis backend for a refactoring > engine and for one of the refactorings | am
implementing | need > whole-program pointer analysis. Rose has an implementation of >
steensgard's algorithm and | have some questions regarding how to use > this. > > |
looked at the file steensgaardTest2.C to figure out how to invoke > this analysis and | am
a bit perplexed: > > 1. The file SteensgaardPtrAnal.h that is included by the test is not >
present in the include directory of my installed version of Rose. > Does this mean that the
Steensgaard implementation is not a part of > the shipped compiler, or does it mean that |
have to retrieve an > instance of it through some factory method whose static return type
is > PtrAnal? | believe it is in the shipped compiler. And you're using the correct file to
figure out how to use it. It should be in the installed include directory --- if it is not, it's
probably something that needs to be fixed. But you can copy the include file from
ROSE/src/midend/programAnalysis/pointerAnal/ as a temporary fix

> > 2. How do I initialize the alias analysis for a given SgProject? Is > this done through
the overloaded ()?

The steensgaardTest2.C file shows how to set up everything to invoke the analysis. Right
now you need to go over each function definition and invoke the analysis explicitly, as
illustrated by the main function in the file. > > 3. Say | want to query whether two pointer
variables alias and | have > SGNodes to their declarations. How do | get the AstNodePtr
needed to > invoke the may_alias(AstInterface&, const AstNodePtr&, const >
AstNodePtr&) function? Or maybe | should rather invoke the version of > may_alias that
takes two strings (varnames)? > To convert a SgNode* x to AstNodePtr, wrap it inside an
AstNodePtrimpl object, i.e., do AstNodePtrImpl(x), as illustrated inside the () operator of
TestPtrAnal in steensgaardTest2.C.

http://www.rosecompiler.org/ROSE_HTML_Reference/classVariableRenaming.html
https://mailman.nersc.gov/pipermail/rose-public/2010-September/000390.html

> 4. How do | query whether two parameters alias? > The PtrAnal class has the following
interface method

may alias(AstInterface& fa, const AstNodePtré& rl, const AstNodePtré&

r2); Itis implemented in SteensgaardPtrAnal class, which inherit PtrAnal class. To build
Astinterface and AstNodePtr, you simply need to wrap SgNode* with some wrapper
classes, illustrated by steensgaardTest2.C

-Qing Yi

void func (void) {
int* pointer;
int* aliasPointer;

pointer = malloc(sizeof (int));
aliasPointer = pointer;

*aliasPointer = 42;

printf ("$d\n", *pointer);

}

The SteensgaardPtrAnal::output function returns:

c: (sizeof (int)) LOC1l=>LOC2
c:42 LOC3=>L0OC4
v:func LOC5=>LOC6 (inparams:) ->(outparams: LOC7)
v:func-0 LOC8=>LOC7
v:func-2-1 LOC9=>L0OC10
v:func-2-3 LOC11=>LOCl2 (pending LOC10 LOC13=>L0OC14 =>LOC4)
v:func-2-4 LOC15=>L0OCl6 =>LOC17
v:func-2-5 LOC18=>1L0Cl1l4 =>10C4
v:func-2-aliasPointer LOC19=>1L0C14 =>LOC4
v:func-2-pointer LOC20=>LOC13 =>LOCl4 =>LOC4
v:malloc LOC21=>L0OC22 (inparams: LOC2) ->(outparams: LOC12)
v:printf LOC23=>L0C24 (inparams: LOCl6=>LOCl7 LOC14=>L0C4) -
> (outparams:
LOC25)

SSA

ROSE has implemented an SSA form. Some discussions on the mailing list: link.

Rice branch has an implementation of array SSA. We are waiting for their commits to be
pushed into Jenkins. --Liao (discuss * contribs) 18:17, 19 June 2012 (UTC)

Generic dataflow framework

see more at ROSE Compiler Framework/Generic Dataflow Framework

https://mailman.nersc.gov/pipermail/rose-public/2012-March/001496.html
http://en.wikibooks.org/wiki/User:Liao
http://en.wikibooks.org/wiki/User_talk:Liao
http://en.wikibooks.org/wiki/Special:Contributions/Liao
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Generic_Dataflow_Framework

As the ROSE project goes on, we have collected quite some versions of dataflow
analysis. It is painful to maintain and use them as they

o duplicate the iterative fixed-point algorithm
« scatter in different directories and
« use different representations for results.

An ongoing effort is to consolidate all dataflow analysis work within a single framework.
Quick facts

original author: Greg Bronevetsky
code reviewer: Chunhua Liao
Documentation:
source codes: files under ./src/midend/programAnalysis/genericDataflow
tests: tests/roseTests/programAnalysisTests/generalDataFlowAnalysisTests
currently implemented analysis
o dominator analysis: dominatorAnalysis.h dominatorAnalysis.C
o livedead variable analysis, or liveness analysis: liveDeadVarAnalysis.h
liveDeadVarAnalysis.C
o constant propagation: constantPropagation.h constantPropagation.C:
TODO need to move the files into src/ from /tests

Dependence analysis

The interface for dependence graph could be found in DependencyGraph.h. The
underlying representation is n DepGraph.h. BGL is required to access the graph.

Here are 6 examples attached with this email. In deptest.C, there are also some macros to
enable more accurate analysis.

If USE_IVS is defined, the induction variable substitution will be performed. if
USE_FUNCTION is defined, the dependency could take a user-specified function side-

effect interface. Otherwise, if non of them are defined, it will perform a normal
dependence analysis and build the graph.

Generic Dataflow Framework

Introduction

As the ROSE project goes on, we have collected quite some versions of dataflow
analysis. It is painful to maintain and use them as they

o duplicate the iterative fixed-point algorithm

https://mailman.nersc.gov/pipermail/rose-public/2012-May/001620.html

« scatter in different directories and
« use different representations for results.

An ongoing effort is to consolidate all dataflow analysis work within a single framework.
Quick facts
« original author: Greg Bronevetsky
e code reviewer: Chunhua Liao
o Documentation:
e source codes: files under ./src/midend/programAnalysis/genericDataflow
o tests: tests/roseTests/programAnalysisTests/generalDataFlowAnalysisTests
e currently implemented analysis
o dominator analysis: dominatorAnalysis.h dominatorAnalysis.C
o livedead variable analysis, or liveness analysis: liveDeadVarAnalysis.h
liveDeadVarAnalysis.C

o constant propagation: constantPropagation.h constantPropagation.C:
TODO need to move the files into src/ from /tests

Function, nodeState and FunctionState
Function and nodeState are two required parameters to run data flow analysis:
They are stored together inside FunctionState //functionState.h
functionState.h
genericDataflow/cfgUtils/CallGraphTraverse.h
function
An abstraction of functions, internally connected to SgFunctionDeclaration *decl
declared in ./src/midend/programAnalysis/genericDataflow/cfgUtils/CallGraphTraverse.h
constructors:
« Function::Function(string name) based on function name
e Function::Function(SgFunctionDeclaration* sample) // core constructor
« Function::Function(SgFunctionDefinition* sample)

CGFunction* cgFunc; // call graph function

Function func(cgFunc);

NodeFact
any information related to a CFG node.

e It has no dataflow 's IN/OUT concept
« not meant to evolve during the dataflow analysis

class NodeFact: public printable
{
public:

// returns a copy of this node fact
virtual NodeFact* copy () const=0;

}s
NodeState

Store information about multiple analyses and their corresponding lattices, for a given
node (CFG node ??)

Jsrc/midend/programAnalysis/genericDataflow/state/nodeState.h
It also provide static functions to

« initialize NodeState for all DataflowNode
« to retrieve NodeState for a given DataflowNode

class NodeState

{

// internal types: map between analysis and set of lattices
typedef std::map<Analysis*, std::vector<Lattice*> > LatticeMap;
typedef std::map<Analysis*, std::vector<NodeFact*> > NodeFactMap;
typedef std::map<Analysis*, bool > BoolMap;

// the dataflow information Above the node, for each analysis

that

// may be interested in the current node

LatticeMap dfInfoAbove; // IN set in a dataflow

// the Analysis information Below the node, for each analysis
that

// may be interested in the current node
LatticeMap dfInfoBelow; // OUT set in a dataflow,

// the facts that are true at this node, for each analysis that
// may be interested in the current node
NodeFactMap facts;

// Contains all the Analyses that have initialized their state
at this node. It is a map because

// TBB doesn't provide a concurrent set.
BoolMap initializedAnalyses;

// static interfaces

// returns the NodeState object associated with the given
dataflow node.

// index is used when multiple NodeState objects are associated
with a given node

// (ex: SgFunctionCallExp has 3 NodeStates: entry, function
body, exit)

static NodeState* getNodeState (const DataflowNode& n, int
index=0) ;

// most useful interface: retrieve the lattices (could be only one)
associated with a given analysis

// returns the map containing all the lattices from above the
node that are owned by the given analysis
// (read-only access)
const std::vector<Lattice*>& getlLatticeAbove (const Analysis*
analysis) const;

// returns the map containing all the lattices from below the
node that are owned by the given analysis

// (read-only access)

const std::vector<Lattice*>& getLatticeBelow(const Analysis*
analysis) const;

}

FunctionState
Jsrc/midend/programAnalysis/genericDataflow/state/functionState.h
A pair of Function and NodeState.

« it provides static functions to initialize all FunctionState And retrieve
FunctionState

class FunctionState
{

friend class CollectFunctions;

public:

Function func;

NodeState state;

// The lattices that describe the value of the function's
return variables

NodeState retState;

private:
static std::set<FunctionState*> allDefinedFuncs;

static std::set<FunctionState*> allFuncs;
static bool allFuncsComputed;

public:
FunctionState (Function &func) :
func (func),
state (/*func.get declaration()->cfgForBeginning () */)
{1}

// We should use this interface --—-—————————--—-

// 1. returns a set of all the functions whose bodies are in the
project
static std::set<FunctionState*>& getAllDefinedFuncs();

// 2. returns the FunctionState associated with the given function
// func may be any declared function
static FunctionState* getFuncState (const Function& func);

FunctionState* fs = new FunctionState(func); // empty From FuntionState to NodeState

/*************************************

*** UnstructuredPassInterAnalysis ***
*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k**********************/
void UnstructuredPassInterAnalysis::runAnalysis|()
{
set<FunctionState*> allFuncs =
FunctionState::getAllDefinedFuncs(); // call a static function to get
all function state s

// Go through functions one by one, call an intra-procedural
analysis on each of them
// iterate over all functions with bodies
for (set<FunctionState*>::iterator it=allFuncs.begin();
it!=allFuncs.end(); it++)
{
FunctionState* fState = *it;
intraAnalysis->runAnalysis (fState->func, &(fState-
>state)) ;
}
}

// runs the intra-procedural analysis on the given function, returns
true if
// the function's NodeState gets modified as a result and false
otherwise
// state - the function's NodeState
bool UnstructuredPassIntraAnalysis::runAnalysis (const Functioné& func,
NodeState* state)
{

DataflowNode funcCFGStart =
cfgUtils::getFuncStartCFG(func.get definition(), filter);

DataflowNode funcCFGEnd =
cfgUtils::getFuncEndCFG (func.get definition(), filter);

if (analysisDebuglevel>=2)
Dbg: :dbg <<
"UnstructuredPassIntraAnalysis::runAnalysis () function
"<<func.get name () .getString()<<" ()\n";

// iterate over all the nodes in this function
for (VirtualCFG: :iterator it (funcCFGStart);
it!=VirtualCFG: :dataflow::end(); it++)
{
DataflowNode n = *it;
// The number of NodeStates associated with the given
dataflow node
//int numStates=NodeState::numNodeStates (n) ;
// The actual NodeStates associated with the given
dataflow node
const vector<NodeState*> nodeStates =
NodeState::getNodeStates (n) ;

// Visit each CFG node
for (vector<NodeState*>::const iterator itS =
nodeStates.begin(); itS!=nodeStates.end(); 1itS++)

visit (func, n, *(*itS)):;

}

return false;

example: retrieve the liveness analysis's IN lattice

void getAllLiveVarsAt(LiveDeadVarsAnalysis* ldva, const NodeState& state,
set<varlD>& vars, string indent)

o LiveVarsLattice* liveLAbove =
dynamic_cast<LiveVarsLattice*>(*(state.getLatticeAbove(ldva).begin()));

Lattices

Caveat: lattice vs. lattice value
o A lattice by definition is a set of values. However, an instance of lattice type in

Generic dataflow framework is used to represent an individual value within a
lattice also. Sorry for this confusing. We welcome suggestions to fix this.

Basics

See more at ROSE Compiler Framework/Lattice

Store the data flow analysis information attached to CFG nodes.

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Lattice

Fundamental operations:

e what to store: lattice value set, bottom, up , and anything in between
« initialization: LiveDeadVarsAnalysis::genlnitState()

e creation: transfer function

e meet operation: a member function of the lattice

Example

o liveness analysis: the live variable set at the entry point of a CFG node:
e constant propagation: lattice values from no information (bottom) -> unkown -->
constant --> too much information (conflicting constant values, top),

// blindly add all of that arg's values into current lattice's value
set
void LiveVarsLattice::incorporateVars (Lattice* that arg)

// retrieve a subset lattice information for a given expr. This lattice
may contain more information than those about a given expr.
Lattice* LiveVarsLattice::project (SgExpression* expr)

// add lattice (exprState)information about expr into current lattice's
value set: default implementation just calls meetUpdate (exprState)
bool LiveVarsLattice::unProject (SgExpression* expr, Lattice* exprState)

below/above vs IN/OUT
The concept is based on the original CFG flow direction
« above: the incoming edge direction
o below: the outcoming edge direction
IN and OUT depends on the direction of the problem, forward vs. backward

o forward direction: IN == above lattice, OUT = below lattice
o backward direction: IN == below lattice, OUT = above lattice

common utility lattices
the framework provides some pre-defined lattices ready for use.
lattice.h/latticeFull.h

o BoolAndLattice

LiveVarsLattice

class LiveVarsLattice : public Finitelattice
{

public:

std::set<varID> liveVars; // bottom is all live variables,
top is the empty set, meet brings down the lattice -> union of
variables.

}s

// Meet operation: simplest set union of two lattices:

// computes the meet of this and that and saves the result in this
// returns true if this causes this to change and false otherwise
bool LiveVarsLattice::meetUpdate (Lattice* that arg)
{

bool modified = false;

LiveVarsLattice* that =
dynamic cast<LiveVarsLattice*>(that arg);

// Add all variables from that to this
for (set<varID>::iterator var=that->liveVars.begin(); var!=that-
>liveVars.end(); var++) {
// If this lattice doesn't yet record *var as being

live
if(liveVars.find (*var) == liveVars.end()) { // this if
() statement gives a chance to set the modified flag.
//
otherwise, liveVars.insert() can be directly called.
modified = true;

liveVars.insert (*var) ;

}

return modified;

Transfer function

basics: Data flow analysis#flow.2Ftransfer function

e IN =sum of OUT (predecessors)
e OUT=GEN + (IN - KILL)

The impact of program constructs on the current lattices (how to change the current
lattices).

 lattices: stores IN and OUT information
e additional data members are necessary to store GEN and KILL set inside the
transfer function.

http://en.wikibooks.org/w/index.php?title=Data_flow_analysis&action=edit&redlink=1

class hierarchy:

class IntraDFTransferVisitor : public ROSE VisitorPatternDefaultBase
{
protected:
// Common arguments to the underlying transfer function
const Function &func; // which function are we talking about
const DataflowNode &dfNode; // wrapper of CFGNode
NodeState &nodeState; // lattice element state, context
information?
const std::vector<Lattice*> &dfInfo; // data flow information

public:

IntraDFTransferVisitor (const Function &f, const DataflowNode &n,
NodeState &s, const std::vector<Lattice*> &d)
func (f), dfNode(n), nodeState(s), dfInfo(d)

{1}

virtual bool finish() = 0;
virtual ~IntraDFTransferVisitor () { }
bi
class LiveDeadVarsTransfer : public IntraDFTransferVisitor

{

bi

class ConstantPropagationAnalysisTransfer : public
VariableStateTransfer<ConstantPropagationLattice>

{}

constant propagation

template <class LatticeType>
class VariableStateTransfer : public IntraDFTransferVisitor

{

b

class ConstantPropagationAnalysisTransfer : public
VariableStateTransfer<ConstantPropagationLattice> {};

void
ConstantPropagationAnalysisTransfer::visit (SgIntVal *sgn)
{
ROSE_ASSERT (sgn != NULL);
ConstantPropagationlLattice* reslLat = getLattice(sgn);
ROSE_ASSERT (resLat != NULL) ;

resLat->setValue (sgn->get value());
reslLat->setLevel (ConstantPropagationLattice: :constantValue) ;

live dead variable

Functions to convert program point to Generator and KILL set. For liveness analysis

o Kill (s) = {variables being defined in s}: //
e Gen (s) = {variables being used in s}

OUT = IN -KILL + GEN

e OUT is initialized to be IN set,
« transfer function will apply -KILL + GEN

class LiveDeadVarsTransfer : public IntraDFTransferVisitor

LiveVarsLattice* livelat; // the result of this analysis

bool modified;

// Expressions that are assigned by the current operation
std: :set<SgExpression*> assignedExprs; // KILL () set

// Variables that are assigned by the current operation
std: :set<varID> assignedVars;

// Variables that are used/read by the current operation
std: :set<varID> usedVars; // GEN () set

public:

LiveDeadVarsTransfer (const Function &f, const DataflowNode é&n,
NodeState &s, const std::vector<Lattice*> &d, funcSideEffectUses
*fseu)

IntraDFTransferVisitor (£, n, s, d), indent (" "),
livelLat (dynamic cast<LiveVarsLattice*>(* (dfInfo.begin()))),
modified(false), fseu(fseu)

{

if (liveDeadAnalysisDebugLevel>=1) Dbg::dbg << indent <<
"liveLat="<<liveLat->str (indent + " ")<<std::endl;

// Make sure that all the lattice is initialized

livelLat->initialize () ;

}

bool finish{();

// operationg on different AST nodes
void visit (SgExpression *);

void visit (SgInitializedName *);
void visit (SgReturnStmt *);

void visit (SgExprStatement *);

void visit (SgCaseOptionStmt *);

void visit (SgIfStmt *);

void visit (SgForStatement *);

void visit (SgWhileStmt *);

http://en.wikibooks.org/w/index.php?title=Liveness_analysis&action=edit&redlink=1

void visit (SgDoWhileStmt *);
}

// Helper transfer function, focusing on handling expressions.

// live dead variable analysis: LDVA,

// expression transfer: transfer functions for expressions

/// Visits live expressions - helper to LiveDeadVarsTransfer

class LDVAExpressionTransfer : public ROSE VisitorPatternDefaultBase
{

LiveDeadVarsTransfer &ldva;
public:

// Plain assignment: lhs = rhs, set GEN (read/used) and KILL
(written/assigned) sets
void visit (SgAssignOp *sgn) {
ldva.assignedExprs.insert (sgn->get 1lhs operand()) ;

// If the lhs of the assignment is a complex expression (i.e. it
refers to a variable that may be live) OR

// 1f is a known expression that is known to may-be-live

// THIS CODE ONLY APPLIES TO RHSs THAT ARE SIDE-EFFECT-FREE AND WE
DON'T HAVE AN ANALYSIS FOR THAT YET

/*1f (!isVarExpr (sgn->get lhs operand()) ||

(isVarExpr (sgn->get lhs operand()) &&
liveLat->isLiveVar (SgExpr2Var (sgn->get lhs operand()))))
{ */
ldva.used (sgn->get rhs operand());
}

}

call stack

(gdb) bt

#0 LDVAExpressionTransfer::visit (this=0x7fffffffceal, sgn=0xa20320)

at ../../../../sourcetree/src/midend/programAnalysis/genericDataflow/si
mpleAnalyses/liveDeadVarAnalysis.C:228

#1 0x00002aaaac3d9968 in SgAssignOp::accept (this=0xa20320,
visitor=...) at Cxx Grammar.C:143069

#2 0x00002aaaadc6lc04 in LiveDeadVarsTransfer::visit (this=0xaf9e00,
sgn=0xa20320)

at ../../../../sourcetree/src/midend/programAnalysis/genericDataflow/si
mpleAnalyses/liveDeadVarAnalysis.C:384

#3 0x00002aaaadbbaefl in ROSE VisitorPatternDefaultBase::visit
(this=0xaf9%e00, variable SgBinaryOp=0xa20320)

at ../../../src/frontend/SageIIl/Cxx Grammar.h:316006

#4 0x00002aaaadbbal4a in ROSE VisitorPatternDefaultBase::visit
(this=0xaf9%e00, variable SgAssignOp=0xaz20320)

at ../../../src/frontend/SagelIIl/Cxx Grammar.h:315931

#5 0x00002aaaac3d9968 in SgAssignOp::accept (this=0xa20320,
visitor=...) at Cxx Grammar.C:143069

#6 0x00002aaaadbccala in IntraUniDirectionalDataflow::runAnalysis
(this=0x7ffff£f£f£d9f0, func=..., fState=0xafbdls§,
analyzeDueToCallers=true, calleesUpdated=...)

at ../../../../sourcetree/src/midend/programAnalysis/genericDataflow/an
alysis/dataflow.C:282

#7 0x00002aaaadbbf444 in IntraProceduralDataflow::runAnalysis
(this=0x7fffffffda00, func=..., state=0xafbdl8)

at ../../../../sourcetree/src/midend/programAnalysis/genericDataflow/an
alysis/dataflow.h:74

#8 0x00002aaaadbb0966 in UnstructuredPassInterDataflow::runAnalysis
(this=0x7fffffffda50)

at ../../../../sourcetree/src/midend/programAnalysis/genericDataflow/an
alysis/analysis.C:467
#9 0x000000000040381la in main (argc=2, argv=0x7fffffffdba8)

at ../../../../../sourcetree/tests/roseTests/programAnalysisTests/gener
alDataFlowAnalysisTests/liveDeadVarAnalysisTest.C:101

Control flow graph and call graph
The generic dataflow framework works on virtual control flow graph in ROSE
Filtered virtual CFG

The raw virtual CFG may not be desirable for all kinds of analyses since it can have too
many administrative nodes which are not relevant to a problem.

