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Abstract

In this paper the famous Riemann Hypothesis
is proven. It was proven that the zeta-function
allows uniform approximation in the critical
strip by some partial products of Euler form.
The basic moment of the work is an investi-
gation of special curves in an infinite dimen-
sional unite cube.
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1. Introduction.
In his work [20] B. Riemann had studied the analytical properties of the zeta

-function
S(s) = Zn_s; Res >1
n=1

has been previously introduced by Euler as a function of real variable only (see
[4,20,24]). He had connected the question of distribution of prime numbers with
the location of the complex zeroes of the zeta-function. By him was formulated

the famous Hypothesis which states that the all of complex (non-real) zeroes of the



zeta-function are on the critical linec=1/2. It is equivalent to non-vanishing of
the zeta-function on the half planecs>1/2.

About other results, including mean-value theorems, density theorems for
zeroes, and etc., see [4, 6, 8, 12, 17, 19, 22, 24].

The Euler product

g(s)zn(l—isj_ :Res>1
» p

makes possible learning of zeroes of the zeta-function in the critical strip. Most
wide areas of free from the zeroes of the zeta-function obtained by the method of
Vinogradov (see [12]).

As a most significant achievement in the zeta-function theory arose the
results of S. M. Voronin [see 25-32] which were a further continuation and
development of the results of H. Bohr, R. Courant and B. Jessen (see [2, 16, 24]).
The Universality Theory given by him for the zeta-function discovered the
important property of the zeta-function. In compliance with the Universality

Theory every non vanishing in and on the circle |s|<r <1/4 analytical function can

be approximated by ¢(3/4+s+iT) with any small error by taking of appropriate

value of T. The behavior of the zeta- function and other functions in those works

of S. M. Voronin studied by him by using of finite products of the form

[10-ep)'

’
where p takes on values from some finite set of prime numbers. The results of
S.M. Voronin ([25-32 ]) and of the works [1,14-16] show that the Dirichlet series
defined by Euler products also must have like properties.

In the present work we show that the Dirichlet series with the Euler product
having analytical continuation to the critical strip without singularities, in some
natural conditions, has not zeroes in this strip where the series has mean values,
and the primes over which are taken the products, distributed by a suitable way
(see formulation of the theorem below). The family of such series includes many

of widely used Dirichlet series as the zeta-function, Dirichlet L-functions, or L-
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functions of some algebraic extensions with commutative Galois groups and etc.
The expression “analog of the Riemann Hypothesis” is used in the meaning of non
vanishing of the Dirichlet series in the right half of the critical strip0<o <1.

Let us to introduce into consideration the infinite dimensional unite cube Q
=[0, 1] x [0, 1] x .... Sequences 9 = (9,), with the components indexed by prime
numbers, are elements of this cube.

We let be given a following infinite product taken over all prime numbers

F(s)=]]/,(p7) Res>1; (1)
here f£,(z) is a rational function of a variable z having not poles in the circle |z/<1,
f,(2)=1+ Zw:affzm,

and for any positive small § the inequality

<c@)p"ie@21  (2)

a,
is satisfied uniformly by p.
Theorem. Let the function F(s) has not singularities in the half plane
o >1/2, with exception of finite number of poles on the linec =1. Further, let every
factor of the product (1) have not zeroes in the half plane o >1/2, and for any
small positive number A there exist a constant cy(4)>0 and a number hy >0 such
that for any h >h, the following inequality is satisfied:
ayp P z e (MR (3)

h<p<h(l+log ' k)
If in the circle |s—o,|<r<r,=min(l-0,,0,-1/2),1/2<0, <1 F(s+ity) has
not zeros for some real t, then there exists a sequence (9,) (9,e€Q) and a
sequence (m,) of integers that for every real t
li_)rgEz(s +it,8)) = F(s+it +it,),

uniformly by s in this circle; here 9,=(%,), and

. 27 I0+7,)  —s—it. t,lo
Fn(S+lt’0n)=pr(e e p f)’]/p:()z—fp.
p<m,

Corollary. The analog of the Riemann Hypothesis is true, i. e.