So the framework provides a filter parameter to the Analysis class. A default filter will be
used unless you specify your own filter.

// Example filter funtion deciding if a CFGnNode should show up or not
bool gfilter (CFGNode cfgn)
{

SgNode *node = cfgn.getNode();

switch (node->variantT())
{
//Keep the last index for initialized names. This way the def of
the variable doesn't propagate to its assign initializer.
case V_SgInitializedName:
return (cfgn == node->cfgForEnd())

// For function calls, we only keep the last node. The function is
actually called after all its parameters are evaluated.
case V_SgFunctionCallExp:
return (cfgn == node->cfgForEnd())

//For basic blocks and other "container" nodes, keep the node that
appears before the contents are executed
case V_SgBasicBlock:

case V_SgExprStatement:
case V_SgCommaOpExp:
return (cfgn == node->cfgForBeginning());

// Must have a default case: return interesting CFGNode by default
in this example
default:
return cfgn.isInteresting();

}

// Code using the filter function
int
main(int argc, char * argv[])
{
SgProject* project = frontend(argc,argv);
initAnalysis (project);
LiveDeadVarsAnalysis ldva (project);
ldva.filter = gfilter; // set the filter to be your own one

UnstructuredPassInterDataflow ciipd ldva(&ldva);
ciipd ldva.runAnalysis();

Analysis driver

Key function:

bool IntraUniDirectionalDataflow::runAnalysis(const Function& func, NodeState*
fState, bool analyzeDueToCallers, set<Function> calleesUpdated) // analysis/dataflow.C

Basic tasks: run the analysis by

o initialize data flow state: lattices and other information
o walk the CFG : find descendants from a current node
o call transfer function

Class hierarchy

e Analysis -> IntraProcedural Analysis -> IntraProceduralDataflow ->
IntraUnitDataflow --> IntraUniDirectionalDataflow (INTERESTING level)->
IntraBWDataflow -> LiveDeadVarsAnalysis

class Analysis {}; // an empty abstract class for any analysis

class IntraProceduralAnalysis : virtual public Analysis
//analysis/analysis.h , any intra procedural analysis, data flow or
not
{

protected:

InterProceduralAnalysis* interAnalysis;
public:

void setInterAnalysis(InterProceduralAnalysis* interAnalysis) //
connection to inter procedural analysis

virtual bool runAnalysis(const Functioné& func, NodeState* state)=0;
// run this per function, NodeState stores lattices for each CFG node,
etc.

virtual ~IntraProceduralAnalysis();

//No re—-entry. analysis will be executed once??, data flow , intra-
procedural analysis
// now lattices are interested
class IntraProceduralDataflow : virtual public IntraProceduralAnalysis
//analysis/dataflow.h
{
// initialize lattice etc for a given dataflow node within a function

virtual void genInitState (const Function& func, const DataflowNode&
n, const NodeState& state,

std::vector<Lattice*>& initLattices, std::vector<NodeFact*>&

initFacts);

virtual bool runAnalysis(const Functioné& func, NodeState* state, bool
analyzeDueToCallers, std::set<Function> calleesUpdated)=0; // the
analysis on a function could be triggered by the state changes of
function's callers, or callees.

std::set<Function> visited; // make sure a function is initialized
once when visited multiple times

}

class IntraUnitDataflow : virtual public IntraProceduralDataflow
{

// transfer function: operate on lattices associated with a dataflow
node, considering its current state
virtual bool transfer (const Function& func, const DataflowNodeé& n,
NodeState& state, const std::vector<Lattice*>& dfInfo)=0;

b

// Uni directional dataflow: either forward or backward, but not both
directions!

class IntraUniDirectionalDataflow : public IntraUnitDataflow {
public:

bool runAnalysis(const Functioné& func, NodeState* state, bool
analyzeDueToCallers, std::set<Function> calleesUpdated);

protected:
bool propagateStateToNextNode (
const std::vector<Lattice*>& curNodeState, DataflowNode
curDFNode, int nodelndex,
const std::vector<Lattice*>& nextNodeState, DataflowNode
nextDFNode) ;

std::vector<DataflowNode> gatherDescendants (std::vector<DataflowEdge>
edges,
DataflowNode
(DataflowEdge: :*edgeFn) () const);

virtual NodeState*initializeFunctionNodeState (const Function
&func, NodeState *fState) = 0;
virtual VirtualCFG::dataflow*
getInitialWorklist (const Function &func, bool firstVisit,
bool analyzeDueToCallers, const set<Function> &calleesUpdated,
NodeState *fState) = 0;

virtual vector<Lattice*> getLatticeAnte (NodeState *state) = 0;
virtual vector<Lattice*> getLatticePost (NodeState *state) = 0;

// I1If we're currently at a function call, use the associated
inter-procedural

// analysis to determine the effect of this function call on
the dataflow state.

virtual void transferFunctionCall (const Function &func, const
DataflowNode é&n, NodeState *state) = 0;

virtual vector<DataflowNode> getDescendants (const DataflowNode
&n) = 0;

virtual DataflowNode getUltimate (const Function &func) = 0; //
ultimate what? final CFG node?

bi

class IntraBWDataflow : public IntraUniDirectionalDataflow {//BW:
Backward
public:

IntraBWDhataflow ()
{}

NodeState* initializeFunctionNodeState (const Function &func,
NodeState *fState);

VirtualCFG: :dataflow*
getInitialWorklist (const Function &func, bool firstVisit,
bool analyzeDueToCallers, const set<Function> &calleesUpdated,
NodeState *fState);

virtual vector<Lattice*> getlLatticeAnte (NodeState *state);
virtual vector<Lattice*> getlLatticePost (NodeState *state);

void transferFunctionCall (const Function &func, const
DataflowNode é&n, NodeState *state);

vector<DataflowNode> getDescendants (const DataflowNode &n); //
next CFG nodes, depending on the direction

{ return gatherDescendants (n.inEdges(),
&DataflowEdge: :source) ; }

DataflowNode getUltimate (const Function &func); // the last CFG
should be the start CFG of the function for a backward dataflow problem

{ return cfgUtils::getFuncStartCFG (func.get definition()); }

foward intra-procedural data flow analysis: e.g. reaching definition ()

e class IntraFWDataflow : public IntraUniDirectionalDataflow

Initialization: InitDataflowState

Used to initialized the lattices/facts for CFG nodes. It is an analysis by itself. unstructured
pass

// super class: provides the driver of initialization: visit each CFG
node

class UnstructuredPassIntraAnalysis : virtual public
IntraProceduralAnalysis
{
public:

// call the initialization function on each CFG node

bool runAnalysis(const Function& func, NodeState* state);

// to be implemented by InitDataflowState

virtual void visit (const Function& func, const DataflowNode& n,

NodeState& state)=0;

}

bool UnstructuredPassIntraAnalysis::runAnalysis(const Functioné& func,
NodeState* state)
{

DataflowNode funcCFGStart =
cfgUtils::getFuncStartCFG (func.get definition());

DataflowNode funcCFGEnd =
cfgUtils::getFuncEndCFG (func.get definition());

if (analysisDebugLevel>=2)
Dbg: :dbg <<
"UnstructuredPassIntraAnalysis::runAnalysis () function
"<<func.get name () .getString()<<" ()\n";

// iterate over all the nodes in this function
for (VirtualCFG::iterator it (funcCFGStart):;
it!=VirtualCFG: :dataflow::end(); it++)
{
DataflowNode n = *it;
// The number of NodeStates associated with the given
dataflow node
//int numStates=NodeState::numNodeStates (n) ;
// The actual NodeStates associated with the given
dataflow node

const vector<NodeState*> nodeStates =
NodeState: :getNodeStates (n) ;

// Visit each CFG node
for (vector<NodeState*>::const iterator itS =
nodeStates.begin(); itS!=nodeStates.end(); itS++)
visit (func, n, *(*itS));
}

return false;

[/ derived class provide link to a concrete
analysis, and visit() implementation
class InitDataflowState : public UnstructuredPassIntraAnalysis
{

IntraProceduralDataflow* dfAnalysis; // link to the dataflow
analysis to be initialized

public:
InitDataflowState (IntraProceduralDataflow* dfAnalysis/*,
std: :vector<Lattice*> &initState*/)
{
this->dfAnalysis = dfAnalysis;
}

void visit (const Function& func, const DataflowNode& n,
NodeState& state);
}i

void InitDataflowState::visit (const Functioné& func, const
DataflowNode& n, NodeState& state)
{

dfAnalysis->genInitState (func, n, state, initLats, initFacts);
state.setlLattices ((Analysis*)dfAnalysis, initLats);
state.setFacts ((Analysis*)dfAnalysis, initFacts);

worklist
list of CFG nodes, accessed through an iterator interface

auto_ptr<Virtual CFG::dataflow> workList(getInitialWorklist(func, firstVisit,
analyzeDueToCallers, calleesUpdated, fState));

class iterator //Declared in cfgUtils/VirtualCFGIterator.h
{
public:
std::list<DataflowNode> remainingNodes;
std: :set<DataflowNode> visited;
bool initialized;
protected:

// returns true if the given DataflowNode is in the
remainingNodes list and false otherwise
bool isRemaining(DataflowNode n);

// advances this iterator in the given direction. Forwards if
fwDir=true and backwards if fwDir=false.

// 1if pushAllChildren=true, all of the current node's unvisited
children (predecessors or successors,

// depending on fwDir) are pushed onto remainingNodes

void advance (bool fwDir, bool pushAllChildren);

public:
virtual void operator ++ (int);

bool eg(const iterator& other it) const;
bool operator==(const iterator& other it) const;

bool operator!=(const iterator& it) const;

}i

void iterator::advance (bool fwDir, bool pushAllChildren)

{
ROSE ASSERT (initialized);

/*printf (" iterator::advance (%d) remainingNodes.size ()=%d\n",
fwDir, remainingNodes.size());
cout<<" visited=\n";

for (set<DataflowNode>::iterator it=visited.begin();
it!=visited.end(); it++)
cout << " <"<<it->getNode () ->class_ name () <<"
| "<<it->getNode ()<<" | "<<it->getNode () ->unparseToString()<<">\n";*/
if (remainingNodes.size () >0)
{
// pop the next CFG node from the front of the list
DataflowNode cur = remainingNodes.front();
remainingNodes.pop front();

if (pushAllChildren)
{
// find its followers (either successors or
predecessors, depending on value of fwDir), push back
// those that have not yet been visited
vector<DataflowEdge> nextE;
if (fwDir)
nextE = cur.outEdges();
else
nextE = cur.inEdges();
for (vector<DataflowEdge>::iterator
it=nextE.begin(); it!=nextE.end(); it++)
{

DataflowNode nextN((*it) .target()/*
need to put something here because DataflowNodes don't have a default
constructor*/) ;

if (fwDir) nextN = (*it).target();

else nextN = (*it) .source();

/*cout << " iterator::advance
"<<(fwDir?"descendant":"predecessor")<<": "<<
"<"<<nextN.getNode () ->class name () <<" | "<<nextN.getNode ()<<" |

"<<nextN.getNode () ->unparseToString () <<">, "<<

"visited="<< (visited.find(nextN) != visited.end())<<

"

remaining="<<isRemaining (nextN)<<"\n";*/

// if we haven't yet visited this node
and don't yet have it on the remainingNodes list
if (visited.find (nextN) == visited.end()

& &
!'isRemaining (nextN))

//printf (" pushing back node
<%$s: 0x%x: %s> visited=%d\n", nextN.getNode()->class name().c_str(),
nextN.getNode (), nextN.getNode ()->unparseToString().c_str(),
visited.find (nextN) !=visited.end()) ;

remainingNodes.push back (nextN) ;
}
}
}

// if we still have any nodes left remaining
if (remainingNodes.size () >0)

{
// take the next node from the front of the

list and mark it as visited
//visited[remainingNodes.front ()] = true;
visited.insert (remainingNodes.front());

class dataflow : public virtual iterator {};
class back dataflow: public virtual dataflow {};

void back dataflow::operator ++ (int)

{

advance (false, true); // backward, add all children

class IntraUniDirectionalDataflow : public IntraUnitDataflow
{ ...
virtual VirtualCFG::dataflow*

getInitialWorklist (const Function &func, bool firstVisit,
bool analyzeDueToCallers, const set<Function> &calleesUpdated,
NodeState *fState) = 0;

Implemented in derived classes:

o VirtualCFG::dataflow* IntraFWDataflow::getInitialWorklist ()
o VirtualCFG::dataflow* IntraBWDataflow::getInitialWorklist()

apply transfer function

b is a basic block in CFG

IN| = |J OUT[p|

. pepred(b] // information goes into b is the union/join of
information comes out of all predecessor nodes of b

OUT[E’] = GEN ['5] U (IN[E’] - I{ILL[E’D// information goes out out S is

the information generated by b minus information killed by b. This is the transfer
function operating on b!!

bool IntraUniDirectionalDataflow::runAnalysis (const Functioné& func,
NodeState* fState, bool analyzeDueToCallers, set<Function>
calleesUpdated)

{

// Iterate over the nodes in this function that are downstream
from the nodes added above
for(; it != itEnd; it++)
{
DataflowNode n = *it;
SgNode* sgn = n.getNode();

for (vector<NodeState*>::const iterator itS =
nodeStates.begin(); itS!=nodeStates.end();)
{
state = *itS;

const vector<Lattice*> dfInfoAnte =
getlLatticeAnte (state); // IN set

const vector<Lattice*> dfInfoPost =
getLatticePost (state); // OUT set

// OUT = IN first // transfer within
the node: from IN to OUT,
// Overwrite the Lattices below this node with
the lattices above this node.
// The transfer function will then operate on
these Lattices to produce the
// correct state below this node.

vector<Lattice*>::const iterator itA, itP;
int j=0;

for(itA = dfInfoAnte.begin(), itP =
dfInfoPost.begin () ;
itA != dfInfoAnte.end() && itP !=
dfInfoPost.end() ;
itA++, 1tP++, J++)

if (analysisDebugLevel>=1){ //

Dbg::dbg << " Meet Before:
Lattice "<<j<<": \n "< (*1itA) ->str (" ") <<endl;

Dbg::dbg << " Meet After:
Lattice "<<j<<": \n "< (*1tP) ->str (" ") <<endl;

}
(*1tP)->copy (*itA);
/*1f (analysisDebugLevel>=1) {

Dbg::dbg << " Copied Meet
Below: Lattice "<<j<<": \n "< (*1tB) ->str (" ")<<endl;
yx/
}
// TRANSFER FUNCTION

// (IN - KILL) + GEN
if (isSgFunctionCallExp (sgn))
transferFunctionCall (func, n, state);

boost::shared ptr<IntraDFTransferVisitor>
transferVisitor = getTransferVisitor (func, n, *state, dfInfoPost);

sgn->accept (*transferVisitor);

modified = transferVisitor->finish() ||
modified;

// TRANSFER FUNCTION

N

propagate state to next (meetUpdate)

This is prove to be essential to propagate information along the path. Cannot commenting
it out!!

??? not sure about the difference between this step and the step before (Meet Before () /
Meet After)

meetUpdate() is called here also

// Propagates the dataflow info from the current node's NodeState
(curNodeState) to the next node's

// NodeState (nextNodeState).

// Returns true if the next node's meet state is modified and false
otherwise.

bool IntraUniDirectionalDataflow: :propagateStateToNextNode (

const vector<Lattice*>& curNodeState,
DataflowNode curNode, int curNodelIndex,
const vector<Lattice*>& nextNodeState,
DataflowNode nextNode)
{
bool modified = false;
vector<Lattice*>::const iterator itC, itN;
if (analysisDebugLevel>=1) {

Dbg: :dbg << "\n Propagating to Next Node:
"<<nextNode.getNode () <<" ["<<nextNode.getNode () ->class_name () <<" |
"<<Dbg: :escape (nextNode.getNode () —>unparseToString ()) <<"]"<<endl;

int j;

for (j=0, 1itC = curNodeState.begin(); itC !=
curNodeState.end(); 1tC++, J++)

Dbg::dbg << " Cur node: Lattice "<<j<<":
\n "< (*1tC) ->str (" ") <<endl;

for (j=0, itN = nextNodeState.begin(); itN !=
nextNodeState.end () ; 1tN++, Jj++)

Dbg: :dbg << " Next node: Lattice
"<<J<<": \n "< (*LEN) ->str (" ") <<endl;
}

// Update forward info above nextNode from the forward info
below curNode.

// Compute the meet of the dataflow information along the
curNode->nextNode edge with the
// next node's current state one Lattice at a time and save the
result above the next node.
for (itC = curNodeState.begin(), 1tN = nextNodeState.begin();
itC != curNodeState.end () && 1tN != nextNodeState.end();
1tC++, 1tN++)
{
// Finite Lattices can use the regular meet operator,
while infinite Lattices
// must also perform widening to ensure convergence.
1f((*1tN)->finiteLattice())
modified = (*itN)->meetUpdate (*itC) ||
modified;
else

//InfinitelLattice* meetResult =
(InfiniteLattice*)itN->second->meet (itC->second) ;

InfiniteLattice* meetResult =
dynamic cast<InfiniteLattice*>((*itN)->copy());

Dbg::dbg << " *itN: " <<
dynamic cast<InfiniteLattice*> (*itN)->str (" ") << endl;
- Dbg::dbg << " *itC: " <<
dynamic cast<InfiniteLattice*> (*itC)->str (" ") << endl;
meetResult->meetUpdate (*1itC) ;
Dbg: :dbg << " meetResult: " <<
meetResult->str (" ") << endl;

// Widen the resulting meet
modified =

dynamic cast<InfiniteLattice*>(*itN)->widenUpdate (meetResult);
delete meetResult;

}

if (analysisDebuglLevel>=1) {
if (modified)
{

Dbg::dbg << " Next node's in-data
modified. Adding..."<<endl;

int j=0;

for (itN = nextNodeState.begin(); itN !=

nextNodeState.end (); 1tN++, J++)
{

Dbg::dbg << " Propagated:
Lattice "<<j<<": \n "< (*1tN) ->str (" ")<<endl;
}
}
else
Dbg: :dbg << " No modification on this
node"<<endl;
}
return modified;
}
stop condition
class IntraUniDirectionalDataflow : public IntraUnitDataflow

{
public:
protected:
// propagates the dataflow info from the current node's
NodeState (curNodeState) to the next node's NodeState (nextNodeState)
// return true if any state is modified.
bool propagateStateToNextNode (
const std::vector<Lattice*>& curNodeState, DataflowNode
curDFNode, int nodelIndex,
const std::vector<Lattice*>& nextNodeState, DataflowNode
nextDFNode) ;

}
live dead variable

Backward Intra-Procedural Dataflow Analysis: e.g. liveness analysis (use --> backward -
-> defined)

o class IntraBWDataflow : public IntraUniDirectionalDataflow

class LiveDeadVarsAnalysis : public IntraBWDataflow {

protected:
funcSideEffectUses* fseu;

public:
LiveDeadVarsAnalysis (SgProject *project, funcSideEffectUses*
fseu=NULL) ;

// Generates the initial lattice state for the given dataflow node, in
the given function, with the given NodeState
void genInitState (const Functioné& func, const DataflowNode& n, const
NodeState& state,
std::vector<Lattice*>& initLattices,
std::vector<NodeFact*>§& initFacts);

boost::shared ptr<IntraDFTransferVisitor> getTransferVisitor (const
Function& func, const DataflowNodeé& n,

NodeState& state, const std::vector<Lattice*>& dfInfo)
{ return boost::shared ptr<IntraDFTransferVisitor>(new
LiveDeadVarsTransfer (func, n, state, dfInfo, fseu)); }

bool transfer (const Function& func, const DataflowNode& n, NodeStates
state, const std::vector<Lattice*>& dfInfo) { assert(0); return
false; }

}i

Inter-procedural analysis

Key: transfer function that is applied to call sites to perform the appropriate state transfers
across function boundaries.

transfer function

vold IntraFWDataflow::transferFunctionCall (const Function &func, const
DataflowNode &n, NodeState *state)
{

vector<Lattice*> dfInfoBelow = state->getLatticeBelow (this);

vector<Lattice*>* retState = NULL;
dynamic cast<InterProceduralDataflow*>(interAnalysis)->
transfer (func, n, *state, dfInfoBelow, &retState, true);

if (retState && ! (retState->size()==0 || (retState->size () ==
dfInfoBelow.size()))) {
Dbg: :dbg << "f#retState="<<retState->size ()<<endl;
for (vector<Lattice*>::iterator ml=retState->begin(); ml!=retState-
>end () ; ml++)
Dbg::dbg << " "<<(*ml) ->str (" ") <<endl;

Dbg: :dbg << "#dfInfoBelow="<<dfInfoBelow.size ()<<endl;
for (vector<Lattice*>::const iterator l=dfInfoBelow.begin();
1!=dfInfoBelow.end(); 1++)
Dbg: :dbg << " "< (FL)=>str (" ") <<endl;
}

// Incorporate information about the function's return value into the
caller's dataflow state
// as the information of the SgFunctionCallExp
ROSE ASSERT (retState==NULL || retState->size()== || (retState-
>size () == dfInfoBelow.size()));
if (retState) {
vector<Lattice*>::iterator 1lRet;
vector<Lattice*>::const iterator 1DF;

for (l1Ret=retState->begin(), 1DF=dfInfoBelow.begin();
1Ret!=retState->end(); 1lRet++, 1DF++) {
Dbg: :dbg << " 1DF Before="<< (*1DF)->str (" ") <<endl;
Dbg::dbg << " 1Ret Before="<< (*1Ret)->str (" ") <<endl;
(*1DF)->unProject (isSgFunctionCallExp (n.getNode()), *1lRet);
Dbg::dbg << " 1DF After="<< (*1DF)->str (" ") <<endl;

InterProceduralDataflow

InterProceduralDataflow: :InterProceduralDataflow (IntraProceduralDataflo
w* intraDataflowAnalysis)

InterProceduralAnalysis ((IntraProceduralAnalysis*)intraDataflowAnalysis

)

// '!! NOTE: cfgForEnd() AND cfgForBeginning() PRODUCE THE SAME
SgFunctionDefinition SgNode BUT THE DIFFERENT INDEXES
// ! (0 FOR BEGINNING AND 3 FOR END).
AS SUCH, IT DOESN'T MATTER WHICH ONE WE CHOOSE. HOWEVER, IT DOES MATTER
// i WHETHER WE CALL genInitState TO
GENERATE THE STATE BELOW THE NODE (START OF THE FUNCTION) OR ABOVE IT
// 1! (END OF THE FUNCTION) . THE

CAPABILITY TO DIFFERENTIATE THE TWO CASES NEEDS TO BE ADDED TO
genInitState

// v AND WHEN IT IS, WE'LL NEED TO CALL
IT INDEPENDENTLY FOR cfgForEnd() AND cfgForBeginning() AND ALSO TO MAKE
//] TO SET THE LATTICES ABOVE THE

ANALYSIS

TODO: begin and end func definition issue is mentioned inside of this

simplest form:unstructured

Simplest form: No transfer action at call sites at all

class UnstructuredPassInterDataflow : virtual public
InterProceduralDataflow

{

public:

UnstructuredPassInterDataflow (IntraProceduralDataflow*
intraDataflowAnalysis)

InterProceduralAnalysis ((IntraProceduralAnalysis*)intraDataflowAnalysis
), InterProceduralDataflow(intraDataflowAnalysis)

{}

// the transfer function that is applied to SgFunctionCallExp
nodes to perform the appropriate state transfers

// fw - =true if this is a forward analysis and =false if this
is a backward analysis

// n - the dataflow node that is being processed

// state - the NodeState object that describes the dataflow
state immediately before (if fw=true) or immediately after

// (if fw=false) the SgFunctionCallExp node, as
established by earlier analysis passes

// dfInfo - the Lattices that this transfer function operates
on. The function propagates them

// to the calling function and overwrites them with
the dataflow result of calling this function.

// retState - Pointer reference to a Lattice* vector that will
be assigned to point to the lattices of

// the function call's return value. The callee may

not modify these lattices.

// Returns true if any of the input lattices changed as a
result of the transfer function and

// false otherwise.

bool transfer (const Function& func, const DataflowNode& n,
NodeState& state,

const std::vector<Lattice*>& dfInfo,

std::vector<Lattice*>** retState, bool fw)

{

return false;

void runAnalysis();

b

// simply call intra-procedural analysis on each function one by one.
void UnstructuredPassInterDataflow::runAnalysis ()
{

set<FunctionState*> allFuncs =
FunctionState::getAllDefinedFuncs () ;

// iterate over all functions with bodies
for (set<FunctionState*>::iterator it=allFuncs.begin();
it!=allFuncs.end(); it++)
{
const Function& func = (*it)->func;
FunctionState* fState =
FunctionState::getDefinedFuncState (func) ;

// Call the current intra-procedural dataflow as if it
were a generic analysi
intraAnalysis->runAnalysis (func, & (fState->state));

ContextInsensitivelnterProceduralDataflow

TODO

How to use one analysis

Call directly

Direct call: Runs the intra-procedural analysis on the given function and returns true if
the function's NodeState gets modified as a result and false otherwise state - the
function's NodeState

« bool IntraUniDirectionalDataflow::runAnalysis(const Function& func,
NodeState* state, bool analyzeDueToCallers, std::set<Function> calleesUpdated);

« direct call with a simpler parameter list : not feasible, all intra procedural analysis
has to have an inter procedural analysis set interally!

bool IntraProceduralDataflow::runAnalysis (const Functioné& func,
NodeState* state)
{
// Each function is analyzed as if it were called directly by the
language's runtime, ignoring
// the application's actual call graph
bool analyzeDueToCallers = true;

// We ignore the application's call graph, so it doesn't matter
whether this function calls other functions
std: :set<Function> calleesUpdated;

return runAnalysis (func, state, analyzeDueToCallers,
calleesUpdated) ;
}

Through inter-procedural analysis

Invoke a simple intra-procedural analysis through the unstructured pass inter-procedural
data flow class

int main ()

{
SgProject* project = frontend(argc,argv);
initAnalysis (project);

// prepare debugging support
Dbg::init ("Live dead variable analysis Test", ".", "index.html");
liveDeadAnalysisDebuglLevel = 1;

analysisDebugLevel = 1;

// basis analysis
LiveDeadVarsAnalysis ldva (project);
// wrap it inside the unstructured inter-procedural data flow
UnstructuredPassInterDataflow ciipd ldva(&ldva);
ciipd ldva.runAnalysis();

Retrieve lattices

Sample code:

// Initialize vars to hold all the variables and expressions that are
live at DataflowNode n
//void getAllLiveVarsAt (LiveDeadVarsAnalysis* ldva, const DataflowNodes
n, const NodeState& state, set<varID>& vars, string indent)
void getAlllLiveVarsAt (LiveDeadVarsAnalysis* ldva, const NodeStateé&
state, set<varID>& vars, string indent)
{
LiveVarsLattice* livelAbove =
dynamic cast<LiveVarsLattice*>(* (state.getLatticeAbove (1ldva) .begin()));
LiveVarsLattice* livelBelow =
dynamic cast<LiveVarsLattice*>(* (state.getLatticeBelow(ldva) .begin()));

// The set of live vars AT this node is the union of vars that
are live above it and below it
for (set<varID>::iterator var=livelLAbove->liveVars.begin();
var!=liveLAbove->liveVars.end(); var++)
vars.insert (*var) ;
for (set<varID>::iterator var=livelBelow->liveVars.begin();
var!=liveLBelow->liveVars.end(); var++)
vars.insert (*var);

}

How to debug

Trace the analysis

Turn it on

liveDeadAnalysisDebugLevel = 1;
analysisDebugLevel = 1;

// find code with
if (analysisDebugLevel>=1)

check the web page dump using a browser

firefox index.html

How to read the trace file: start from the beginning: information is ordered based on the
CFG nodes visited. The order could be forward or backward order. Check if the order is
correct first, then for each node visited

Copying incoming Lattice O:
[LiveVarslLattice: liveVars=[b]]

To outgoing Lattice O0:
[LiveVarsLattice: liveVars=[]]

Transferring the outgoing Lattice
livelat=[LiveVarsLattice: liveVars=[b]]
Dead Expression

usedVars=<>

assignedVars=<>

assignedExprs=<>

#usedVars=0 #assignedExprs=0
Transferred: outgoing Lattice O0:

[LiveVarslLattice: liveVars=[b]]
transferred, modified=0

Propagating/Merging the outgoing Lattice to all descendant nodes
Descendants (1) :
Descendant: 0x2b9%e8c47f010[SgIlfStmt | if(flag == 0) c = aj;else c =
b;]

Propagating to Next Node: 0x2b%e8c47f010[SgIlfStmt | if(flag ==
0) ¢ = aselse ¢c = b;]
Cur node: Lattice O0:
[LiveVarsLattice: liveVars=[b]]
Next node: Lattice O0:
[LiveVarsLattice: liveVars=[a]]
Next node's in-data modified. Adding...
Propagated: Lattice O0:
[LiveVarsLattice: liveVars=[a, b]]
propagated/merged, modified=1

AAAAAAAAAAAAAAAAAAN

A real example: if (flag) ¢ = a; else ¢ = b; // liveness analysis, a,
b are live in two branches, they are propagated backward to if-stmt

Descendants (1): // from c =a back to if-stmt (next node)
Descendant: 0x2ac8bb95c010[SgIfStmt | if(flag == 0) c = aj;else c =
b;]

Propagating to Next Node: 0x2ac8bb95c010[Sglfstmt | if(flag ==
0) ¢ = a;else ¢ = b;]
Cur node: Lattice O0:
[LiveVarsLattice: liveVars=[a]] // current node's lattice
Next node: Lattice 0:

[LiveVarsLattice: liveVars=[]] // next node's lattice
before propagation
Next node's in-data modified. Adding...
Propagated: Lattice O0:
[LiveVarsLattice: liveVars=[a]] // propagate a into if-
stmt's lattice
propagated, modified=1

AAAAAAAAAAAAAAAAAA

Descendants (1): // from ¢ = b --> if-stmt
Descendant: 0x2ac8bb95c010[SgIfStmt | if(flag == 0) c = aj;else c =
b;]

Propagating to Next Node: 0x2ac8bb95c010([SgIfStmt | if(flag ==
0) ¢ = ayelse ¢ = b;]
Cur node: Lattice O0:
[LiveVarsLattice: liveVars=[b]]
Next node: Lattice 0:
[LiveVarslattice: liveVars=[a]]
Next node's in-data modified. Adding...
Propagated: Lattice O0:
[LiveVarslLattice: liveVars=[a, b]] // now both a and b are
propagated/ merged
propagated, modified=1

AAAAAAAAAAAAAAAAAAN

Dump cfg dot graph with lattices

A class analysisStatesToDot is provided generate a CFG dot graph with lattices
information.

//AnalysisDebuggingUtils.C

class analysisStatesToDOT : public UnstructuredPassIntraAnalysis
{
private:
// LiveDeadVarsAnalysis* lda; // reference to the source
analysis
Analysis* 1lda; // reference to the source analysis
void printEdge (const DataflowEdgeé& e); // print data flow edge
void printNode (const DataflowNode& n, std::string state string);
// print date flow node
void visit (const Function& func, const DataflowNode& n,
NodeState& state); // visitor function
public:
std::ostream* ostr;
analysisStatesToDOT (Analysis* 1): 1lda(l){ 1},
}i

namespace Dbg
{
VAR

void dotGraphGenerator (::Analysis *a)

::analysisStatesToDOT eas(a);
IntraAnalysisResultsToDotFiles upia eas(eas);
upia eas.runAnalysis();

}

} // namespace Dbg

Example use

// Liao, 12/6/2011
#include "rose.h"

#include <list>
#include <sstream>
#include <iostream>
#include <fstream>
#include <string>
#include <map>

using namespace std;

// TODO group them into one header
#include "genericDataflowCommon.h"
#include "VirtualCFGIterator.h"
#include "cfgUtils.h"

#include "CallGraphTraverse.h"
#include "analysisCommon.h"
#include "analysis.h"

#include "dataflow.h"

#include "latticeFull.h"

#include "printAnalysisStates.h"
#include "liveDeadVarAnalysis.h"

int numFails = 0, numPass = 0;
int

main(int argc, char * argv[])

{
SgProject* project = frontend(argc,argv);

initAnalysis (project);

// generating index.html for tracing the analysis

Dbg::init ("Live dead variable analysis Test",
liveDeadAnalysisDebuglLevel = 1;
analysisDebugLevel = 1;

LiveDeadVarsAnalysis ldva (project);

UnstructuredPassInterDataflow ciipd ldva(&ldva);

ciipd ldva.runAnalysis();
// Outpat the dot graph KK Kk ok Kk ok ok ok ok ok K Kk ok ok ok k ok ok ok ok
Dbg: :dotGraphGenerator (&ldva);

"index.html") ;

return 0;

Program Optimizations

ROSE provides the following program optimizations and tranformations:

loop transformation, including loop fusion, fisson, unrolling, blocking, loop
interchange, etc.

inlining

outlining

constant folding

partial redundancy elimination

Developer's Guide

We briefly describe the workflow of ROSE developers.

Basic skills for ROSE developers

These are some basic skills that ROSE developers should have, or acquire:

Shell programming: Bash (Bourne Again Shell) is the default shell for ROSE.
Unix commands: grep, find, ssh, €tc.

C++ programming: be conscious of applying consistent coding-style
conventions and writing code that will be maintainable when you leave
Debugging: GDB will be invaluable to make sure your code works as expected
Git - Source code management (SCM): get familiar with the basics of Git:
http://git-scm.com/

Build systems: GNU Autotools (autoconf, automake), GNU Make, GNU libtool
o CMake: (primarily so you won't break our existing Windows port)
LaTex: Document your work in ROSE/docs
ROSE Documentation: Be familiar with ROSE documents (tutorials,
installation, and developer guides): http://rosecompiler.org/documents.html. This
also includes the project's Doxygen documentation.
Compilers: ROSE is a compiler project, after all. Take some compiler courses!
o Read free online course materials related to compilers
o Keep learning topics related to your projects

Milestones for a ROSE developers

Having been working with some interns with us, we roughly identify the following
milestones for a ROSE developer

http://git-scm.com/
http://rosecompiler.org/documents.html

o Development environment: pick a platform of your choice (Linux or Mac OS),
and get familiar with that specific platform (shell, editors, environment variable
setting, etc.)

o Installing ROSE: being able to smoothly configure, compile, and install ROSE

o Build system: being able to add a project (first skeleton) into ROSE by modifying
Makefile.am, etc.

o Contribution following ROSE Coding Standard and passing code review

o Documentation: sufficient documentation about what you work is about
o Software Engineering:
= Style guidelines: Doxygen comments, naming conventions, where
to put things, etc.
= Algorithm design: documented by source comments how things
are expected to work
= Coding implementation: correctly implement the designed
algorithm
o Tests: Each contribution must have the accompanying tests to make sure it
works as expected
« Continuous integration: pass Jenkins tests
o Add a new test job if none of the existing ones tests your project

code review

see Code Review for details

Workflow

Motivation and Goals

Quality comes from a good process.

The goal is to have a streamlined, simplified, and automated workflow involving both
users and developers to

« improve the qualify of ROSE: source codes and documentations

e improve our productivity: optimize and simplify our daily work process so we can
do more quality work using less time and other resources

Development Guide

Developing a big, sophisticated project entails many challenges. To mitigate some of
these challenges, we have adopted several best practices: incremental development, code
review, and continuous integration.

Incremental Development

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Coding_Standard
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Code_Review
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Code_Review

Developing new functionality in small steps, where the resulting code at each step is a
useful improvement over the previous state. Contrast to developing an entire feature fully
elaborated, with no points along the way at which it's externally usable.

Each ROSE developer is expected to push his/her work at least once every three weeks.
Major benefits of doing things incrementally

e You can have intermediate results along the path. So your sponsors will sleep
better.

o You will get feedback early and frequently about if you are heading to the right
direction.

o Your work will be tested and merged often into the master branch, avoiding the
risks of merge conflicts.

See more tips about How to incrementally work on a project

Code Review

See Code Review in ROSE.

Continuous Integration

Incorporating changes from work in progress into a shared mainline as frequently as
possible, in order to identify incompatible changes and introduced bugs as early as
possible. The integrated changes need not be particular increments of functionality as far
as the rest of the system is concerned.

In other words, incremental development is about making one's work valuable as early as
possible, and potentially about getting a better sense of what direction it should take,
while continuous integration is about reducing the risks that result from codebase
divergence as multiple people do development in parallel.

The question of whether to conditionalize new code is an interesting one. By doing so,
one narrows the scope of continuous integration to just checking for surface
incompatibilities in merging the changed code. Without actually running the new code
against the existing tests, the early detection of introduced bugs is lost. In exchange,
multiple people working in the same part of the codebase become less likely to step on
each other’s toes, because the relevant code changes are distributed more rapidly.

High Level Workflow

Requirement Analysis

o External (https://github.com/rose-compiler/rose): start an issue to be discussed

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_incrementally_work_on_a_project
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Code_Review
https://github.com/rose-compiler/rose

e Wikibook:
o collect community input
« mailing list: interaction with users, feel users' need

Design

e Wikibook: community-based design documents and provoke discussion
e Powerpoint slides: more formal communication about what is the design

Implementation

e Redmine (http://hudson-rose-30:3000/): create projects based on milestones and
user input, create and track tasks
o Project-Specific Tasks
o Private Issue Tracking
o Private Documentation
= Using redmine’s wiki

e Github:
o Internal (http://github.linl.gov/): for code review only,
o External (https://github.com/rose-compiler/rose): public hosting code,
pubic issue tracking for general ROSE bugs and features.
o "Rosebot" to automate Github workflow: preliminary testing, policies (git-
hooks), automatically add reviewers, etc.

Testing

o Jenkins ((http://hudson-rose-30:8080/)): continuous integration of new features,
bugfixes

Documentation

e See more at ROSE Compiler Framework/Documentation

Publicity

e Website (http://www.rosecompiler.org): content management system hooked up
with all other components

Proposing Workflow Changes

Major workflow improvements and changes should be thoroughly tested and reviewed by
staff members before deployment since they may have profound impact on the project

How to propose a workflow change

http://hudson-rose-30:3000/
http://github.llnl.gov/
https://github.com/rose-compiler/rose
http://hudson-rose-30:8080/
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Documentation
http://www.rosecompiler.org/

Submit a ticket on github.com's rose-public/rose issue tracker. In the ticket,
provide the following information:
o What is it: Explain what change is proposed
o Why the changes: the long-term benefits for our productivity and quality
of work
o The cost of the changes: learning curve, maintainability, purchase cost

Reviewing Workflow Change Proposals

Review criteria

Optimize
o Optimize our workflow to allow us to do more quality and use less time
and other resources.
Address what is slowing us down or distracting us.
Simplify daily life. Compare how we can eliminate or automate using the
proposed workflow improvements.
= |t is counterproductive to improve workflow by adding more
hoops/steps/clicks into daily work.
Improve:

o Allows the improvement of the quality of work incrementally:

o Accepting incremental improvements is more realistic than asking for
perfection in the first try.

o Workflow should allow quick new contributions and fast revision of
existing contributions

Automate:

o Additions to the workflow should be automated as much as possible.
Preserve:

o It must preserve existing work:

= No creation of anything from scratch

o Does it interact well with existing workflow

o Isthere a way to convert existing code/documents into the new form
Simplicity:

o The more software tools we depend on, the harder to use and maintain our
workflow. Similarly, the more formats/standards we enforce, the harder
for developers to do their daily work

o Adopting new required software components and new required technical
formats/standards in our workflow should be very carefully reviewed for
the associated long-term benefits and costs. Long-term means the range
of 5to 10 years and is not tied to a temporary thing we use now.

Preference of major contributors: Whoever contributes the most should has a little
bit more weight to say

Documentation: We require major changes to be documented and reviewed before
deployment. Writing down things can help us clarify details and solicit wider
comments (instead of limited to face-to-face meeting)

Coding Standard
What to Expect and What to Avoid

This page documents the current recommended practice of how we should write code
within the ROSE project. It also serves as a guideline for our code review process.

New code should follow the conventions described in this document from the very
beginning.

Updates to existing code that follows a different coding style should only be performed if
you are the maintainer of the code.

The order of sections in coding standard follows a top-down approach: big things first,
then drill down to fine-grain details.

Five Principles

We use coding standard to reflect the principal things we value for all contributions to
ROSE

« Documentation: What are the commits about? Is this reflected in README,
source comments, or LaTex files within the same commits?

o Style: Is the coding style consistent with the required and recommended formats?
Is the code clean and pleasant and easy to read?

o Algorithm: Does the code has sufficient comments about what algorithm is used?
Is the algorithm correct and efficient(space and time complexity)?

o Implementation: Does the implementation correctly implement the documented
algorithms?

e Testing: Does the code has the accompanying test translator and input to ensure
the contributions do what they are supposed to do?

o Is Jenkins being configured to trigger these tests? Local tests on
developer's workstation do not count.

Avoid Coding Standard War

We directly quote text from http://www.parashift.com/c++-fag/coding-std-wars.html, as
follows:

"Nearly every software engineer has, at some point, been exploited by someone who used
coding standards as a power play. Dogmatism over minutia is the purvue of the
intellectually weak. Don't be like them. These are those who can't contribute in any
meaningful way, who can't actually improve the value of the software product, so instead
of exposing their incompetence through silence, they blather with zeal about nits. They

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Code_Review
http://www.parashift.com/c++-faq/coding-std-wars.html

can't add value in the substance of the software, so they argue over form. Just
because "they" do that doesn't mean coding standards are bad, however.

Another emotional reaction against coding standards is caused by coding standards set by
individuals with obsolete skills. For example, someone might set today's standards
based on what programming was like N decades ago when the standards setter was
writing code. Such impositions generate an attitude of mistrust for coding standards. As
above, if you have been forced to endure an unfortunate experience like this, don't let it
sour you to the whole point and value of coding standards. It doesn't take a very large
organization to find there is value in having consistency, since different programmers can
edit the same code without constantly reorganizing each others' code in a tug-of-war over
the "best™ coding standard."

Must, Should and Can
The terms must, should and can have special meaning.

e A must requirement must be followed,
e Asshould is a strong recommendation,
e Acanisageneral guideline.

Got New ldeas, Suggestions

This is not a place to write down the new ideas/concepts/suggestions to be used in the
future. If you have suggestions, put into the discussion tab link of this page.

We do welcome suggestions for improvements and changes so we can do things faster
and better.

e For suggestions, please follow the procedure defined in
Proposing_Workflow Changes

o The suggestions will be reviewed by the criteria defined in
Reviewing_Workflow Change_Proposals

Programming Languages
Core Languages

Only C++ is allowed. Any other programming language is an exception on a case-by-
case basis.

Question: But Programming language XYZ is much better than C++ and | am really
good at XYZ!!!

Answer: we can allow XYZ only if

http://en.wikibooks.org/wiki/Talk:ROSE_Compiler_Framework/Coding_Standard
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Workflow#Proposing_Workflow_Changes
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Workflow#Reviewing_Workflow_Change_Proposals

e you can teach at least one of old dogs (staff members) of our team the new tricks
to efficiently use XYZ

o you will be around in our team in the next 5 to 10 years to maintain all the code
written in XYZ if none of the old dogs have time/interest to switch to XYZ

e you can prove that XYZ can interact well with the existing C++ codes in ROSE

Scripting Languages
Only two scripting languages are allowed

e bash shell scripting
o perl

Again, this is just a preference of the staff members and what we have now. Allowing

uncontrolled number of scripting languages in a single project will make the project
impossible to maintain and hard to learn.