F(s) =0
when 1/2<o<1.
2. Supplementary statements.
The following variant of S.M. Voronin's lemma, being proven by him in
[28] for the zeta-function, is one of the basic arguments of the present work.
Lemma 1. Let g(s) be an analytical function in the circle s/ <r (0<r<1/4),
remaining continuous and non vanishing when [s/ <r. Then for any & > 0 and for

any y > 2 there is an element 0 =(0,),.,, and a finite set M of prime numbers

containing all of primes with p <y such that:

1)0<0,<1 forpeM,
2)0,=0, are already given numbers for p <y,
3)max‘g(s)—FM(s+ao; 5) <&,

here F,, (s +0,; 0 ) is defined by the equality
F,, (S +0,; 5): pr(efzmg”p_s_% )

Proof. The proof of the lemma 1 will be conducted by the method of the
work [12] of S.M. Voronin. The series (2) of the work [24, p.241] we define as
() = log £, (e p, )
where ¢, is an argument of the coefficient a, . We have (for the sufficiently large

values of k):
u, (s) =log(1+ a;k e—27ﬁ(<ﬂk+9k)pk‘s—ffo )+ log(l+ a;k e—zfzi(¢k+9k)pk—5‘ffo )—1 fp,( (e—zm(wﬁ&)pk—s—ffo ).

By using of an expansion of the logarithmic function into power series, we may

write

27 +8) L, —S=0y

u(s)=a,e Dy +v,(s), (4)

where

v, (s) = O(p*¥ ) + log[l + b, (e p T )"j :

n=2

and the coefficients b, defined by the following equality



oo n-l 1 n—2( 1)2_“. -2 2( 1)1—2
b,=a,—a, a,+a, \a, +=D""a,\a,) .

Therefore,

<(m-Dc"'(5)p°".

b,

Since 7 <7;,, we may take § satisfying the inequality 25 +2r-2c,< -1. Then, the

definition of u,(s) and (4) show, with the last inequality, that the series

21,8, () =a, e p e (5)
n=1

differs from the series ) u,(s) by an absolutely converging series. Therefore, it is

sufficiently to show that for any ¢(s)e H”) (0<y <1 is any) there is a permutation
of the series (5) converging to the ¢(s) (the definition of the Hardy space H"" was

given in [24, p.323]). Further, we are considering (5), following by [28], and
noting that

Yl <.
k=1

We have to define the numbers ¢, and we take any given values for them since
p. <y, and 6, =p(k)/4 otherwise, with the values p(k) which will be precisely
defined below. Let

Alx)= ”ef(”%)x o(s)dodt, R<r,.

‘S‘SR
Then

5),p(s)) =Re [e 2"/ p "0 o Vdodt = Re|a' e A(log p,)|.
up ® Dy 4 e k

‘S‘SR
From the results of the work [24, p.243] we deduce that
|A(x)| <mR’e™?.
So |(77k(s),(p(s))| — 0, as k — o. Therefore, we must set such 6, that the series (5)

could have two sub series divergent to +0 and — o0, correspondingly. From the
conditions (2) and (3) it follows that the set of primes satisfying the condition
h<p<h(1+log'’h) (for givenh) can be dissected into the union of sets P, P», P;, P,

for every of which the following inequality holds



> gy p 0P 2 0.1¢,(8, )0, i = 12,34

peP, ,h<p<h(l+log™" h)
Really, the addends of the last sum have the boundc(s)h " ". As h is taken

sufficiently large, we can suppose this bound to be less thans*. It is possible to

take such addends sum of which is no less than 0.1¢c,(5,4)2"'* (because the full sum
satisfies the condition (3)); since the taken sum is greater than0.2¢,(5,4)h*'*, we

can omit, beginning from the greatest addends, several of them while their sum is

not less than0.2¢,(5,4)h"'*. So we separate such a subset of primes B, that

0.1¢,(8, A)h*'* < > \a;\p—“—“ <0.2¢,(5,)h*'.

peP,,h<p<h(1+log™'" i)
Now we have

> @, p P 2 0.8¢,(5, )h"".