Naming Conventions

The order of sub-sections reflects a top-down approach for how things are added during
the development cycle: from directory --> file --> namespace --> etc.

General
o Language: all names should be written in English since it is the preferred

language for development, internationally
o fileName; // NOT: filNavn

Abbreviations and Acronyms

Avoid ambiguous abbreviations: obtain good balance between user-clarity and -
productivity.

Abbreviations and acronyms should NOT be uppercase when used as name

« exportHtmlSource(); // NOT: exportHTMLSource();
o openDvdPlayer(); // NOT: openDVDPlayer();

File/Directory

Case:

e camelCase like fileName.hpp: This is consistent with existing names used in
ROSE

File Extension:

e Header files: .h or .npp
e Source files: .cpp Or .cxx
o .cshould be avoided to work with file systems which do not distinguish
between lower or upper case.

Namespaces

« A namespace should represent a logical unit, usually encapsulated in a single
header file within a specific directory.
o CamelCase for namespaces, such as Sagelnterface, SageBuilder, etc.
o avoid lower case names, bad names: sage_interface
« use singular for nouns within namespace names, avoid plural
« use full words, avoid abbreviations

Reason: the name convention of namespace is meant to be compatible with existing code
and consistent with function names within namespaces.

o CamelCase namespace can nice be used with doSomething() like:
NameSpace::doSomething()

« lower case namespace names may look inconsistent, such as
name_space_1::doSomething()

e many existing namespaces in ROSE already follow CamelCase, as shown at link

[Note] Leo: I believe this should be more discussed with ROSE Compiler
Framework/ROSE API.

Types
MUST be in mixed case starting with an uppercase letter, as in savingsAccount
Variables

o Length: variables with a large scope should have long names, variables with a
small scope can have short names

e Temporary variables used for temporary storage (e.g. loop indices) are best kept
short. A programmer reading such variables should be able to assume that its
value is not used outside of a few lines of code. Common scratch variables for
integers are i, 3, k, m, n. Optionally, you can use ii, jj, kk, mm, and nn, which are
easier to highlight when looking for indexing bugs.

e Case: camelcase--mixed case starting with lowercase letter, as in functionbecl

http://rosecompiler.org/ROSE_HTML_Reference/namespaces.html
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/ROSE_API
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/ROSE_API

o Variables are purposely to start with lowercase letter as compared to upper
case letter for Types. So it is clear by looking at the first letter to know if a
name is a variable or a type.

Booleans

Negated boolean variable names must be avoided. The problem arises when such a name
is used in conjunction with the logical negation operator as this results in a double
negative. It is not immediately apparent what !isNotFound means.

bool isError; // NOT: isNoError
bool isFound; // NOT: isNotFound

Collections

Plural form should be used on names representing a collection of objects. This enhances
readability since the name gives the user an immediate clue as to the type of the variable
and the operations that can be performed on its elements.

For example,

vector<Point> points;
int values|[];

Constants

Named constants (including enumeration values): MUST be all uppercase using
underscore to separate words.

For example:

int MAX_I TERATIONS, COLOR_RED;
double PI;

In general, the use of such constants should be minimized. In many cases implementing
the value as a method is a better choice:

int getMaxIterations() // NOT: MAX ITERATIONS = 25
{

return 25;

}
Generic

Generic variables should have the same name as their type. This reduces complexity by
reducing the number of terms and names used. Also makes it easy to deduce the type
given a variable name only. If for some reason this convention doesn't seem to fititis a
strong indication that the type name is badly chosen.

void setTopic (Topic* topic) // NOT: void setTopic (Topic* value)
// NOT: void setTopic (Topic* aTopic)
// NOT: void setTopic (Topic* t)

void connect (Database* database) // NOT: void connect (Database* db)
// NOT: void connect (Database*
oracleDB)

Non-generic variables have a role. These variables can often be named by combining
role and type:

Point startingPoint, centerPoint;
Name loginName;

Globals

Must always be fully qualified, using the scope-resolution operator : :.
Forexanuﬂe,::mainWindow.open()and::applicationContext.getName()
In general, the use of global variables should be avoided. Instead,

o Place variable into a namespace
e Use singleton objects

Private class variables

Private class variables should have underscore suffix. Apart from its name and its type,
the scope of a variable is its most important feature. Indicating class scope by using
underscore makes it easy to distinguish class variables from local scratch variables.

For example,

class SomeClass {
private:
int length ;

An issue is whether the underscore should be added as a prefix or as a suffix. Both
practices are commonly used, but the latter is recommended because it seem to best
preserve the readability of the name. A side effect of the underscore naming convention
is that it nicely resolves the problem of finding reasonable variable names for setter
methods and constructors:

void setDepth (int depth)
{

depth = depth;
}

Methods and Functions
Names representing methods or functions: MUST be verbs and written in mixed case
starting with lower case to indicate what they return and procedures (void methods) after
what they do.
o e.9. getName(), computeTotalWidth(), isEmpty()
A method name should avoid duplicated object name.

« e.g. line.getLength(); // NOT: line.getLineLength();

The latter seems natural in the class declaration, but proves superfluous in use, as shown
in the example.

The terms get and set must be used where an attribute is accessed directly.

» e.g: employee.getName(); employee.setName(name); matrix.getElement(2, 4);
matrix.setElement(2, 4, value);

The term compute can be used in methods where something is computed.

e e.g: valueSet->computeAverage(); matrix->computelnverse()
Give the reader the immediate clue that this is a potentially time-consuming operation,
and if used repeatedly, he might consider caching the result. Consistent use of the term
enhances readability.
The term £ind can be used in methods where something is looked up.

o e.g.: vertex.findNearestVertex(); matrix.findMinElement();

Give the reader the immediate clue that this is a simple look up method with a minimum
of computations involved. Consistent use of the term enhances readability.

The term initialize can be used where an object or a concept is established.
e e.g: printer.initializeFontSet();

The american initialize should be preferred over the English initialise. Abbreviation init
should be avoided.

The prefix is should be used for boolean variables and methods.

e e.0:isSet, isVisible, isFinished, isFound, isOpen

There are a few alternatives to the is prefix that fit better in some situations. These are
the has, can and should prefixes:

« bool hasLicense();

e bool canEvaluate();
 bool shouldSort();

Directories

Naming Convention
List of common names
e src:to putsource files, headers
e include: to put headers if you have many headers and don't want to put them all
into ./src
e tests! put test inputs
e docs: detailed documentation not covered by README
Please use camelCase for your directory name.
e you should avoid leading Capitalization
Examples of preferred names
e roseExtensions
e roseSupport
e r0seAPI

What to avoid

e rose_api
e rose_support

Layout

TODO: big picture about where to put things within the ROSE git repository.

For each project directory under ./projects, it is our convention to have subdirectories for
different files

« README: must have this
e ./src: for all your source files
e ./include: for all your headers if you don't want to put them all into ./src

o .Jtests: for your test input files
e ./doc: for your more extensive documentation if README is not enough

Files
A single file should contain one logical unit, or feature. Keep it modular!
Naming Conventions
A file name should be specific and descriptive about what it contains.
You should use camelCase (lowercase character in the beginning)
e good example: fileName.h
What should be avoided

« start with capitalization,
o bad example using underscore: file_name.h

Bad file name

o functions.h
o file_name.h

References
o http://geosoft.no/development/cppstyle.html/cppstyle.htmli#Files

e A couple good points:
http://www.records.ncdcr.gov/erecords/filenaming 20080508 final.pdf

Line length
o File content should be kept within 80 columns.
80 columns is a common dimension for editors, terminal emulators, printers and
debuggers, and files that are shared between several people should keep within these

constraints. It improves readability when unintentional line breaks are avoided when
passing a file between programmers.

Indentation

Avoid tabs for your code indentation, except in cases where tabs (\t) are required, e.g.
MakefileS.

http://geosoft.no/development/cppstyle.html/cppstyle.html#Files
http://www.records.ncdcr.gov/erecords/filenaming_20080508_final.pdf

2 or 4 spaces is recommended for code indentation.

for (i

0; i < nElements; i++)
ali] ;

0;

Indentation of 1 is too small to emphasize the logical layout of the code. Indentation
larger than 4 makes deeply nested code difficult to read and increases the chance that the
lines must be split.

Characters
o Special characters like TAB and page break must be avoided.

These characters are bound to cause problem for editors, printers, terminal emulators or
debuggers when used in a multi-programmer, multi-platform environment.

We already have a built-in perl script to enforce this policy.

Header files
File name:

e must be camelCase: such as fileName.h or fileName.hpp
o avoid file_name.h

Suffix

e For C header files: Use .h
e For C++ header files: Use .n or .hpp

Must have

e protected preprocesssing directives to prevent the header from being included
more than once, example

#ifndef HEADER FILE X H
#define HEADER FILE X H

#endif // HEADER FILE X H
e tryto put your variables, functions, classes within a descriptive namespace.
« Include statements must be located at the top of a file only.
o Avoid unwanted compilation side effects by "hidden" include statements

deep into a source file.

What to avoid

o global variables, functions, or classes ; // they will pollute the global scope
e using namespace std;

o this will pollute the global scope for each .cpp file which includes this
header. using namespace should only be used by .cpp files. More
explanations are at link and link2

o function definitions

References:

o http://www.parashift.com/c++-fag/hdr-file-ext.html

Source files
Again, file names should follow the name convention

« camelCase file name: e.g. sagelnterface.cpp
e Avoid capitalization, spaces, special characters

Preferred suffix

e Use .c for C source files
e Use .cpp or .cxx for C++ source files

What to avoid

« capitalized .c for source files. This will cause some issue when porting ROSE to
case-insensitive file systems.

References

e http://www.parashift.com/c++-fag/src-file-ext.html

README

File name should be README

what to avoid

¢ README.txt
e readme

Required Content

For all major directories in ROSE, there should be a README explaining

http://www.parashift.com/c++-faq/using-namespace-std.html
http://www.possibility.com/Cpp/CppCodingStandard.html#dgdu
http://www.parashift.com/c++-faq/hdr-file-ext.html
http://www.parashift.com/c++-faq/src-file-ext.html

e What is in this directory
e What does this directory accomplish
e Who added it and when

Each project directory must have a README to explain:

What this project is about
o Name of the project
o Motivation: Why do we have this project
o Goal: What do we want to achieve
o Design/Implementation: So next person can quickly catch up and contribute to
this project
o How do we design/implement it.
o What is the major algorithm
o Brief instructions about how to use the project
o Installation
o Testing
o Or point out where to find the complete documentation
o Status
o What works
o What doesn't work
e Known limitations
o References and citations: for the underlying algorithms
e Authors and Dates

Format
Format of README

o text format with clear sections and bullets
« optionally, you can use styles defined by w:Markdown

Examples
An example README can be found at

o https://github.com/rose-
compiler/rose/blob/master/projects/OpenMP Translator/README

Source Code Documentation

The source code of ROSE is documented using the Doxygen documentation system.

General Guidelines

http://en.wikipedia.org/wiki/Markdown
https://github.com/rose-compiler/rose/blob/master/projects/OpenMP_Translator/README
https://github.com/rose-compiler/rose/blob/master/projects/OpenMP_Translator/README
https://github.com/rose-compiler/rose
http://www.rosecompiler.org/ROSE_HTML_Reference/index.html
http://www.stack.nl/~dimitri/doxygen/

o English only
o Use valid Doxygen syntax (see "Examples™ below)
o Make the code readable for a person who reads your code for the first time:

o Document key concept, algorithm, functionalities

o Cover your project, file, class/namespace, functions, and variables.

o State your input and output clearly, specifically the meaning of the input

or output
= Users are more likely to use your code if they don't have to think
about what the output means or what the input should be

TODO, not ready yet

e Test your documentation by generating it on your machine and then manually
inspecting it to confirm its correctness

TODO: Generating Local Documentation

This does not work sometimes since we have a configuration file to indicate which
directories to be scanned to generate the web reference html files

$ make doxygen docs -C ${ROSE BUILD}/docs/Rose/

Use //TODO
This is a recommended way to improve your code's comments.
While doing incremental development, it is often to have something you decide to do in
the next iterations or you know your current implementation/functions have some
limitations to be fixed in the future.
A good way is to immediately put a TODO source comments (// TODO blar blar ..) into
the relevant code when you make such kind of decisions so you won't forget here is
something you want to do next time.

The TODOs also serve as some handy flags within the code for other people if they want
to improve your work after you are gone.

Examples

Single Line

Often a brief single line comment is enough
//! Brief description.

Multiple lines

Doxygen supports comments with more than one lines.

/**
. text..
*/
/**
*
* ... text..
*/

/*******************************//**

* text
*********************************/

L1777 77777777 7777777777777 77777777777
/// ... text <= 80 columns in length
L1770 7077777777 77777777777777777777

Combined single line and multiple lines

Doxygen can generate a brief comment for a function and optionally show detailed
comments if users click on the function.

Here are the options to support combined single-line and multiple-line source comments.

Option 1:
/**
* \brief Brief description.
* Brief description continued.

*

* [Optional detailed description starts here.]

*/
Option 2:
/**

\brief Brief description.
Brief description continued.

[Optional detailed description starts here.]

*/

Single line comment followed by multiple line comments':

You may extend an existing single line comment with a multiple line comments (Option
1 or 2). For example:

//' Brief description.
/**
* Detailed description starts here.

*/

TODO: provide a full, combined example.

Functions
Rules

o Except for simple functions like getXX() and setXX(), all other functions should
have at least one line comment to explain what it does
e Avoid global functions and global variables. Try to put them into a namespace.
e A function should not have more than 100 lines of code. Please refactor a big
function into smaller, separated functions.
« Limit the unconditional printf() so your translator will print to screen hundreds
lines of text output when processing multiple input files
o use if condition to control printf() for debugging purposes such as if
(SgProject::get_verbose() >0)

Comments
Rules
o Please follow Doxygen style comments
o Please explain in sufficient details about how your function works: the algorithm
steps.

o Reviewers will check your algorithms in comments first then read your
code to see if the code implements the algorithm correctly and efficiently.

Coding
Correctly implement the designed/documented algorithms
Code should be efficient in terms of both time and space (memory) complexity.

Please be aware that your translator may handle thousands of statements with even more
AST nodes.

Classes

Try to use namespace when possible, avoid global variables or classes.

Name after what it is

Name the class after what it is. If you can't think of what it is that is a clue you have not
thought through the design well enough.

e aclass name should be a noun.
Compound names of over three words are a clue your design may be confusing various

entities in your system. Revisit your design. Try a CRC card session to see if your objects
have more responsibilities than they should.

Explicit access

All sections (public, protected, private) should be identified explicitly. Not applicable
sections should be left out.

Public members first
The parts of a class should be sorted public, protected and private.

The ordering is "most public first" so people who only wish to use the class can stop
reading when they reach the protected/private sections.

Class variables

Class variables should NOT be declared public.
The concept of C++ information hiding and encapsulation is violated by public variables.
Use private variables and access functions instead. One exception to this rule is when the
class is essentially a data structure, with no behavior (equivalent to a C struct). In this

case it is appropriate to make the class' instance variables public.

Avoid structs

Structs are kept in C++ for compatibility with C only, and avoiding them increases the
readability of the code by reducing the number of constructs used. Use a class instead.

Statements

Loops

Only loop control statements must be included in the for() construction.

// Recommended way
sum = 0;
for (1 = 0; 1 < 100; 1i++)
sum += value[i]; sum += valuel[i];

// NOT allowed
for (i = 0, sum = 0; i < 100; i++)

Increase maintainability and readability. Make a clear distinction of what controls and
what is contained in the loop.

Loop variables should be initialized immediately before the loop.
Type conversions

Type conversions must always be done explicitly. Never rely on implicit type conversion.

// recommended way

floatValue = static cast<float>(intValue);
// NOT allowed

floatValue = intValue;

By this, the programmer indicates that he is aware of the different types involved and that
the mix is intentional.

Conditionals

The conditional should be put on a separate line.

if (isDone)
// NOT: if (isDone) doCleanup (); doCleanup () ;

This is for debugging purposes. When writing on a single line, it is not apparent whether
the test is really true or not.

Complex conditional expressions must be avoided. Introduce temporary boolean
variables instead

//recommended way

bool isFinished = (elementNo < 0) || (elementNo > maxElement) ;

bool isRepeatedEntry = elementNo == lastElement;

if (isFinished || isRepeatedEntry) { : }

// NOT: if ((elementNo < 0) || (elementNo > maxElement) || elementNo ==

lastElement) { : }

By assigning boolean variables to expressions, the program gets automatic
documentation. The construction will be easier to read, debug and maintain.

Statements to be avoided
The following statements should usually be avoided

« goto should not be used. Goto statements violate the idea of structured code. Only
in some very few cases (for instance breaking out of deeply nested structures)
should goto be considered, and only if the alternative structured counterpart is
proven to be less readable.

o Executable statements in conditionals should be avoided. Conditionals with
executable statements are just very difficult to read.

File* fileHandle = open(fileName, "w");
if (!fileHandle) { : }
// NOT: if (! (fileHandle = open (fileName, "w"))) { : }

AST translators

All ROSE-based translators should call AstTests::runAllTests(project) after all the
transformation is done to make sure the translated AST is correct.

This has a higher standard than just correctly unparsed to compilable code. It is common
for an AST to go through unparsing correctly but fail on the sanity check.

More information is at Sanity check

Test cases

All contributions MUST have the accompanying test translator and input files to
demonstrate the contributions work as expected.

o All tests MUST be triggered by the "make check" rule
« All test should have self-verification to make sure the correct results are generated
o All tests MUST be activated by at least one of the integration tests of Jenkins

o This will ensure that no future commits can break your contributions.

References

We list some external resources which are influential for us to define ROSE's coding
standard

o http://www.possibility.com/Cpp/CppCodingStandard.html

o Sutter and Alexandrescu, C++ Coding Standards, 220 pgs, Addison-Wesley,
2005, ISBN 0-321-11358-6.

o http://www.parashift.com/c++-fag/coding-standards.html

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Abstract_Syntax_Tree#Sanity_check
http://www.possibility.com/Cpp/CppCodingStandard.html
http://en.wikibooks.org/wiki/Special:BookSources/0321113586
http://www.parashift.com/c++-faq/coding-standards.html

o http://geosoft.no/development/cppstyle.html/

Code Review Process

Github.linl.gov

2. Add reviewers as
collaborators

!

8. Pass merge

Rose-compiler/rose liao6/rose .
- by reviewer Code
Branches: Branches: o
* Master = hlaster <6
. * Bugfix
* FeatureX
& 7. Puill (merge) request
3, giclone + change src-»dest (base)
: * bug/feature branch ->mastdr
6 git push (to non-master anly)
5, git pull L 4
—
8. Review fails

4, Local edits/fcommits <€

thd
Code review using github.lInl.gov

2. Auto regression
tests / et
E Rose-compiler/rose m
Branches: Branches:

3. Auto - -

merge Branches: 4. auto push master
s - Master R

* ¢l-review-rc 4

* Master r o = » Master
| -] .

1. auta pull master
liaok has cl-review-rc branch

£
Connection between github and Jenkins

Motivation

Without code review, developers have:

o added files into wrong directories, with improper names

o committed hundreds of reformatted files

o disabled tests to subvert our stringent Jenkins CI regression tests
« re-invented the wheel by implementing features that already exist
o added 160MB MPI trace files into the git repository

http://geosoft.no/development/cppstyle.html/
http://commons.wikimedia.org/wiki/File:Rose-compiler-code-review-1.png
http://en.wikibooks.org/wiki/File:Rose-compiler-code-review-1.png
http://commons.wikimedia.org/wiki/File:Rose-compiler-code-review-2.png
http://en.wikibooks.org/wiki/File:Rose-compiler-code-review-2.png

Goals

Our primary goals for code reviewing ROSE are to:

« share knowledge about the code: coder + reviewer will know the code, instead of
just the coder

group-study: learn through studying other peoples' code

enforce policies for consistent usability and maintainability of ROSE code

avoid reinventing the wheel and eliminating unnecessary redundancy
safe-guarding the code: disallowing subversive attempts to disable or remove
regression tests

Software

We are currently testing Github Enterprise and looking into the possibility of leveraging
Redmine for internal code review.

In the past, we have looked at Google's Gerrit code review system.

Github

Releases: https://enterprise.github.com/releases

Support: https://support.enterprise.github.com

rosebot
(Under development)
An automated pull request analyzer to perform various tasks:
« Automatically add reviewers to Pull Requests based on hierarchical configuration

"Pre-receive hook™ analyses: file sizes, quantity of files, proprietary source, etc.
e more...

Developer Checklist
Read these tips and guidelines before sending a request for code review.

Coding Standards

Please go to Coding Standard for the complete guideline. Here we only summary some
key points.

https://enterprise.github.com/dashboard
http://www.redmine.org/
http://code.google.com/p/gerrit/
https://enterprise.github.com/releases
https://support.enterprise.github.com/
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Coding_Standard

Your code should be written in a way that makes it easily maintainable and reviewable:

e write easy to understand code; avoid using exotic techniques which nobody can
easily understand.
o add sufficient documentation (source-code comments, README, etc.) to aid the
understandability of your code, your documentation should cover
o why do you do this (motivation)
o how do you do it (design and/or algorithm)
o Where are the associated tests (works as expected)
o before submission of your code for review, make sure
o Yyou have merged with the latest central repository's master branch without
conflicts
o your working copy can pass local tests via: make, make check, and make
distcheck
o Yyou have fixed all compiler warnings of your code whenever possible
e submit a logical unit of work (one or more commits); something coherent like a
bug fix, an improvement of documentation, an intermediate stage for reaching a
big new feature.
« balance code submissions with a good ratio of [lines of code] and [complexity of
code]. A good balance needs to be achieved to make the reviewer's life easier.
o the time needed to review your code should not exceed 1 hour. Please
avoid pushing thousands of lines at a time.
o Please also avoid pushing any trivial (fixed a typo, commented out a
single line etc.) to be reviewed.

One time setup

Steps for initializing code review: 1. Login to http://github.linl.gov using your OUN and
PAC.

2. Fork your own clone of the ROSE repository from http://github.lInl.gov/rose-
compiler/rose.

e Go to http://github.lInl.gov/rose-compiler/rose
o Click the Fork button at the upper right corner of the webpage

3. Add Collaborators:

o (o to http://github.lInl.gov/<your_account>/rose
o Click Admin
o Click Collaborators
= Add candidate code reviewers: liao6, tool. These developers will
review and merge your work.
= Add admins: hudson-rose. This user will automatically
synchronize your master branch with
Infs/casc/overture/ROSE/git/ROSE.git:master.

http://github.llnl.gov/
http://github.llnl.gov/rose-compiler/rose
http://github.llnl.gov/rose-compiler/rose
http://github.llnl.gov/rose-compiler/rose
http://github.llnl.gov/

4. Create your public-private SSH key pair using ssh-keygen, and add it to your
github.lInl.gov account. (github.lInl.gov only supports the SSH protocol for now; HTTPS
is not yet supported.)

Daily work process

« have a local git repo to do your work and submit local commits, you have two
choices:
o clone it from /nfs/casc/overture/rose/rose.git as we usually do before
o clone your fork on github.lInl.gov to a local repo: use the ssh URL option
for now since the https option won't work.
o don't use branches, use separated git repositories for each of your tasks. So
status/progress of one task won't interfere with other tasks.
e When ready to push your commits, synchronize with the latest rose-
compiler/master to resolve merge conflicts, etc.
o type: git pull origin master # this should always work since master
branches on github.lInl.gov are automatically kept up-to-date
o make sure your local changes can pass 1)make -j8, 2)make check -j8, and
3)make distcheck -j8
e push your commits to your fork's non-master branch, like bugfix-rc , featurex-rc.
You have total freedom in creating any branches in your forked repo, with any
names you like

If your local repository was cloned from
/nfs/casc/overture/ROSE/rose.git.

There is no need to discard it. You can just add the github.llnl's
repo as an additional remote repository and push things there:

git remote add github-llnl-youraccount-rose
http://github.llnl.gov/youraccount/rose.git

git push github-llnl-youraccount-rose HEAD:refs/heads/bugfix-rc

e add a pull(merge) request to merge bugfix-rc into your own fork's master,

o please note that the default pull request will use rose-compiler/rose's
master as the base branch (destination of the merge). Please change it to be
your own fork's master branch instead.

o Also make sure the source (head) branch of the pull (merge) request is the
one your want (bugfix-rc in this example)

o Double check the diff tab of your pull request only shows the differences
you made, without other things brought in from the central repo. Or your
own repo's master is out-of-sync with the central repo's master. Notify
system admin (tool) for the problem or manually fix it using the
troubleshooting section of this page.

« notify a reviewer that you have a pull request (requesting to merge your bugfix-rc
into your master branch)

o You can assign the pull request to the reviewer so an email notification
will be automatically sent to the reviewer

o Or you can add discussion within the pull request using
@revieweraccount. NOTE: please only click "Comment on this issue"

once and manually refresh the web page. Github Enterprise has a bug so it
cannot automatically shown the newly added comment. bug79
o Oryou can just email the reviewer
« waiting for reviewer's feedback:

Review results

e There might be three kinds of results

o If passes, reviewer should have merged your bugfix-rc into your master.
Jenkins will automatically poll your master and do the testing/merging

o If reviewer wants additional changes such as better naming, better places
to put files, more source comments, accompanying regression tests, etc.
Just repeat the process: do local edits, local commits, push to your remote
branch, send merge request again

o Athird possible outcome is that reviewers may accept the commits. But
some additional tasks are needed in the future to improve the code.

e What to do next

o please look through the reviewer comments and try your best to address
them

o some of the comments should indicate some mandatory changes, please
follow them

o some of the comments may be just suggestions. Use your own judgement.
The bottomline is the balance between quality and productivity.

o Please do not close the pull request. You can push your new commits to
the same branch again and comment on the pull request to indicate there
are new updates. Please review them again. So the reviewer would not
need to go to another pull request to see what were the previous comments
before.

Reviewer Checklist

What to look out for as a code reviewer?

o Be familiar with the current Coding Standard as a general guideline to perform
the code review.

o Allocate up to 1 hour at a time to review approximately 500-1000 lines of code: a
longer time may not pay off due to the attention span limits of human brains

What to check
Five major things to check:

o Documentation: What are the commits about? Is this reflected in README,
source comments, or LaTex files?

o Style: Does the coding style follow our standard? Is the code clean, robust, and
maintainable?

https://github.com/rose-compiler/rose/issues/79
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Coding_Standard

o Algorithm: Does the code have sufficient comments about what algorithm is
used? Is the algorithm correct and efficient (space and time complexity)?
o Implementation: Does the code correctly implement the documented
algorithm(s)?
e Testing: Does the code have the accompanying test translator and input test codes
to ensure the contributions do what they are supposed to do?
o Is Jenkins being configured to trigger these tests (your work may require
new pre-requisite software or configure options)? Local tests on
developer's workstation do not count.

More details:

« Naming conventions: File and directory names follow our standards; clear and
intuitive
o Directory structure: source code, test code, and documentation files are
added into the correct locations
o Maintainability: clarity of code; can somebody who did not write the code easily
understand what the code does?
o No looong functions: a function with hundreds of lines of code is a no-no
o Architecture/design: the reasons and motivations for writing the code,
and its design.
e No duplication: similar code may already exist or can be extended
e Re-use: can part of the code be refactored to be reusable by others?
« Unit tests: make check rules are associated with each new feature to ensure the
new feature will be tested and verified for expected behaviors
e Sanity: no turning off, or relaxing, other tests to make the developer's commits
pass Jenkins. In other words, no cheating.

Commenting
Reviewer comments should be clearly delimited into these three well-defined sections:

1. Mandatory: the details of the comment must be implemented in a new commit and
added to the Pull Request before the code review can be completed.

2. Recommended: the details of the comment could represent a best-practice or, simply,
it could be intended to provide some insight to the developer that they may have not
thought about.

Both Mandatory and Recommended can be accompanied by the keyword nitpick:

3. Nitpick: the details of the comment represent a fix that usually involves a
spelling/grammatical or coding style correction. The main purpose of the nitpick
indication is to let the developer know that you're not trying to be on their case and make
their life difficult, but an error is an error, or there's a better way to do something.

Decisions
Make a clear and definitive decision for the code review:

e Pass: The code does what it is supposed to do with clear documentation and test
cases. Merge and close the pull request.

o Pass but with future tasks. The commits are accepted. But some additional tasks
are needed in the future to improve the code. They can be put into a separate set
of commits and pushed later on.

« Fail. Additional work is needed, such as better naming, better places to put files,
more source comments, add regression tests, etc. Notify the developers of the
issues and ask for a new set of commits to be pushed addressing the corrections or
improvements.

Who should review what

Ideally, every ROSE contributor should participate in code review as a reviewer at some
point so the benefits of peer-review can fully be fulfilled.

However, due to the limited access to our internal github enterprise server, we currently
have a centralized review process in which ROSE staff members (liao6, tool) serve as
the default code reviewers. They are responsible for either reviewing the code themselves
or delegate to other developers who either has better knowledge about the contributions
or should be aware of the contributions.

We am actively looking at better options and will gradually expand the pool of reviewers
so the reviewing step won't become a bottleneck.

TODO: use rosebot to automatically assign reviewers according to a hierarchical
configuration of the source-tree.

What to avoid

e Judging code by whether it's what the reviewer would have written
o Given a problem, there are usually a dozen different ways to solve it. And
given a solution, there's a million ways to render it as code.
o degenerating into nitpicks:
o perfectionism may hurt the progress. we should allow some non-critical
improvements to be done in the next version/commits.
« feel obligated to say something critical: it is perfectly fine to say "looks good,
pass"
e delay in review: we should not rush it but we should keep in mind that somebody
is waiting for the review to be done to move forward

Criticism

Code reviews often degenerate into nitpicks. Brainstorming and design reviews to be
more productive.

e This makes sense, the early we catch the problems, the better. Design happens
earlier. Design should be reviewed. The same idea applies to requirement analysis
also.

Troubleshooting

master is out-of-sync

The master branch of each developer's git repository (http://github.linl.gov) should be
automatically synchronized with the central git repository's master branch
(/nfs/casc/overture/ROSE/git/ROSE.git). In rare cases, it could be out-of-sync.
Here is an example to perform a manual synchronization:

1. Clone your Github repository:

$ cd ~/Development/projects/rose

$ git clone git@github.com:<user oun>/rose.git

Cloning into ROSE...

remote: Counting objects: 216579, done.

remote: Compressing objects: 100% (55675/55675), done.

remote: Total 216579 (delta 159850), reused 211131 (delta 155786)
Receiving objects: 100% (216579/216579), 296.41 MiB | 35.65 MiB/s,
done.

Resolving deltas: 100% (159850/159850), done.

2. Add the central repository as a remote repository:

$ git remote add central /nfs/casc/overture/ROSE/git/ROSE.git
$ git fetch central
From /nfs/casc/overture/ROSE/git/ROSE.git

* [new branch] master -> central/master

3. Push the central master branch to your Github's master branch:

-bash-3.2$ git push central central/master:refs/heads/master
Total 0 (delta 0), reused 0 (delta 0)
To git@github.llnl.gov:<user oun>/rose.git

16101fd..563b510 central/master -> master

master cannot be synchronized
In rare cases, your repository's master branch cannot be automatically synchronized. This

is most likely due to merge conflicts. You will receive an error message through an
automated email, resembling the following (last updated on 7/24/2012):

http://github.llnl.gov/

To git@github.llnl.gov:1in32/rose.git
! [rejected] origin/master -> master (non-fast forward)
error: failed to push some refs to 'git@github.llnl.gov:1in32/rose.git'

Your master branch at [github.llnl.gov:1in32/rose.git] cannot be
automatically updated with
[/nfs/casc/overture/ROSE/git/ROSE.git:master]

Please manually force the update:
Add the central repository as a remote, call it "nfs"
$ git remote add nfs /nfs/casc/overture/ROSE/git/ROSE.git
1. First, try to manually perform a merge in your local repository:
1. Checkout and update your Github's master branch
$ git checkout master
$ git pull origin master
2. Merge the central master into your local master
$ git pull nfs master

<no merge conflicts>

3. Synchronize your local master to your Github's master
$ git push origin HEAD:refs/head/master

2. Otherwise, try to resolve the conflict.
3. Finally, if all else fails, force the synchronization:
$ git push --force origin nfs/master:refs/heads/master

WARNING: your master branch on Github will be overriden so make sure
you have sufficient backups, and take precaution.

Please simply follow the email's instructions to force the update of your Github's master
branch.

References

o http://www.possibility.com/wiki/index.php?title=CodeReviews

« http://scientopia.org/blogs/goodmath/2011/07/06/things-everyone-should-do-
code-review/

o http://stackoverflow.com/questions/3730527/workflow-for-github-based-code-
review

o http://stackoverflow.com/questions/4262693/what-to-look-for-in-a-code-review

e LLNL Internal URL: http://github.lInl.gov/

Continuous Integration

http://www.possibility.com/wiki/index.php?title=CodeReviews
http://scientopia.org/blogs/goodmath/2011/07/06/things-everyone-should-do-code-review/
http://scientopia.org/blogs/goodmath/2011/07/06/things-everyone-should-do-code-review/
http://stackoverflow.com/questions/3730527/workflow-for-github-based-code-review
http://stackoverflow.com/questions/3730527/workflow-for-github-based-code-review
http://stackoverflow.com/questions/4262693/what-to-look-for-in-a-code-review
http://github.llnl.gov/

ROSE's central (it reposilony Devvelopans privabe gil repasitony

. it mung - 3. git fetchipull

*, 4. gil pugh
S, DD hecst
A
. ey
Z. git commil -a

&
ROSE Continuous integration using Git and Jenkins (Code Review Omitted for simpler

explanation)

Motivation

Without automated continuous integration, we had frequent incidents like:

o Developer A commits something to our central git repository's master branch. The
commits contain some bugs which break our build and take a long time to have a
fix. Then the central master branch is left to a corrupted state for weeks so nobody
can check out/in anything.

o Developer A does a lot of wonderful work offline for months. But his work later
is found to be incompatible with another developer's work. His work has
unsolvable merge conflicts.

Overview

The ROSE project uses a workflow that automates the central principles of continuous
integration in order to make integrating the work from different developers a non-event.
Because the integration process only integrates with ROSE the changes that passes all
tests we encourage all developers to stay in sync with the latest version.

A high level overview of the development model used by ROSE developers.
o Step 1: Taking advantage of the distributed source code repositories based on git,

each developer should first clone his/her own repository from our central git
repository (or its mirrors/clones/forks).

http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Continuous_integration
http://commons.wikimedia.org/wiki/File:ROSE_Continuous_integration_using_Git_and_Jenkins.png
http://en.wikibooks.org/wiki/File:ROSE_Continuous_integration_using_Git_and_Jenkins.png

o Step 2: Then a feature or a bugfix can be developed in isolation within the private
repository. He can create any number of private branches. Each branch should
relate to a feature that this developer is working on and be relatively short-lived.
The developer can commit changes to the private repository without maintaining
an active connection to the shared repository.

o Step 3: When work is finished and locally tested, he can pull the latest commits
from the central repo's master branch

e Step 4: He then can push all accumulated commits within the private repository to
his branch within the shared repository. We create a dedicated branch within the
central repository for each developer and establish access control of the branch so
only an authorized developer can push commits to a particular branch of the
shared repository.

o Step 5-6 (automated): Any commits from a developer’s private repository will not
be immediately merged to the master branch of the shared repository.

In fact, we have access control to prevent any developer from pushing commits to the
master branch within the shared repository. A continuous integration server called
Jenkins is actively monitoring each developer’s branch within the central repository and
will initiate comprehensive commit tests upon the branch once new commits are detected.
Finally, Jenkins will merge the new commits to the master branch of the central
repository if all tests pass. If a single test fails, Jenkins will report the error and the
responsible developer should address the error in his private repository and push
improved commits again.

As a result, the master branch of the central git repository is mostly stable and can be a
good candidate for our external release. On top of the master branch of the central git
repository, we further have more comprehensive release tests in Jenkins. If all the release
tests pass, an external release based on the master branch will be made available outside.

Tests on Jenkins

We use Jenkins (http://hudson-rose-30:8080/) to test commits added to developer's
release candidate branches at the central git repository.

The tests are organized into three categories

e Integration: tests used to check if the new commits can pass various "make
check™ rules, compatibility tests, portability tests, configuration tests, and so on. If
all tests pass, the commits will be merged (or integrated) into the master branch
of the central repository.

o Release: tests used to test the updated master branch of the central repository for
additional set of tests using external benchmarks. If all tests pass, the head of the
master will be released as a stable snapshot for public file package
releases(generated by "make dist™).

e Others: for informational purpose now, not being used in our production
workflow.

http://hudson-rose-30:8080/

So for each push (one or more commits to a -rc branch), it will go through two stages:
Integration test and Release test stage.

It is each developer's responsibility to make sure their commits can pass BOTH stage by
fixing any bugs discovered by the tests.

Check Testing Results

It is possible to manually tracking down how you commits are doing within the test
pipeline within Jenkins (http://hudson-rose-30:8080/). But it can be tedious and
overwhelming.

So we provide a dashboard (http://sealavender:4000/) to summarize the commits to your
release candidate branch(-rc) and the pass/fail status for each integration tests

Frequently Failed Jobs

C6-ROSE-distcheck

http://hudson-rose-30:8080/job/C6-ROSE-distcheck/

Problem:

make[3]: *** No rule to make target "README', needed by "distdir'.
Stop.

make: *** [distdir] Error 1

KK AR AR A AR A A AR A AR A A A A AR A AR A A KR A AR A A A A A A A A A A I A A I A AN AR A RN AR A AR A A A A A A AR KA KK
Kk k kK Kk kK Kk

*** FAILED make distcheck step
R IR IR I dh b b 2h dh b 2 Sh b b 2 Sh b b 4h Sb b 2b dh b b 4h b b b Ih b 2 dh Sb S dR ah b b Sh Ib b 2 Sh b S 2h Sh S SR Sh b b 2h Ih b S 2h b b Sb Sb b 2 4b Ib b 2b e 4

khkkhkkKk Kk kK %k

The problem is that some files are not automatically added into the software distribution
during "make dist". For example, input test code files, reapue files, and configuration
files.

Prognosis:

Overview of "make distcheck™

1. "make dist": ensure that you can successfully create a tarball distribution of the
software package.

2. The tarball distribution is un-tarred (unpackaged) and the tests are then carried out on
this distribution source tree.

http://hudson-rose-30:8080/
http://sealavender:4000/
http://hudson-rose-30:8080/job/C6-ROSE-distcheck/

3. "srosE/configure": configure the software package.
4. "make all™: build the software package.
5. "make check": execute the software package's regression tests.
Files are not always automatically added into the distribution tarball (during "make
dist"). However, most source and header files will be automatically added if they are
used to build libraries and executables (specified within Automake makefiles,
Makefile.am)
Solution:

e Add the culprit files into the exTra DIsT Automake variable in the appropriate

Makefile.am file.
e Test"make distcheck" on your local machine before you push next time!

Reference:

o Basics of distribution:
http://www.delorie.com/gnu/docs/automake/automake 91.html

C2-ROSE-language-matrix-linux

ROSE has configuration options to turn on desired language support. So this job is used
to test -enable-only-LANGUAGE option for fortran, c-and-cxx, java, php, and binary-
analysis.

Many new developers are not aware of this so their pushes often fail on this test.

To pass this test, make sure you have conditionals in your Makefile.am to turn on
language specific rules.

For example, for your Fortran-specific work, using the following conditional

if ROSE_BUILD_FORTRAN_LANGUAGE_SUPPORT
Fortran to C:
$ (MAKE) -C ../src Fortran to C
else

endif

Connection to Code Review

http://www.gnu.org/software/automake/
http://www.delorie.com/gnu/docs/automake/automake_91.html

Github. llnl.gov
2. Auto regression e

tests r vl
E Rose-compiler/rose

Branches: Branches:
* Master = Master
PO /s rose
MErge Branches: 4, auta push master
e = Master
* cl-réview-rc

1, auto pull master
liaok has cl-review-rc branch

&3
Connection between Github Enterprise and Jenkins

In reality, most LLNL developers are now asked to push things to Github Enterprise for
code review first instead of directly pushing to our central git repository.

e Auto pull: we have another Jenkins at (https://hudson-rose-30:8443/jenkins/)
which serves as the bridge between Github Enterprise and Jenkins.

o For each private repositories on Github Enterprise, we have a Jenkins job
to monitor the master branch for approved pull (merge) request. If there is
any new approved commits, the job will transfer the commits to the
central repository's -reviewed-rc branch for that developer.

o Auto push: A Jenkins job is responsible for propagating latest central master
contents to all private repositories on github.lInl.gov

o http://hudson-rose-30:8080/job/Commit-sync-github

TODO

High priority

« enable email notification for the final results of each test:
« incrementally add more compilation tests using external benchmarks to be

integration tests.

References

o Files used to generate the figure: feel free to add new versions as new slides: link

Frequently Asked Questions (FAQ)

We collect a list of frequently asked questions about ROSE, mostly from the rose-public
mailing list link

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Code_Review
https://hudson-rose-30:8443/jenkins/
http://hudson-rose-30:8080/job/Commit-sync-github
https://docs.google.com/presentation/d/1US3e9sXnjPvgRU9cyOfQgKZBHScGiCMODSsbQH80i8s/edit
https://mailman.nersc.gov/pipermail/rose-public/
http://commons.wikimedia.org/wiki/File:Rose-compiler-code-review-2.png
http://en.wikibooks.org/wiki/File:Rose-compiler-code-review-2.png

General

How to search rose-public mailinglist for previously asked questions?
google.com supports search things within the scope of a URL. For example, if you have a
problem with a keyword MY PROBLEM, you can try to search the mailing list by using
the following keyword in google.com:

"MY PROBLEM site:https://mailman.nersc.gov/pipermail/rose-public/"

How many lines of source code does ROSE have?

Excluding the EDG submodule and all source code comments, the core of ROSE
(rose/src) has about 674,000 lines of C/C++ source code as of July 11, 2012.

Including tests, projects, and tutorial directories, ROSE has about 2 Million lines of code.

Some details are shown below:

[rose/src]./cloc-1.56.pl .
3076 text files.
2871 unique files.
716 files ignored.

http://cloc.sourceforge.net v 1.56 T=26.0 s (91.7 files/s, 39573.3
lines/s)

Language files blank comment
code

C++ 908 75280 93960
354636

C 123 12010 3717
199087

C/C++ Header 915 28302 38412
121373

Bourne Shell 17 3346 4347
25326

Perl 4 743 1078
7888

Java 18 1999 4517
7096

m4 1 747 20
6489

Python 34 1984 1174
5363

make 148 1682 1071
3666

C# 11 899 274

2546

https://mailman.nersc.gov/pipermail/rose-public/

SQL 1 0 0
1817

Pascal 5 650 31
1779

CMake 168 1748 4880
1702

yacc 3 352 186
1544

Visual Basic 6 228 421
1180

Ruby 11 281 181
809

Teamcenter def 3 3 0
606

lex 2 103 47
331

CSS 1 95 32
314

Fortran 90 1 34 6
244

Tcl/Tk 2 29 6
212

HTML 1 8 0
15

SUM: 2383 130523 154360
744023

How large is ROSE?

To show top level information only (in MB): du -msl * | sort -nr

170 tests

109 projects

90 src

19 docs

16 winspecific

16 ROSE_ResearchPapers
15 binaries

7 scripts

5 LicenseInformation
4 tutorial

4 automédte.cache

2 libltdl

2 exampleTranslators
2 configure

2 config

2 ChangeLog

Sort directories by their sizes in MegaBytes

du -m | sort -nr >~/size.txt

709 .