peR h<p<h(i+log™ h)
Repeating like reasoning we get suitable subsets P;, P,, P;, P,. We set p(k)=i—1 for
every p,eP.
By following [28] we find a segment 7, in [x,-1,x,+1] of the length of

greater than 0.01(x; +1)™* for which at least one of the inequalities

T

mA(x,)| > 0.1
is satisfied in every point of the segmentz, (note that [see 24, p.244] in the first

case ReA(x) does not change its sign in this segment).Therefore, if we suppose

A<6,/2, we shall have

2 —-(1-6y)x; (1-A)x; Sgx; /2
ZReUa;k ‘e Z”Zp(k)/4A(10gpk)J>> e TN Sy 00

preh
logpyey;

in the notations of [28] when the inequality ReA(x;)>0.le”" " is fulfilled.

Analogously, we can prove the inequality

i, —(1-6, o (1-A)x; Ogx /2
- ZReua;k‘e 2’"”<k)/4A(10gpk)J>>e( 0 I s %2

pPreh;
log pyey;

~(1-8¢)x;

provided the condition ReA(x;)<-0.le is satisfied. By like way we can

—(1-6)x

consider the case when the inequality ‘ImA(x j)‘ >e ’ 1s fulfilled (in this case we



use the subsets P, and P,).

Let nowr, =[a,a+ f]. Then we apply the inequalities above by taking
h =e” . Consequently, some permutation of the series
> (1(5).9(6)
converges conditionally. So (see [24,28]), there exist a permutation of the series
an>yun(s) converging to the go(s)—zpnsyun(s) uniformly in any compact sub

domain of the circle |s|<r. Taking sufficiently large partial sums of this series, we

get a suitable result. Lemma 1 is proved.

Lemmaz2. Let the series of analytical functions
PO
n=1

be given in the one-connected domain G of the complex s — plane, absolutely

convergent almost everywhere in the G in Lebesgue meaning, and the function

is a summable function in the G. Then given series uniformly converges in any
compact sub domain of the G, particularly, the sum of this series will be an
analytical function in the G.

Proof. 1t is enough to show that the theorem is true for any rectangle C in
the domain G. Let C be a rectangle in the G and C’ is another rectangle lying
directly in the interior of the C, moreover, the sides of them are parallel to the axis.
We can suppose that on contour of these rectangles the series is convergent almost
everywhere in correspondence with the theorem of G.Fubini (see. [7, p.208]). We
deduce from the theorem of Lebesgue on a bounded convergence (see. [21,

p.293]):

jCD(S) WL (S),
27 °¢ s-& n27nc -

where the integrals are taken in Lebesgue meaning and ®,(s) =®,(o,7) is a sum of
given series on the points of convergence. Because on the right hand side of the
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equality the integrals exist in the Riemann meaning, we get by applying Cauchy’s

formula
_ Lo (S)
(&)= -] an(é)

here @,(£)=®,(5) almost everywhere and ¢ is any point on or in the contour.

Further, the series in the C is bounded by following way

e

if § denotes the minimal distance between the sides of the C and C’. The series

(s)||ds|
converges in agree with the theorem of Lebesgue on the monotone convergence

(see [21, p.290]). Therefore, the series i £, (&) converges uniformly in theC’'. The

o
lemma 2 is proved.
3. Main auxiliary results.
Definition 1. Let o:N — N is any one to one mapping of the set of natural
numbers. If there exist a natural number m such that o(n)=n for every n >m then
we say that o is a finite permutation. We call the subset AcQ to be finite —

symmetrical if for any element 0 =(6,) € A we haveoct=(0,,,) e A, where o a finite

permutation Is.
Let = to denote the set of all finite permutations. It is a group which contains

any group S, of n- degree permutations as a subgroup (we shall consider every n-
degree permutation o (n=12,..) as a finite permutation for which o(m)=m
as m>n). LetweQ, I(w)={ow|o e}, and X'(w) means the closed set of all limit
points of the sequence X(w). For a real  we denote {tA}=({t4,}) when A=(4)).
Below we denote byx a product of linear Lebesgue measures defined in the
segment [0,1]: y=mxmx--

Lemma 3. Let A < £ be a finite — symmetrical subset of zero measure and

A= (2,) be an unbounded monotonically increasing sequence of positive numbers
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any subset of components of which is linearly independent over the field of rational

numbers. Let B> A be any open set with u(B)< e and
E,={0<t<1|({tA}) e ANX'({tA}) < B}

Then we have m(E,)<6cs with an absolute constant ¢, and m means the linear

Lebesgue measure.