250 ./.git

245 ./.git/objects

243 ./.git/objects/pack

170 ./tests

109 ./projects

90 ./src

76 ./tests/CompileTests

50 ./tests/RunTests

40 ./tests/RunTests/FortranTests

34 ./tests/RunTests/FortranTests/LANL POP

29 ./tests/RunTests/FortranTests/LANL POP/netcdf-4.1.1
27 ./src/3rdPartylLibraries

23 ./tests/roseTests

23 ./src/frontend

22 ./tests/CompileTests/Fortran tests

21 ./tests/CompilerOptionsTests

19 ./docs

18 ./tests/CompileTests/RoseExample tests

18 ./src/midend

18 ./docs/Rose

16 ./winspecific

16 ./ROSE_ResearchPapers

15 ./tests/CompileTests/Fortran tests/gfortranTestSuite
15 ./binaries/samples

15 ./binaries

14 ./tests/CompileTests/Fortran tests/gfortranTestSuite/gfortran.d
g

14 ./src/roseExtensions

11 ./projects/traceAnalysis

10 ./tests/CompileTests/A++Code

10 ./tests/CompilerOptionsTests/testCpreprocessorOption
10 ./tests/CompilerOptionsTests/A++Code

10 ./src/roseExtensions/gtWidgets

10 ./src/frontend/Disassemblers

10 ./projects/symbolicAnalysisFramework

10 ./projects/SATIrE

10 ./projects/compass

9 ./winspecific/MSVS ROSE

9 ./tests/RunTests/A++Tests

9 ./tests/roseTests/binaryTests

9 ./src/frontend/SageIIl

9 ./projects/symbolicAnalysisFramework/src

9 ./docs/Rose/powerpoints

8 ./winspecific/MSVS project ROSETTA empty

8 ./projects/simulator

7 ./tests/RunTests/FortranTests/LANL POP OLD

7 ./tests/CompileTests/Cxx_tests

7 ./src/midend/programTransformation

7 ./src/midend/programAnalysis

7 ./src/3rdPartyLibraries/libharu-2.1.0

7 ./scripts

7 ./projects/symbolicAnalysisFramework/src/mpiAnal
7 ./projects/RTC

6 ./winspecific/MSVS ROSE/Debug

6 ./tests/RunTests/FortranTests/LANL POP/netcdf-4.1.1/ncdap_ test

o1 01O 01 g1 g1 gl oy O O)Y O

./tests/roseTests/programAnalysisTests
./src/3rdPartyLibraries/ckpt
./src/3rdPartyLibraries/antlr-jars
./projects/SATIrE/src
./tests/RunTests/FortranTests/LANL POP/pop-distro
./tests/RunTests/FortranTests/LANL POP/netcdf-4.1.1/1libcf
./tests/CompileTests/ElsaTestCases

./src/ROSETTA

./src/3rdPartylLibraries/qrose
./projects/DatalogAnalysis

./projects/backstroke

./LicenseInformation

./docs/Rose/AstProcessing

To list files based on size

find

241568

-type £ -print0 | xargs -0 1ls -s | sort -kl,1lrn
./.git/objects/pack/pack-

£366503d291£c33cb201781e641d688390e7£309.pack

13484
10240

6324 .
5828 .

4732

./tests/CompileTests/RoseExample tests/Cxx Grammar.h
./projects/traceAnalysis/vmp-hw-part.trace
/tests/RunTests/FortranTests/LANL POP OLD/poptest.tgz
/winspecific/MSVS ROSE/Debug/MSVS ROSETTA.pdb
/.git/objects/pack/pack-

£366503d291£c33cb201781e641d688390e7£309.1idx

4488
4488
4080
3968
3952
3908
3572
y.ncb
3424
2868
2864
2864
2740

./binaries/samples/bgl-helloworld-mpicc
./binaries/samples/bgl-helloworld-mpixlc
./LicenseInformation/edison group.pdf

./projects/RTC/tags
./src/frontend/Disassemblers/x86-InstructionSetReference-Nz.pdf
./tests/CompileTests/RoseExample tests/trial Cxx Grammar.C
./winspecific/MSVS project ROSETTA empty/MSVS project ROSETTA empt

./src/frontend/Disassemblers/x86-InstructionSetReference-AM.pdf
./ .git/index
./projects/compassDistribution/COMPASS SUBMIT.tar.gz
./projects/COMPASS SUBMIT.tar.gz

./ROSE_ResearchPapers/2007-

CommunicatingSoftwareArchitectureUsingAUnifiedSingle-ViewVisualization-

ICECC
S.pdf
2592
2428
2408
2220
1900
1884
1848
1772
1732
1724
c
1656
1548
1548

./docs/Rose/powerpoints/rose compiler users.pptx
./src/3rdPartyLibraries/ckpt/wrapckpt.c
./projects/DatalogAnalysis/jars/weka.jar

./scripts/graph.tar
./src/3rdPartylLibraries/antlr-jars/antlr-3.3-complete.jar
./src/3rdPartylLibraries/antlr-jars/antlr-3.2.jar
./src/midend/programTransformation/ompLowering/run me defs.inc
./src/3rdPartylLibraries/grose/docs/QROSE.pdf
./tests/CompileTests/Cxx_tests/longFile.C
./src/midend/programTransformation/ompLowering/run me task defs.in

./ChangeLog
./tests/roseTests/binaryTests/yicesSemanticsExe.ans
./tests/roseTests/binaryTests/yicesSemanticsLib.ans

1480 ./ROSE_ResearchPapers/1997-ExpressionTemplatePerformancelssues—
IPPS.pdf
1408 ./docs/Rose/powerpoints/ExaCT_AllHands March2012 ROSE.pptx

Compilation
How to speedup compiling ROSE?
Question It takes hours to compile ROSE, how can | speed up this process?

Answer:

« if you have multi-core processors, try to use make -j4 (make by using four
processes).
o also try to only build librose.so under src/ by typing make -C src/ -j4
e Oronly try to build the language support you are interested in during configure,
such as
o ../sourcetree/configure --enable-only-c # if you are only interested in
C/C++ support
o ..Isourcetree/configure --enable-only-fortran # if you are only interested in
Fortran support
o ..Isourcetree/configure --help # show all other options to enable only a few
languages.

Can ROSE accept incomplete code?

https://mailman.nersc.qov/pipermail/rose-public/2011-July/001015.html

ROSE does not handle incomplete code. Though this might be possible in the future. It
would be language dependent and likely depend heavily on some of the language specific
tools that we use internally. This is however, not really a priority for our work. If you
want to for example demonstrate how some of the internal tools we are using or
alternative tools that we could use might handle incomplete code, this might be
interesting and we could discuss it.

For example, we are not presently using Clang, but if it handled incomplete code that
might be interesting for the future. I recall that some of the latest EDG work might handle
some incomplete code, and if that is true then that might be interesting as well. | have not
attempted to handle incomplete code with OFP, so | am not sure how well that could be
expected to work. Similarly, I don't know what the incomplete code handling capabilities
of ECJ Java support is either. If you know any of these questions we could discuss this
further.

https://mailman.nersc.gov/pipermail/rose-public/2011-July/001015.html

I have some doubts about how much meaningful information can come from incomplete
code analysis and so that would worry me a bit. | expect it is very language dependent
and there would be likely some constraints on the incomplete code. So understanding the
subject better would be an additional requirement for me.

Can ROSE analyze Linux Kernel sources?

https://mailman.nersc.gov/pipermail/rose-public/2011-April/000856.html

Question: I'm trying to analyze the Linux kernel. I was not sure of the size of the code-
base that can be handled by ROSE, and could not find references as to whether it has
been tried on the Linux kernel source. As of now I'm trying to run the identity translator
on the source, and would like to know if it can be done using ROSE, and if it has been
successfully tested before.

Short answer: Not for now

Long answer: We are using EDG 3.3 internally by default and this version of EDG does
not handle the GNU specific register modifiers used in the asm() statements of the Linux
Kernel code. There might be other problems, but that was at least the one that we noticed

in previous work on this some time ago. But we are working on upgrading the EDG
frontend to be a more recent version 4.4.

Can ROSE compile C++ Boost library?

https://mailman.nersc.qov/pipermail/rose-public/2010-November/000544.html

not yet.

| know of a few cases where ROSE can't handle parts of Boost. In each case it is an EDG
problem where we are using an older version of EDG. We are trying to upgrade to a
newer version of EDG (4.x), but that version's use within ROSE does not include enough
C++ support, so it is not ready. The C support is internally tested, but we need more time
to work on this.

AST

How to find XYZ in AST?
The usually steps to retrieve information from AST are:

e prepare a simplest (preferrably 5-10 lines only), compilable sample code with the
code feature you want to find (e.g array[i][j] if you are curious about how to find
use of multi-dimensional arrays in AST), avoid including any headers (#include
file.h) to keep the code small.

https://mailman.nersc.gov/pipermail/rose-public/2011-April/000856.html
https://mailman.nersc.gov/pipermail/rose-public/2010-November/000544.html

o Please note: don't include any headers in the sample code. A header
(#include <stdio.h> for example) can bring in thousands of nodes into
AST.
o use dotGeneratorWholeASTGraph to generate a detailed AST dot graph of the
input code
e use zgrviewer-0.8.2's run.sh to visulize the dot graph
o visually/manually locate the information you want in the dot graph, understand
what to look and where to look
e use code (AST member functions, traversal, Sagelnteface functions, etc) to
retrieve the information.

How to filter out header files from AST traversals?

https://mailman.nersc.gov/pipermail/rose-public/2010-April/000144.html Question: |
want to exclude functions in #include files from my analysis/transformations during my
processing.

By default, AST traversal may visit all AST nodes, including the ones come from
headers.

So AST processing classes provide three functions :

o T traverse (SgNode * node, ..): traverse full AST , nodes which represent code
from include files

o T traverselnputFiles(SgProject™ projectNode,..) traverse the subtree of AST
which represents the files specified on the command line

o T traverseWithinFile(SgNode* node,..): only the nodes which represent code of
the same file as the start node

Should SglfStmt::get_true body() return SgBasicBlock?

https://mailman.nersc.qgov/pipermail/rose-public/2011-April/000930.html

Both true/false bodies were SgBasicBlock before.

Later, we decided to have more faithful representation of both blocked (with {...}) and
single-statement (without { ..}) bodies. So they are SgStatement (SgBasicBlock is a
subclass of SgStatement) now.

But it seems like the document has not been updated to be consistent with the change.

You have to check if the body is a block or a single statement in your code. Or you can
use the following function to ensure all bodies must be SgBasicBlock.

https://mailman.nersc.gov/pipermail/rose-public/2010-April/000144.html
https://mailman.nersc.gov/pipermail/rose-public/2011-April/000930.html

/IA wrapper of all ensureBasicBlockAs*() above to ensure the parent of s is a scope
statement with list of statements as children, otherwise generate a SgBasicBlock in
between.

SgLocatedNode * Sagelnterface::ensureBasicBlockAsParent (SgStatement *s)

How to handle #include ""header.h", #if, #define etc. ?

It is called preprocessing info. within ROSE's AST. They are attached before, after, or
within a nearby AST node (only the one with source location information.)

An example translator is provided to traverse the input code's AST and dump information
about the found preprocessing information,

exampleTranslators/defaultTranslator/preprocessingInfoDumper -c
main.cxx

Found an IR node with preprocessing Info attached:
(memory address: 0x2b7e1852c7d0 Sage type: SgFunctionDeclaration) in
file
/export/tmp.liac6/workspace/userSupport/main.cxx (line 3 column 1)
————————————— PreprocessingInfo #0 —-—-——————-—--- :
classification = CpreprocessorIncludeDeclaration:

String format = #include "all headers.h"

relative position is = before

SgClassDeclaration::get_definition() returns NULL?

If you look at the whole AST graph carefully, you can find defining and non-defining
declarations for the same class.

A symbol is usually associated with a non-defining declaration. A class definition is
associated with a defining declaration.

You may want to get the defining declaration from the non-defining declaration before
you try to grab the definition.

How to add new AST nodes?

There is a section named "1.7 Adding New SAGE Il IR Nodes (Developers Only)" in
ROSE Developer’s Guide
(http://www.rosecompiler.org/ROSE_Developerlnstructions.pdf)

But before you decide adding new nodes, you may consider if AstAttribute (user defined
objects attached to AST) would be sufficient for your problem.

http://www.rosecompiler.org/ROSE_DeveloperInstructions.pdf

For example, the 1st version of the OpenMP implementation in ROSE started by using
AstAttribute to represent information parsed from pragmas. Only in the 2nd version we
introduced dedicated AST nodes.

How does the AST merge work?

tests that demonstrate the AST Merge are in the directory:

tests/CompileTests/mergeAST tests

(run "make check" to see hundreds of tests go by).

Translation

Can ROSE identityTranslator generate 100% identical output file?

https://mailman.nersc.qgov/pipermail/rose-public/2011-January/000604.html

Questions: Rose identityTranslator performs some modifications, "automatically".
These modifications are:
« Expanding the assert macro.
o Adding extra brackets around constants of typedef types (e.g.
c=Typedef_Example(12); is translated in the output to ¢ =
Typedef Example((12));)
e Converting NULL to 0.
How can | avoid these modifications?
Answer: No.
There is no easy way to avoid these changes currently. Some of them are introduced by
the cpp preprocessor. Others are introduced by the EDG front end ROSE uses. 100%
faithful source-to-source translation may require significant changes to preprocessing
directive handling and the EDG internals.

We have had some internal discussion to save raw token strings into AST and use them to
get faithful unparsed code. But this effort is still at its initial stage as far as | know.

How to build a tool inserting function calls?

https://mailman.nersc.qov/pipermail/rose-public/2010-July/000319.html

Question: I am trying to build a tool which insert one or more function calls whenever in
the source code there is a function belonging to a certain group (e.g. all functions

https://mailman.nersc.gov/pipermail/rose-public/2011-January/000604.html
https://mailman.nersc.gov/pipermail/rose-public/2010-July/000319.html

beginning with foo_*). During the ast traversal, how can | find the right place, i.e., there
is a function in ROSE that searches for a string pattern or something similar?

Answers:

e In Chapter 28 AST Construction of the ROSE tutorial, there are examples to
instrument function calls into the AST using traversals or a queryTree. | would
approach this by checking the node for the specific SgFunctionDefinition (or
whatever you need) and then check the name of the node to find its location.

e Youcan

o use the AST query mechanism to find all functions and store them in a
container. e.g Rose_STL_Container<SgNode*> nodeList =
NodeQuery::querySubTree(root_node,V_Sg???7?);

o Then iterate the container to check each function to see if the function
name matches what you want.

o use SageBuilder namespace's buildFunctionCallStmt() to create a function
call statement.

o use Sagelnterface namespace's insertStatement () to do the insertion.

How to copy/clone a function?

https://mailman.nersc.qov/pipermail/rose-public/2011-April/000919.html

We need to be more specific about the function you want to copy. Is it just a prototype
function declaration (non-defining declaration in ROSE's term) or a function with a
definition (defining declaration in ROSE's term)?

« Copying a non-defining function declaration can be achieved by using the
following function instead:

// Build a prototype for an existing function declaration (defining or
nondefining is fine).

SgFunctionDeclaration* SageBuilder::buildNondefiningFunctionDeclaration
(const SgFunctionDeclaration *funcdecl, SgScopeStatement *scope=NULL)

Copying a defining function declaration is semantically a problem since it introduces
redefinition of the same function. It is at least a hack to first introduce something wrong
and later correct it. Here is an example translator to do the hack (copy a defining
function, rename it, fix its symbol):

#include <rose.h>
#include <stdio.h>
using namespace Sagelnterface;

int main(int argc, char** argv)

{
SgProject* project = frontend(argc, argv);
AstTests::runAllTests (project);

https://mailman.nersc.gov/pipermail/rose-public/2011-April/000919.html

// Find a defining function named "bar" under project

SgFunctionDeclaration* func=
findDeclarationStatement<SgFunctionDeclaration> (project, "bar", NULL,
true);

ROSE_ASSERT (func != NULL);

// Make a copy and set it to a new name
SgFunctionDeclaration* func copy =

isSgFunctionDeclaration (copyStatement (func));
func copy->set name ("bar copy");

// Insert it to a scope
SgGlobal * glb = getFirstGlobalScope (project);
appendStatement (func_ copy,glb);

#if 1 // fix up the missing symbol, this should be optional now since
SagelInterface: :appendStatement () should handle it transparently.

SgFunctionSymbol *func symbol = glb->lookup function symbol
("bar copy", func_copy->get type());
if (func_symbol == NULL) ;
{
func_symbol = new SgFunctionSymbol (func copy);

glb ->insert symbol ("bar copy", func symbol);
}
#endif
AstTests::runAllTests (project);
backend (project) ;
return 0;

Can | transform code within a header file?

https://mailman.nersc.gov/pipermail/rose-public/2011-May/000971.html

No. ROSE does not unparse AST from headers right now. A summer project tried to do
this. But it did not finish.

https://mailman.nersc.gov/pipermail/rose-public/2010-Auqust/000344.html

I guess ROSE does not support writing out changed headers for safety/practical reasons.
A changed header has to be saved to another file since writing to the original header is
very dangerous (imaging debugging a header translator which corrupts input headers).
Then all other files/headers using the changed header have to be updated to use the new
header file.

Also all files involved have to be writable by user's translators.
As a result, the current unparser skips subtrees of AST from headers by checking file

flags (compiler_generated and/or output_in_code_generation etc.) stored in Sg_File_Info
objects.

https://mailman.nersc.gov/pipermail/rose-public/2011-May/000971.html
https://mailman.nersc.gov/pipermail/rose-public/2010-August/000344.html

How to work with formal and actual arguments of functions?

https://mailman.nersc.qov/pipermail/rose-public/2011-June/001008.html

//Get the actual arguments
SgExprListExp* actualArguments = NULL;
if (isSgFunctionCallExp(callSite))
actualArguments = isSgFunctionCallExp(callSite)->get args();
else 1f (isSgConstructorInitializer(callSite))

actualArguments = isSgConstructorInitializer(callSite)-
>get args();
ROSE_ASSERT (actualArguments != NULL);

const SgExpressionPtrListé& actualArglist =
actualArguments->get expressions();

//Get the formal arguments.
SgInitializedNamePtrList formalArgList;
if (calleeDef != NULL)
formalArgList = calleeDef->get declaration()->get args();

//The number of actual arguments can be less than the number of

formal arguments (with implicit arguments) or greater
//than the number of formal arguments (with varargs)

How to translate multiple files scattered in different directories of a
project?

Expected behavior of a ROSE Translator:
A translator built using ROSE is designed to act like a compiler (gcc, g++,gfortran ,etc

depending on the input file types). So users of the translator only need to change the build
system for the input files to use the translator instead of the original compiler.

On 07/25/2012 11:20 AM, Fernando Rannou wrote:

> > Hello

> >

> > We are trying to use ROSE to refactor a big project consisting of
> > several *.cc and *.hh files, located at various directories. Each
> > class is defined in a *.hh file and implemented in a *.cc file.

> > Classes include (#include) other class definitions. But we have
only

> > found single file examples.

> >

> > Is this possible? If so, how?

> >

> >

> > Thanks

Daily work

https://mailman.nersc.gov/pipermail/rose-public/2011-June/001008.html

git clone returns error: SSL certificate problem?
Symptom:

git clone https://github.com/rose-compiler/rose.git

Cloning into rose...

error: SSL certificate problem, verify that the CA cert is OK. Details:
error:14090086:SSL routines:SSL3 GET SERVER CERTIFICATE:certificate
verify failed while accessing https://github.com/rose-
compiler/rose.git/info/refs

fatal: HTTP request failed

The reason may be that you are behind a firewall which tweaks the original SSL
certification.

Solutions: Tell cURL to not check for SSL certificates:

#Solution 1: Environment variable (temporary)
$ env GIT SSL NO VERIFY=true git pull

Solution 2: git-config (permanent)
set local configuration

$ git config --local http.sslVerify false

Solution 2: set global configuration
$ git config --global http.sslVerify false

What is the best IDE for ROSE developers?

https://mailman.nersc.qgov/pipermail/rose-public/2010-April/000115.html

There may not be a widely recognized best integrated development environment. But
developers have reported that they are using

e ViM

e emacs

o KbDevelop

e Source Navigator
o Eclipse

e Netbeans

The thing is that ROSE is huge and has some ridiculously large generated source file
(CxxGrammar.h and CxxGrammar.C are generated in the build tree for example). So
many code browsers may have trouble in handling ROSE.

Portability

https://mailman.nersc.gov/pipermail/rose-public/2010-April/000115.html

What is the status for supporting Windows?

https://mailman.nersc.qov/pipermail/rose-public/2011-December/001349.html

We have not finished the Windows work yet. IT is on our list of things to do. It was
started and ROSE internally compiles using MS Visual Studio (using project files
generated from the Cmake build that we maintain and test within our release process for
ROSE) but does not pass our tests. So it is not ready. The distribution of the EDG
binaries for Windows is another step that would come after that. We don't know at
present when this will be done, it is important, but not a high priority for our DOE
specific work, but important for other work. The effort required is something that we
could discuss. If you want to call me that would be the best way to proceed. Send me
email off of the main list and we can set that up.

https://mailman.nersc.gov/pipermail/rose-public/2011-March/000798.html

Under Windows ROSE uses CMake. This is a project that is currently under
development. As of November 2010 we are able to compile and link the src directory.
We are also able to run example programs that link against librose and execute the
frontend and backend. {\em However, this is an internal capability and not available
externally yet since we don't distribute the Windows generated EDG binaries that would
be required. Also the current support for Windows is still incomplete, ROSE does not yet
pass its internal tests under Windows.}

How-tos

Quick, short, and focused tutorials about how to do common tasks as a ROSE developer.
Please create a new wikibook page for each how-to topic. Each how-to wiki page should

NOT contain any level one (=) or level two(==) heading so it can be included at the
correct levels in the print version of this wikibook.