Proof. Let & be any small positive number. Since the numbers 4, are linearly
independent, we for any finite permutation ¢ have ({t,4,})= {t,4,} when ¢ #t,.
Really, in the other case we could have the equality {4 }=1{,4,} for some
sufficiently large natural m, i.e. (¢, —t,)A, =k, k€ Z . Further, by writing the

same equality for other integer 7 > M we have the relation

bk kA, -k,
A A LA

which contradicts the linear independence of the numbers 4, . So, for any pair of
different numbers ¢, and ¢, ({t,4,}) € {({.4,,}) | o € £}. We can find a family of open

spheres (in the Tichonov topology) such that each of them does not contain any

other of B, B,,... (the sphere being consisted in the other one may be omitted) and

AchOBj,Zy(Bj)<1.55.

j=1

Now we take the permutation o €% defined by the equalitieso(l)=n,,...,o(k)=n,

with the natural numbers 7, set by following way. At first we take N such that
H“(By) <2¢,

where the B), is a projection of the sphere B, into the first N axes and u(B)=¢,.

We cover the B}, by cubes with the rib § and summarized measure not exceeding

3¢,. Let us to write k=N and define the numbers #,,...,n, by using of following

inequalities

A, > 2 <%5/1;11, Z, <$5/1;l,...,/1“ <L

<73 5/1;;4,5<1, (6)



Now we take any cube with the rib § and center(e,),.,.,. Then the point
({4, }) would lie in this cube if it were the case

4, }-a,

<6/2.

From the definition of the fractional part we may write, for some integral  taking
m=1:

”+051—5/2<t<r+051+5/2
A - A

n n

, (D

The measure of a set of such 7 does not exceed the value57,'. The number of such
intervals corresponding to the different values of r=[z4, 1< 4, does not exceed
[4,1+2< 4, +2. The total measure of these intervals is as

< (4, +2)64, <(1+241)5 .

Now we examine one of the intervals (6), and taking m=2 we can write

s+a,-0/2 <z<S+a2+5/2
A - A

ny n

(8)

withs =[z4, 1< 4, . Since we take the conditions (6) and (8) simultaneously, we

must estimate the total measures of intervals (8) having nonempty intersections
with the intervals (7) by using of the conditions (6). The number of intervals with

the length 2! having nonempty intersection with one of the intervals of the view

(7) does not exceed the value
[5&;1%,12 ]+2< 5/1;]1/1,12 +2.

Therefore, the measure of a set of such ¢z, for all of which the conditions (7) and (8)

are satisfied simultaneously, does not exceed
(4, +2)(2+ 5/1;11/1,12 )o. ;21 ,

One may continue this reasoning by taking all of conditions of the form

Z+a—5/2£tgl+a+5/2’ m=l....k.
A A

n, n

m

Then we find the following estimation for the measure m(0)of a set of such ¢ for

which the points ({#4, }) lie into the cubes with the rib of & :
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m(8) <2+ 2,2+ XA, )2+ % 2,64 <5 [[(1+2m™).
m=1

Therefore, by summing over all of such cubes we get, as an upper bound for the
measure of a set of such ¢ for which ({t2, }) € B,, the value < 3ce¢,, c>0.

Note that the sequence A =(4,), defined above, depends ons. We shall fix, for
every of defined above spheres B, , some sequence A, by using of conditions (6).
Considering all of such spheres we denoteX, ={A, |[k=12,..}. Since the set 4 is

finite-symmetrical, the measure of interested us values of ¢ can be estimated by

using of any sequence A, because, as it was noted above, the sets Z({tA})for

various values of ¢ have an empty intersection.