How to write a How-to

Quick, short, and focused tutorials about how to do common tasks as a ROSE developer.
Please create a new wikibook page for each how-to topic. Each how-to wiki page should
NOT contain any level one (=) or level two(==) heading so it can be included at the
correct levels in the print version of this wikibook.

Create a new page

optional step: create an account and log in

Goto: http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How-tos
Click on Edit tab on the right top of the How-tos page

Copy and paste one existing How-to to the end of the page, for example:

https://mailman.nersc.gov/pipermail/rose-public/2011-December/001349.html
https://mailman.nersc.gov/pipermail/rose-public/2011-March/000798.html
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_write_a_How-to
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How-tos

==[[ROSE Compiler Framework/How to write a How-to|How to write a How-
to]]::
{{:ROSE Compiler Framework/How to write a How-to}}

« rename three places of the pasted text with the desired page name, for example

==[[ROSE Compiler Framework/How to do XYZ|How to do XYZ]]==
{{:ROSE Compiler Framework/How to do XYZ}}

o click save page
e You will see red text trying to link to the not yet existing How to do XYZ page
« click any of the red text, it will bring you to an editing window to add content of
your new how-to page
e you can now add new content and save it.
o Again, each how-to wiki page should NOT contain any level one (=) or
level two(==) heading so it can be included at the correct levels in the
print version of this wikibook.

Rules of the content

e Only level three headings (===) and higher are allowed in a how-to page. This is
necessary for the how-to page to be correctly included into the final one-page
print version of this wikibook. Sorry about this restriction.

o Again, please don't use level one (=) or level two (==) headings in a how-
to page!

o Keep each how-to short and focused. Readers are expected to only spend 30-
minutes or much less to quickly learn how to do something using ROSE.

o After you created a new how-to page and saved your contributions. Please go to
the print version to make sure it shows up correctly.

o Here is the link:
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Print_version

o Having new content show up in the print version will make sure it is really
visible and consistent with the rest of the book.

o please specify the how-to topic is the current practice or the proposed new ways
of doing things. So we can have clear guideline for code review for what is
mandatory and what is optional.

How to incrementally work on a project

Developing a big, sophisticated project entails many challenges. To mitigate some of
these challenges, we have adopted several best practices: incremental development, code
review, and continuous integration.

Divide and Conquer

file:///C:/Users/Acer/Desktop/workspace/1.rose/ROSE%20Compiler%20Framework%20Print%20version%20-%20Wikibooks,%20open%20books%20for%20an%20open%20world_files/ROSE%20Compiler%20Framework%20Print%20version%20-%20Wikibooks,%20open%20books%20for%20an%20open%20world.htm
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_incrementally_work_on_a_project

Here are some tips on how to divide up a big project into smaller, bite-sized pieces so
each piece can be incrementally developed, code reviewed, and integrated.

o Input: define different sets of test inputs based on complexity and difficulty.
Tackle simpler sets first.

o Output: define intermediate results leading to the final output. Often, results
and B are needed to generate c. So the project can have multiple stages, based on
the intermediate results.

e Algorithm: complex compiler algorithms are often just enhanced versions of
more fundamental algorithms. Implement the fundamental algorithms first to gain
insight and experience. Then, afterward, you can implement the full-blown
versions.

o Language: for projects dealing with multiple languages, focus on one language at
a time.

« Platform: limit the scope of supported platforms: Linux, Ubuntu, OS X (TODO:
add reference to ROSE supported platforms)

« Performance: Start with a basic, working implementation first. Then try to
optimize its performance, efficiency.

e Scope: your translator could first focus on working at a function scope, then grow
to handle an entire source file, or even multiple files, at the same time.

o Skeleton then meat: a project should be created with the major components
defined first. Each component can be enriched separately later on.

« Annotations (manual vs. automated): Performing one compiler task often
requires results from many other tasks being developed. Defining source code
annotations as the interface between two tasks can decouple these dependencies
in a clean manner. The annotations can be first manually inserted. Later the
annotations can be automatically generated by the finished analysis.

o Optional vs. Default: introducing a flag to turn on/off your feature. Make it as a
default option when it matures.

Code Review

See Code Review in ROSE.

How to create a translator

Translator basically converts one AST to another version of AST. The translation process
may add, delete, or modify the information stored in AST.

Overview
A ROSE-based translator usually has the following steps
1. Search for the AST nodes you want to translate.

2. Perform the translation action on the found AST nodes. This action can be one of
two major variants

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Code_Review
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_create_a_translator

o Updating the existing AST nodes

o Creating new AST nodes to replace the original ones. This is usually
cleaner approach than patching up existing AST and is better supported by
SageBuilder and Sagelnterface functions.

o Optionally update other related information for the translation.

First Step

Get familiar with the ASTs before and after your translation. So you know for sure what
your code will deal with and what AST you code will generate.

The best way is to prepare simplest sample codes and carefully examine the whole dot
graphs of them.

Design considerations
It is usually a good idea to

o separate the searching step from the translation step so one search (traversal) can
be reused by all sorts of translations.
e When design the order of searching and translation, be careful about if the
translation will negatively impact on the searching
o pre-order traversal may cause AST nodes to be visited are modified,
similar to the effect of iterator invalidation.
o please use post-order, or reverse order of pre-order for your traversal
hooked up with translation

Searching for the AST node
There are multiple ways to find things you want to translate in AST.

e Via AST Query: Node query returns a list of AST nodes in the same type. This is
often enough to simple translations

Rose STL Container<SgNode*> ProgramHeaderStatementList =
NodeQuery: :querySubTree (project,V SgProgramHeaderStatement);
for (Rose STL Container<SgNode*>::iterator i =
ProgramHeaderStatementList.begin(); 1 !=
ProgramHeaderStatementList.end (); i++)
{

SgProgramHeaderStatement* ProgramHeaderStatement =
isSgProgramHeaderStatement (*1) ;

}

e Through AST traversal: walks through whole AST using different orders (pre-
order or post order). More sophisticated translations may need this. Also post-

order traversal is recommended to avoid modifying things the traversal will hit
later on (similar problem as iterator invalidation in C++)
o The AST traversal gives visit() functions to hook up your translation
functions. A switch statement is can be used for handling different types
of AST node.

class f2cTraversal : public AstSimpleProcessing

{
public:
virtual void visit (SgNode* n);
bi

void f2cTraversal::visit (SgNode* n)

{

switch (n->variantT())

{

case V_SgSourceFile:

{
SgFile* fileNode = isSgFile(n);
translateFileName (fileNode) ;
}
break;
case V_SgProgramHeaderStatement:

{

}
break;
default:
break;
}
}

Performing Translation

The translations you want to do often depend on the types of the AST nodes you visit.
For example you can have a set of translation functions defined in your namespace

« void translateForLoop(SgForLoop* n)
« void translateFileName(SgFile* n)
« void translateReturnStatement(SgReturnStmt* n), and so on

Other tips

« Reference ROSE doxygen website for information of each AST node.

e Use SageBuilder if you want to create new AST node. Update SageBuilder you
cannot find the one you need.

e Look up in Sagelnterface for the translation functions you need. If there is none,
then write your own function.

e Update the information, or create the new AST node you need.

« Replace the existing AST node with your updated or new AST node.

Updating Tree
e You might need to handle some details, like removing symbol, updating parent,
and symbol table.

o Be careful to use deepDelete() and deepCopy(). Some information might not be
updated properly. For example, deepDelete might not update your symbol table.

Verify the correctness
You can use wholeAST graph to verify your translation.

All ROSE-based translators should call AstTests::runAllTests(project) after all the
transformation is done to make sure the translated AST is correct.

This has a higher standard than just correctly unparsed to compilable code. It is common
for an AST to go through unparsing correctly but fail on the sanity check.

More information is at Sanity check

How to set up the makefile for a translator

In this How-to, you will create a makefile to compile and test your own custom ROSE
translator.

You may want to first look at "How-to install ROSE": ROSE Compiler
Framework/Installation.

Environment variables

You must have the proper environment variable set so you translator can find the
librose.so during execution.

export
LD _LIBRARY PATH=S${ROSE INSTALL}/1lib:${BOOST INSTALL}/lib:$LD LIBRARY PA
TH

Translator Code

Here is a simplest ROSE translator.

// ROSE translator example: identity translator.

//

// No AST manipulations, Jjust a simple translation:
//

// input code > ROSE AST > output code

#include <rose.h>

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Abstract_Syntax_Tree#Sanity_check
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_set_up_the_makefile_for_a_translator
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Installation
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Installation

int main (int argc, char** argv)
{
// Build the AST used by ROSE
SgProject* project = frontend(argc, argv);

// Run internal consistency tests on AST
AstTests::runAllTests (project);

// Insert your own manipulations of the AST here...

// Generate source code from AST and invoke your
// desired backend compiler
return backend(project);

Makefile

Here is a sample makefile. Please make sure replacing some leading spaces of make rules
with leading Tabs if you copy & paste this sample.

A sample Makefile to build a ROSE tool.

##

Important: remember that Makefile recipes must contain tabs:
##

#4# <target>: [<dependency >]*

#4 [<TAB> <command> <endl>]+

ROSE installation contains

* libraries, e.g. "librose.la"

#4# * headers, e.g. "rose.h"
ROSE_INSTALL=/path/to/rose/installation

ROSE uses the BOOST C++ libraries, the --prefix path
BOOST INSTALL=/path/to/boost/installation

Your translator
TRANSLATOR=my translator
TRANSLATOR SOURCE=$ (TRANSLATOR) .cpp

Input testcode for your translator
TESTCODE=input code ifs.cpp

all: $(TRANSLATOR)

compile the translator and generate an executable
-g is recommended to be used by default to enable debugging your code
$ (TRANSLATOR) : $ (TRANSLATOR SOURCE)
g++ —-g $(TRANSLATOR SOURCE) -o $(TRANSLATOR) -
Is$ (BOOST INSTALL) /include -I$ (ROSE_INSTALL) /include -
LS (ROSE_INSTALL) /1lib -lrose

test the translator
check: $ (TRANSLATOR)
./$ (TRANSLATOR) -c -I. —I$(ROSE_INSTALL)/include S (TESTCODE)

clean:
rm -rf $(TRANSLATOR) *.o rose * *.dot

A complete example

The sample Makefile prepared within ROSE virtual machine image.

demo@ubuntu:~/myTranslator$ cat makefile

A sample Makefile to build a ROSE tool.

##

Important: remember that Makefile recipes must contain tabs:
##

#4 <target>: [<dependency >]*

#4 [<TAB> <command> <endl>]+

ROSE installation contains

* libraries, e.g. "librose.la"
#4# * headers, e.g. "rose.h"
ROSE_INSTALL=/home/demo/opt/rose-inst

ROSE uses the BOOST C++ libraries
BOOST INSTALL=/home/demo/opt/boost-1.40.0

Your translator
TRANSLATOR=myTranslator
TRANSLATOR_SOURCE=$(TRANSLATOR).Cpp

Input testcode for your translator
TESTCODE=hello.cpp

all: $(TRANSLATOR)

compile the translator and generate an executable
-g is recommended to be used by default to enable debugging your code
$ (TRANSLATOR) : $(TRANSLATOR_SOURCE)

g++ -g $(TRANSLATOR SOURCE) -I$(BOOST INSTALL)/include -
I$(ROSE_INSTALL)/include —LS(ROSE_INSTALL)/lib -lrose -o $(TRANSLATOR)

test the translator
check: $(TRANSLATOR)

./$ (TRANSLATOR) -c -I. —I$(ROSE7INSTALL)/include S (TESTCODE)
clean:

rm -rf $(TRANSLATOR) *.o rose * *.dot

demo@ubuntu:~/myTranslator$ make check

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Virtual_Machine_Image

g++ —-g myTranslator.cpp -I/home/demo/opt/boost-1.40.0/include -
I/home/demo/opt/rose-inst/include -L/home/demo/opt/rose—-inst/1lib -lrose
-o myTranslator

./myTranslator -c -I. -I/home/demo/opt/rose-inst/include hello.cpp

How to debug a translator

It is rare that your translator will just work after your finish up coding. Using gdb to
debug your code is indispensable to make sure your code works as expected. This page
shows examples of how to debug your translator.

A translator not built by ROSE's build system

If the translator is built using a makefile using libtool. The debugging steps of your
translator are just classic steps to use gdb.

« make sure your translator is compiled with -g option so there is debugging
information in your object codes

A typical debugging session:

e setabreak point
e examine the execution path to make sure the program goes the path your expect
e examine the data to check the values are what you expect

how to print out information about a AST node

(gdb) print n

$1 = (SgNode *) 0xb7f£12008

(gdb) print n->sage class name ()
$2 = 0x578b3af "SgFile"

(gdb) print n->get parent ()

$7 = (SgNode *) 0x95e75b8

When displaying a pointer to an object, identify the actual (derived)
type of the object
rather than the declared type, using the virtual function table.

(gdb) set print object on

(gdb) print astNode
$6 = (SgPragmaDeclaration *) 0Oxb7c68008

unparse the AST from a node

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_debug_a_translator

A translator shipped with ROSE

ROSE turns on debugging support by default so the translators shipped with ROSE
should already have debugging information available.

However, ROSE uses libtool so the executables in the build tree are not real. You have
two choices:

o Find the real executable in the .lib directory then debug the real executables there
e Use libtool command line as follows:

libtool --mode=execute gdb --args ./built in translator filel.c

How to add a new project directory

Many work within ROSE start as a project. They will be moved/refactored into ROSE/src
later on once they mature.

Here we should how to add a new project into directory.

A basic example

Many projects start as a translator, analyzer or optimizer, which takes into input code and
generate output.

A basic sample commit which adds a new project directory into ROSE:
https://github.com/rose-
compiler/rose/commit/edf68927596960d96bb773efa25af5e090168f4a

Please look through the diffs so you know what files to be added and changed for a new
project.

Essentially, a basic project should contain

« aREADME file explaining what this project is about, algorithm, design,
implementation, etc
a translator acts as a driver of your project
additional source files and headers as needed to contain the meat of your project
test input files
Makefile.am to

o compile and build your translator

o contain make check rule so your translator will be invoked to process

your input files and generate expected results

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_add_a_new_project_directory
https://github.com/rose-compiler/rose/commit/edf68927596960d96bb773efa25af5e090168f4a
https://github.com/rose-compiler/rose/commit/edf68927596960d96bb773efa25af5e090168f4a

To connect your project into ROSE's build system, you also need to
e Add one more subdir entry into projects/Makefile.am for your project directory

e Add one line into config/support-rose.m4 for EACH new Makefile (generated
from each Makefile.am) used by your projects.

How to fix a bug

If you are trying to fix a bug (your own or a bug assigned to you to fix). Here are high
level steps to do the work

Reproduce the bug

You can only fix a bug when you can reproduce it. This step may be more difficult than it
sounds. In order to reproduce a bug, you have to

« find a proper input file

« find a proper translator: a translator shipped with ROSE is easy to find. But be
patient and sincere when you ask for a translator written by users.

« find a similar/identical software and hardware environment: a bug may only
appear on a specific platform when a specific software configuration is used

Possible results for this step:

e You can reproduce the bug reliably. Bingo! Go to the next step.

e You cannot reproduce the bug. Either the bug report is invalid or you have to keep
trying.

e You can reproduce the bug once a while. Oops. This is kind of difficult situation.

Find causes of the bug
Once you can reproduce the bug. You have to identify the root cause of the bug.
Common steps involved

« simplify the input code as much as possible: It can be very hard to debug a
problem with a huge input. Always try to prepare the simplest possible code
which can just trigger the bug.

o Often, you have to use a binary search approach to narrow down the input
code: only use half of the input at a time to try. Recursively cut the input
file into two parts until no further cut is possible while you can still trigger
the bug.

« forward tracking: for the translator, it usually takes input and generate
intermediate results before the final output is generated. Using a debugger to set
break points at each critical stages of the code to check if the intermediate results
are what you expect.

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_fix_a_bug

o backwards tracking: similar to the previous techniques. But you just back tracking
the problem.

Fix the bug
Any bug fix commit should contain

e aregression test: so make check rules can make sure the bug is actually fixed and
no further code changes will make the bug relapse.

L_essons Learned

Here we collect things we try to avoid:

Formatting/Indenting other people's code
Lesson:

e A developer tried to understand a staff member's source code. But he found that
the code's indentation was not right for him. So he re-formatted the source files
and committed the changes. Later, the staff member found that his codes were
changed too much and he could not read the codes anymore.

Solution:

o Please don't reformat codes you do not own or will not maintain.

Using branches of a same repository for different tasks
Lesson:
o A developer used different branches of the same git repository to do different
tasks: fixing bugs, adding a new feature, and documenting something. Later on he
found that he could not commit and push the work for one task since the changes

for other tasks are not ready.

Solution:

e using separated git repositories for different tasks. So the status of one task won't
interfere with the progress of other tasks.

Create Exacting Tests Early and Often

Lesson:

e A developer created tests that were too broad, mostly because they were included
late in development. This led to passes that should not have passed, that is passing
all tests even though the code had been broken.

Solution:

o Make sure that tests check results carefully. This is made much easier by making
sure your functions have precisely ONE intention. E.qg. if you need to transform
data and operate on the transformed data, split the transformation and the
operation into two functions (at least).

Testing

ROSE uses Jenkins to implement a contiguous integration software development process.
It leverages a range of software packages to test its correctness, robustness, and
performance. The software used by the ROSE's Jenkins include:

e SPEC CPU 2006 benchmark: a subset is supported for now

e SPEC OMP benchmark: a subset is supported for now

e NAS parallel benchmark: developed by NASA Ames Research Center. Both C
(customized version) and OpenMP versions are used

e Plum Hall C and C++ Validation Test Suites: a subset is supported for now

Modena Test Suite

1. Clone the Modena test suite repository:
$ git clone ssh://rose-dev@rose-git/modena
2. Autotools setup

$ cd modena

$./build.sh

+ libtoolize --force --copy --1ltdl --automake

+ aclocal -I ./acmacros -I ./acmacros/ac-archive -1
/usr/share/aclocal

+ autoconf

+ automake -a -c

configure.ac:4: installing °./install-sh'

configure.ac:4: installing "./missing'

3. Environment bootstrap

$ source /nfs/apps/python/latest/setup.sh

4. Build and test!

http://jenkins-ci.org/
http://en.wikipedia.org/wiki/NAS_Parallel_Benchmarks

$ mkdir buildTree
$ cd buildTree
$../configure \
--with-
sglalchemy=${HOME} /opt/python/sqglalchemy/0.7.5/1ib64/python2.4/site-
packages \
--with-target-java-interpreter=java \
--with-target-java-compiler=testTranslator \
--with-target-java-compiler-flags="-ecj:1.6" \
--with-host-java-compiler-flags="-source 1.6"

Jenkins

using external benchmarks
The way we set it up is to
« In the benchmark, we change the benchmark’s build system to call the ROSE tool
(identityTranslator or your RTED tool) installed.
e Inthe Jenkins test job,
o Build and install the tested ROSE, prepare environment variables.
o Go to the benchmark with modified build system. Build and run the
benchmark.

Basically, the test job should simulate how a ROSE tool would be used by end-users, not
by tweaking ROSE for each different benchmarks.

Lattices

Introduction

Lattices are mathematical structures. They can be used as a general way to express an
order among objects. This data can be exploited in data flow analysis.

Lattices can describe transformations effected by basic blocks on data flow values also
known as flow functions.

Lattices can describe data flow frameworks when instantiated as algebraic structures
consisting of a set of data flow values, a set of flow functions, and a merge operator.

Poset

Partial ordering: <

A partial ordering is a binary relation <over a set P which is reflexive, antisymmetric
and transitive, i.e.

o Reflexive x<=x
« Anti-Symmetric, if * <Y, ¥ = Then X=y
e Transitive: if T = U, ¥ < Zthenx < z

Partial orders should not be confused with total orders. A total order is a partial order but
not vice versa. In a total order any two elements in the set P can be compared. This is not
required in a partial order. Two elements that can be compared are said to be comparable

A partially ordered set, also known as a poset, is a set with a partial order.

Given a poset there may exist an infimum or a supremum. However, not all posets
contain these.

Given a poset P with set X and order <:
An infimum of a subset S of X is an element a of X such that

e @< TforallxinSand
o forallyinX ifforallxinS, ¥ = Tthen¥ = @

The dual of this notion is the supremum which has the definition of infimum if you
switch <with =

If we simply pick an element of X that satisfies the first condition we have a lower
bound. The second condition ensures that we have (if it exists) the unique greatest lower
bound. Similarly for suprema.

A lattice is a particular kind of poset. In particular, a lattice L is a poset P(X, <where For
any two elements of the lattice a and b, the set {a, b} has a join and a meet

The join and meet operations MUST satisfy the following conditions
e 1) The join and meet must commute
e 2) The join and meet are associative
e 3) The join and meet are idempotent, that is, x join itself or x meet itself are both

X.

If the lattice contains a meet it is a meet-semilattice, if a lattice contains a join it is a join-
semilattice, similarly there exists a meet-semilattice

(Definitions obtained from wikipedia with minimal modification)

Lattice Definition

Definition of a Lattice (L, /\, V)

L is a poset under =such that
o Every pair of elements has a unique greatest lower bound (meet) and least
upper bound (join)
o Not every poset is a lattice: greatest lower bounds and least upper bounds
need not exist in a poset.

Infinite vs. Finite lattices

Infinite: An infinite lattice does not contain an 0 (bottom) or 1 (top) element, even
though every pair of elements contains a greatest lower bound and a least upper
bound on the entire underlying set. By the definition of unbounded or infinite sets
we know that given X an unbounded set given any x in X we can find an X' that is
greater than x (under some ordering, in this case the lattice). Similarly for greatest
lower bounds.
a finite/bounded lattice: the underlying set itself has a greatest lower bound and a
least upper bound, For now we will call the greatest lower bound 0 and the least
upper bound 1.

o ifa<x, forall xin L, then a is the 0 element of L, L, recall that this is a

unique element
o ifa= x forall x from L, then a is the 1 element of L, T

Meet /Ais a binary operation such that a /\b take the greatest lower bound of the set (this
is guaranteed by the definition lattice.

Similarly Join Vreturns the least upper bound of the set, guaranteed to exist by the
definition of a lattice.

To recap, a lattice L is a triple {X, /\, V} composed of a set, a Meet function, and a Join
function

Properties of Meet and /\.

We refer to the Vas Vand the Aas J

Closure: If x and y belong to L, then there exists a unique z and a unique w from
L such that x Vy =z, and x \y =w

Commutativity: for all x, y in L, x Vy =y meet x, x \y =y /\x:

Associativity: (x Vy) Vz = x V(y Vz), similarly in the /operation

There are two unique elements of L called bottom (_|_), and top (T) , such that
forallx,xV | = | andxAT=T

e Many lattices, with some exceptions, notably the lattice corresponding to constant
propagatioin, are also distributive: x Vy Az = (x Az) V(y Az)

Lattices and partial order:
x L Yifandonlyif 11y = T

A strictly ascending chain is a sequence of elements of a set X such that, for x_i in X,
T1, T2, -y Tnhas the property L = 1 C @2 T ... T Zn = T The greatest is the
chain with final index n such that n is the greatest such final index among all strictly
ascending chains.

The height of a lattice is defined as the length of the longest strictly ascending chain it
contains.

If a data-flow analysis lattice has a finite height and a monotonic flow function then we
know that the associated data flow analysis algorithm will terminate.

« Example: If the greatest strictly ascending chain of a lattice L is finite and it takes
finitely many steps to reach the top, we can infer that the associated data flow
algorithm terminates.

(wikipedia used for definitions)

Example: Bit vector Lattices

The elements of the set are bit vectors
The bottom is the 0 vector

The top is a 1 vector

Meet is a bitwise And

Join is a bitwise Or

BV " denotes the lattice of bit vectors of length n.
Constructing complex lattices from multiple less complex lattices

« Example: The product operation which combines (concatenates) lattices
elementwise
o The product of two lattices L1 and L2 with meet operators M1, M2,
respectively: L1 x L2
o The elements in the lattice: {<x1, x2> | x1 from L1, x2 from L2}
e The meet operator: <x1, x2> M <yl, y2> =<x1 M yl, x2 M y2>
e The join operation: <x1, x2>J <yl, y2> =<x1Jyl, x2 J y2>

e Example:

o BV”nis the product of n copies of the trivial bit vector attice BV"1 with
bottom 0 and top 1

Graphical Representation BV/3

111
/ \ \

110 101 011
\ b4 x \
100 010 001
\ \ /

000

Here meet and join operators induce a partial order on the lattice elements
X is less than or equal to (<=) y ifanonly if x My = x

For the BV"3: 000<= 010 <= 101<=111

The partial order on the lattice is:
e Transitive x <=y and y <=z, then x <=z
o Antisymmetric: if x<=y and y<=x, thenx =y
o Reflexive: for all x: x<=x:
The height of the lattice is the length of its longest strictly ascending chain:
« The maximal n such that there exists a strictly ascending chain x1, x2, ..., xn such
that
e Bottom=x1<x2<xn=Top

For BV/3 lattice, height = 4

monotone function

In mathematics, a monotonic function (or monotone function) is a function that preserves
the given order.

a function mapping a lattice to itself: f: L -> L, is monotone if for all x, y from L
. x<zy ==>f(x)<=f(y)
monotone -> order preserving

example monotone function: f: BV"3 -> BV"3

o f(<x1x2x3>)=<x11x3>

tuples of lattices

simple analyses may require very complex lattices
e.g. reaching constants: V 2~(v*c) where v is number of variables and c is the constants
solution: use a tuple of lattices, one per variable.

V = coonstant U { Top, Bottom}

integer value: ICP
e.g. used for constant propagation
elements: Top, Bottom, all the integers, the Booleans

e n M Bottom = Bottom
e NJTop=Top
e NJNn=nMn=n
e integers and Booleans m,n, if m I=n, then m M n = Bottom, mJn = Top
o asaresult the lattice has three levels: top element, all other elements,
bottom element
o from higher level to lower level: join operation
from lower level to higher level: meet operation

Relevance to data flow analysis

A lattice provides a set of flow values to a particular data flow analysis.

Lattices are used to argue the existence of a solution obtainable through fixed-point
iteration

e At each program point a lattice represents an IN[p] or OUT[p] set (flow value)

o meet: merge flow values, e.g. set union, deal with control flow branches merge

o Top usually represents the best information (initial flow value). Note people can
use top to represent worst-base information also!!

e The bottom value represents the worst-base information

e IfBOTTOM <=x<=y<=TOP, then x is a conservative approximation of y. e.g.
X is a superset

e.g. liveness analysis

bitvector for all variables x_1,x_2, ..., x_n
First step: design the lattice values
o top value: empty set {}, initial value, knowing nothing
o bottom value: all set {x_1, x_2, ..., x_n}: max possible value, knowing every
variable is live
n =3, 3 variable case: a flow value==> a set of live variable at a point
S={vi, v2,v3}
value set: 23 = { empty, {v1}{v2}, {v3}, {v1, v2}, {v1,v3}, {v2,Vv3}, {v1, v2, ve} }

Design lattice

o top value, best case: none live { T } // top
o bottom value, worst ase: all live {v1, v2, v3}

Design meet: set Union (Or operation): bring the value down to the bottom, context
insensitive

« design partial order <= --> =

In between, a partial order: inferior/conservative solutions are lower on the lattice

Top
/ \ \
{vl} {v2} {v3}
\ b b \
{vl, v2} {vl,v3} {v2,v3}
\ \ /

{vl, v2, v3} = Bottom

Flow function F: fn(X) = Gen, U (X - Hiiin),“v'ﬂ}

reaching definition

Value: 2"n n = number of all definitions

top: empty set: knowing nothing, initial value
bottom: all set: all definitions are reaching definition

Meet operation: set union: bring down the levels of values, from unknowing to knowing

C++ Programming

ROSE is written in C++. Some users have suggested to mention the major C++
programming techniques used in ROSE so they can have more focused learning
experiences as C++ beginners.

Design Patterns: ROSE uses some common design patterns

 Vvisitor pattern: used to create the AST traversal.

Good API Design

Google: "How to Design a Good APl and Why it Matters" by Joshua Bloch

TODO: convert from Markdown

Characteristics of a Good API

Easy to learn

Easy to use, even without documentation
Hard to misuse

Easy to read and maintain code that uses it
Sufficiently powerful to satisfy requirements
Easy to extend

Appropriate to audience

The Process of API Design

o Gather true requirements in the form of use-cases
« Start with a short 1-page specification
o Adgility trumps completeness
o Collect a lot of feedback
e Use your API early and often
o [Test-Driven Development (TDD)](http://en.wikipedia.org/wiki/Test-
driven_development)

[T]he repetition of a very short development cycle: first the developer
writes a failing automated test case that defines a desired improvement or
new function, then produces code to pass that test and finally refactors the
new code to acceptable standards.

http://en.wikipedia.org/wiki/Visitor_pattern
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development

o Doubles as examples/tutorials and unit tests

o Maintain realistic expectations
o Youwon't be able to please everyone... aim to displease everyone equally
o Expect to evolve API; mistakes happen; real-world usage is necessary

General Principles

e When in doubt, leave it out. You can always add, but you can never remove.
o Just because you can doesn't mean you should
o [Power-to-weight ratio](http://en.wikipedia.org/wiki/Power-to-weight_ratio)

> [A] measurement of actual performance [power / weight]

o Don't give users a gun to shoot themselves with
o Information hiding: minimize the accessibility of everything

Documentation Matters

o Class: what an instance represents

* Method: contract between method and calling client (preconditions,
postconditions, and side-effects)
* Parameter: indicate units, form, ownership

Pre- and Post- Conditions

« The precondition statement indicates what must be true before the function is
called.

« The postcondition statement indicates what will be true when the function
finishes its work.

/// \post <return value>.empty() == false

API vs. Implementation

Implementation details should not impact the API. Don't let implementation details "leak™
into the API.

Performance

o Design for usability, refactor for performance

o Do not warp the API to gain performance

o Effects of API design decisions on performance are real and permanent:
o Component.getSize () returns bimension
o Dimension IS mutable

http://en.wikipedia.org/wiki/Power-to-weight_ratio

o Each getsize call must allocate pimension
o Causes millions of needless object allocations

""Harmonize"

e APl must coexist peacefully with platform
Do what is customary (standard)
Avoid obsolete parameter and return types
Mimic patterns in core APIs and language
Take advantage of API-friendly features: generics, varargs, enums, default
arguments
e Don't make the client do anything the module could do
o Reduce need for boilterplate code
« Don't violate the [Principle of Least
Astonishment](http://en.wikipedia.org/wiki/Principle_of least astonishment)

o O O O

> The design should match the user's experience, expectations, and
mental models...aims to exploit users' pre-existing knowledge as a way
to minimize the learning curve

o Provide programmatic access to all data available in string form => no client
string parsing necessary
o Overload with care: ambiguous overloadings

Names Matter

o Largely self-explanatory (avoid cryptic abbreviations)

o Be consistent (e.g. same word means same thing)

e Strive for symmetry

e Should read like [prose](http://en.wikipedia.org/wiki/Prose)

> [T]lhe most typical form of language, applying ordinary grammatical
structure and natural flow of speech rather than rhythmic structure (as
in traditional poetry).
if (car.speed() > 2 * SPEED LIMIT)
generateAlert ("Watch out for cops!");

Input Parameters

« interface types over classes: flexibility, performance

e most specific possible type: moves error from runtime to compile time

e USe double (64 bits) rather than f1o0at (32 bits): precision loss is real,
performance loss negligible

e consistent ordering:

#include <string.h>
char *strcpy (char *dest, char *src);

http://en.wikipedia.org/wiki/Principle_of_least_astonishment
http://en.wikipedia.org/wiki/Prose

void bcopy (void *src, void *dst, int n); // bad!

o short parameter lists: 3 or fewer; more and users will have to refer to docs;
identically typed params harmful
o Two technigues for shortening: 1) break up method, 2) create helper class
to hold parameters

Return Values

e Avoid values that demand exceptional processing

> For example, return a zero-length array or “empty collection’, not
‘null’

Exceptions

don't force client to use exceptions for control flow
don't fail silently
favor unchecked exceptions
include failure-capture diagnostic information
Fail fast: report errors ASAP
o Compile time: static typing, generics
Run time: error on first bad method invocation (should be failure-
atomic)

Who is using ROSE

We are aware of the following ROSE users (people who write their own ROSE-based
tools). They are the reason of the ROSE's existence. Feel free to add your name if you are
using ROSE.

Universities

o University of California, San Diego, CUDA code generator link

« University of Utah, compiler-based parameterized code transformation for
autotuning

« University of Oregon, performance tools

e University of Wyoming, OpenMP error checking

DOE national laboratories

« Argonne National Laboratory, performance modeling

http://ege.ucsd.edu/dokuwiki-page/doku.php?id=didem:projects:mint

TODO List

What is missing (so you can help if you want)

How to backup/mirror this wikibook?

Just in case this website is down, how to download a backup of this wiki book?

How to set up a mirror wiki website containing the wikibook of ROSE?

Maintain the print version

It is possible that new chapters are added but they are not reflected in the one-page print
version. So periodical synchronization is needed by including more chapters or re-
arranging their order in the one-page print version.

Observations:
e A print version is similar to a source file with included contents, each included
chapter will have a first level of heading
o Because the first level heading (=) is used by the print version page to include all
chapters, all included pages/chapters should NOT contain any first level heading.

With the basic understanding of how this work, you can now edit the print version's wiki
page:

e Print version

More at: http://en.wikibooks.org/wiki/Help:Print versions

Maintain the better pdf file

The pdf version automatically generated from the print version page is rudimentary. It
has no table of content and pagination etc.

So we used a manual process to generate better pdf file. We need to occasionally repeat
this process to have a up-to-date and better pdf file.

Here are the manual steps:

o Use your web browser to open and save the print version to your own computer as
"web page complete”

e use the HTML-compatible word processor of your choice to open the html file,
convert html to a format the word processor, and add paginate the book.

http://en.wikibooks.org/wiki/Help:Print_versions

o In Microsoft Word, this can done by

= opening the saved HTML file

= saving it to a word file

= adding table of content by selecting Insert > Field > Index and
Tables > TOC or Preferences-> Table of contents for Word 2012
or later.

= adding page numbers to the footer

= save it to a pdf file with a name like
ROSE_Compiler_Framework.pdf

= upload to wikibooks

To add a link to your wikibook page, insert

{{PDF version|pdf file name without .pdfl|size kb, number pages|file
description}}

For example

{{PDF version|ROSE Compiler Framework|840 kb, 48
pages|ROSE Compiler Framework}}

More background about pdf verions: at: http://en.wikibooks.org/wiki/Help:Print_versions

Sandbox

Some common tricks to write things on wikibooks/wikipedia (both are using the
mediawiki software).

How to create a new page

Usually you have to start a new page from an existing wikipage.

Go to the wiki page you want to have a link to the new page you want to create

click the edit tab the existing page
at the place you want to have a link to the new page, use
[[ROSE_Compiler_Framework/name of the page]]

If there is already a page with the desired name. It will become a link to the page.
If not, the link is red so you can click the red link to enter editing model to add
content to the page.

Please link the new page to the print version of this wikibook so it can be visible in the
print out.

http://en.wikibooks.org/wiki/Help:Print_versions

o To edit the print version, go to
http://en.wikibooks.org/w/index.php?title=ROSE Compiler Framework/Print ve
rsion&action=edit

How to do XYZ in wiki?

The best way is to goto en.wikipedia.com and find a page with the output you want. Then
pretend to edit the page (by clicking edit) to see the source used to generate the output.

For example, you want to know how C++ syntax highlighting is obtained in wikibook.
Go to en.wikipedia.com and find the page for C++. There must be sample code snippet.

Then you pretend to edit it to see the source:
http://en.wikipedia.org/w/index.php?title=C%2B%2B&action=edit§ion=6

You will see the source code generating the syntax highlighting:

<source lang="cpp">
include <iostream>

int main ()

{
std::cout << "Hello, world!\n";

}

</source>

How to add comments which are only visible to editor,
not readers of a page?

Use the HTML comments: for example, the following comment will not show up in the
paper rendered. But it is visible to editor to reminder why things are done in certain way.

<!-- Please keep the pixel size to 400 so they are clean in the pdf
version, Thanks! -->
[[File:Rose-compiler-code-review-1.png|thumb|400px|Code review using
github.llnl.gov]]

Syntax highlighting

Copied from
http://en.wikipedia.org/w/index.php?title=C%2B%2B&action=edit§ion=6

<source lang="cpp">
include <iostream>

int main ()

http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&action=edit
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&action=edit
http://en.wikipedia.org/w/index.php?title=C%2B%2B&action=edit§ion=6
http://en.wikipedia.org/w/index.php?title=C%2B%2B&action=edit§ion=6

{
std::cout << "Hello, world!\n";

}

</source>

Can generate the following highlighted code:

include <iostream>

int main ()

{
std::cout << "Hello, world!\n";

}

Math formula
You can pretend to edit this section to see how math formula are written.
More resources are at

o http://en.wikipedia.org/wiki/Help:Formula
o http://www.mediawiki.org/wiki/Manual:Math

N
> (Si,j)=1
j=1

logy(n!) = logy(n) +logy(n — 1) +logy(n — 2) + ... + logy(1)
log,(n) + logy(n) + logy(n) + ... + logy(n)
nlogs(n)

log,(n!) = log,(n) + logy(n — 1) 4+ logy(n — 2) + ... 4+ log,(1)
< logy(n) + log,(n) + logy(n) + ... + log,(n)
— nloga(n)

2 = a

flz,y,2) = z4+y+=2

erfe(x) = %Lm “dt = I\/—Z ~1)" (22?;))%

http://en.wikipedia.org/wiki/Help:Formula
http://www.mediawiki.org/wiki/Manual:Math

Retrieved from
"http://en.wikibooks.org/w/index.php?title=ROSE Compiler Framework/Print version&
oldid=2384513"

Category:
e ROSE Compiler Framework

What do you think of this page? Reliability: | (wnsure) ~|
Completeness: | “™ ~INeutrality: | ™9)

Presentation: | (rsue) x| Submi |

Re-review this revision

Quality: © poor/unrated * minimal © average ” good

Comment: | Accept revision Unaccept revision

Personal tools

e Liao

e My discussion
o« My preferences

e My watchlist
e My contributions

e Logout
Namespaces

e Book

o Discussion
Variants
Views

e Read

o Latest draft

« Edit

e View history

¢ Unwatch
Actions

¢ Move

Search

http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&oldid=2384513
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&oldid=2384513
http://en.wikibooks.org/wiki/Special:Categories
http://en.wikibooks.org/wiki/Category:ROSE_Compiler_Framework
http://en.wikibooks.org/wiki/User:Liao
http://en.wikibooks.org/wiki/User_talk:Liao
http://en.wikibooks.org/wiki/Special:Preferences
http://en.wikibooks.org/wiki/Special:Watchlist
http://en.wikibooks.org/wiki/Special:Contributions/Liao
http://en.wikibooks.org/w/index.php?title=Special:UserLogout&returnto=ROSE+Compiler+Framework%2FPrint+version
file:///C:/Users/Acer/Desktop/workspace/1.rose/ROSE%20Compiler%20Framework%20Print%20version%20-%20Wikibooks,%20open%20books%20for%20an%20open%20world_files/ROSE%20Compiler%20Framework%20Print%20version%20-%20Wikibooks,%20open%20books%20for%20an%20open%20world.htm
http://en.wikibooks.org/w/index.php?title=Talk:ROSE_Compiler_Framework/Print_version&action=edit&redlink=1
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&stable=1
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&stable=0&redirect=no
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&action=edit
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&action=history
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&action=unwatch&token=272ba1f6a41e75da60536f904e783453%2B%5C
http://en.wikibooks.org/wiki/Special:MovePage/ROSE_Compiler_Framework/Print_version

Q

Navigation
e Main Page
e Help
o Browse
e Cookbook
e Wikijunior

e Featured books
e Recent changes
o Donations

e Random book

Community

e Reading room
e Community portal

o Bulletin Board
e Help out!

o Policies and quidelines

« Contact us
Toolbox

¢ What links here
o Related changes

o Upload file
e Special pages

e Permanent link

o Cite this page
e Page rating

Sister projects

o Wikipedia
o Wikiversity
e Wiktionary
e Wikiquote
o Wikisource
o Wikinews
e Commons

Print/export

o Create a collection

o Download as PDF

http://en.wikibooks.org/wiki/Main_Page
http://en.wikibooks.org/wiki/Help:Contents
http://en.wikibooks.org/wiki/Wikibooks:Card_Catalog_Office
http://en.wikibooks.org/wiki/Cookbook:Table_of_Contents
http://en.wikibooks.org/wiki/Wikijunior
http://en.wikibooks.org/wiki/Wikibooks:Featured_books
http://en.wikibooks.org/wiki/Special:RecentChanges
http://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=20120717SB001&uselang=en
http://en.wikibooks.org/wiki/Special:Randomrootpage
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Print_version
http://en.wikibooks.org/wiki/Wikibooks:Reading_room
http://en.wikibooks.org/wiki/Wikibooks:Community_Portal
http://en.wikibooks.org/wiki/Wikibooks:Reading_room/Bulletin_Board
http://en.wikibooks.org/wiki/Wikibooks:Maintenance
http://en.wikibooks.org/wiki/Wikibooks:Policies_and_guidelines
http://en.wikibooks.org/wiki/Wikibooks:Contact_us
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Print_version
http://en.wikibooks.org/wiki/Special:WhatLinksHere/ROSE_Compiler_Framework/Print_version
http://en.wikibooks.org/wiki/Special:RecentChangesLinked/ROSE_Compiler_Framework/Print_version
http://commons.wikimedia.org/wiki/Commons:Upload
http://en.wikibooks.org/wiki/Special:SpecialPages
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&oldid=2384513
http://en.wikibooks.org/w/index.php?title=Special:Cite&page=ROSE_Compiler_Framework/Print_version&id=2384513
http://en.wikibooks.org/w/index.php?title=Special:RatingHistory&target=ROSE_Compiler_Framework/Print_version
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Print_version
http://en.wikipedia.org/wiki/Main_Page
http://en.wikiversity.org/wiki/Wikiversity:Main_Page
http://en.wiktionary.org/wiki/Wiktionary:Main_Page
http://en.wikiquote.org/wiki/Main_Page
http://en.wikisource.org/wiki/Main_Page
http://en.wikinews.org/wiki/Main_Page
http://commons.wikimedia.org/wiki/Main_Page
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Print_version
http://en.wikibooks.org/w/index.php?title=Special:Book&bookcmd=book_creator&referer=ROSE+Compiler+Framework%2FPrint+version
http://en.wikibooks.org/w/index.php?title=Special:Book&bookcmd=render_article&arttitle=ROSE+Compiler+Framework%2FPrint+version&oldid=2384513&writer=rl

Printable version

This page was last modified on July 26, 2012, at 22:23.
Text is available under the Creative Commons Attribution-ShareAlike License;
additional terms may apply. See Terms of Use for details.

Privacy policy
About Wikibooks

Disclaimers
Mobile view

.‘, WIKIMEDIA
{) e

[9] Mediawi

http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&printable=yes
http://en.wikibooks.org/wiki/Wikibooks:Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
http://wikimediafoundation.org/wiki/Terms_of_Use
http://wikimediafoundation.org/wiki/Privacy_policy
http://en.wikibooks.org/wiki/Wikibooks:Welcome
http://en.wikibooks.org/wiki/Wikibooks:General_disclaimer
http://en.m.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&mobileaction=toggle_view_mobile
http://wikimediafoundation.org/
http://www.mediawiki.org/