Further, for any point 7 of the E, the set Z({tA}) has a non-empty intersection
with finite number of spheres B, only. Really, if else, then some limit point (which
is contained by the open set B) of X(A) belong say to B,. Let d is a distance from 6
to the bound of B, . Then, for infinitely many indexes 7, beginning from some k the
all of spheres B, would belong into the spheres with radius < d/2 and the center 6.
So, for sufficiently large k the all of such spheres would belong into B,, which i1s

contradiction. Consequently, the set £, can be represented as a union of subsets £,
k=1,2,... where
E ={teE,|2({A)n B, =D}.

m>k

Then,

teE, =y (M), B E =\ _ EvE, K, (k=]).
So we have

m(E,) <limsup, . m(E(A))< ) limsup, m(E"(A))<
k

<3c(g +¢&,+-+-)=3ce,
where E(A)={tcE,|({tA}))e B} and E"W(A)={teE,|{tA}eB,}. The proof of the

lemma 3 is completed.

Lemma 4. Let the conditions of the theorem be satisfied. Then there exist a
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sequence of points (8,) (6.€ ) and natural numbers (m,) such that
/y_{?OF"(S’ 0,)=F(s,+s)
in the circle |s| < r<ry uniformly by s.
Proof. Let y > 2 be a whole positive number which will be precisely defined
below. We suppose
Vo=V Yy =2V00eees Yoy =2V, 1 =2" Vgoee-.
From the lemma 1 it follows that for the given & and a whole number y > 2 there

exist a set M; of primes such that M, contains all of the primes p <y and

279N +7,) -, .
rﬁgﬂF(% +S)_771(S1)| <é&m(s) = pr(e pT), s =0y +s.

PEM,

Moreover, 9, =0 when p <y. Now we denote

F(s; =11/, (6_27"4(3”%)1?9_31 ) ,

p<my

h(s59) :E(Sl;lg)'nl_l(sl)_l;

here 9, =9 when peM, and m = maxm. If »+ 6+ u <r,, then by taking s/ =s, +it,

we can find a constant (8, 1) (x> 0) such that

I( [[1n (52 9f daie g9 < [ (“hl(sl;g)rd&}dadtg
\

Q, S‘Sr+,u ‘S‘SH—# Q,

2
2
Zan (D~ d9 < 4c(0, p)(r + p1) 1-200 4274264241 .

< 7(r+ 1)* max < ;
( 'U)\ In>y 1-20,+2r+26+2u

S‘Sr+/jQ
1

the summation under the sign of integral is taken over such natural numbers 7 in
the canonical factorizations of which take part only the primes p, peM,,p<m,,
_ a, 2m'ap(.9p+yp). _ a,
0, @ =TTare™ > n=[]p
pln
and (2, is a projection of (2 into the subspace of coordinate axes 6, with pe M.

Then it will be found a point & =(¢,)  such that

PEM,

2d0-dt < 47[0(59 ﬂ)(r + /u)2 14+2r-20)+20+2u
1+2r-20,+20+2u

” |h1 (s159)

|s|<r+u

b

or
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max|h (s

1/2
<2 yl[g ([l 590 dadtJ < (8, )y Frontos
s

‘<r+y

(see[19, p. 345]) and c¢;(,u)>0 is a constant. So, setting &, = (&, &), & = ( )peM ,

y =1y, we shall have
I‘l;l‘g.iiﬂF(Sl +ity) — F1(Sl;‘91)|}S r‘l;l‘g-z(ﬂF(Sl +it)) -1, (S1)| + |771 (S1)| ’ |h1 (Sl;lgl')|}g
<g+(A+1)c,(8,A)y, 2o,

on condition that y, would satisfy the inequality

e, (8, 1)y, T A+ ) < ;A= maX|F(s1 ).

We replace now ¢ by &2. There will be find a set of primes M, containing

all of the prime numbers < 2y, = y; and satisfying, by the lemma 1, the inequality

max|F(s +ity)—1,(s))| < &/2,

where

m, (Sl) _ pr (e—2m(9p +7p)p—sl ) ’

PEM,

and 9, =0 if p < y,. By like way we find a point 3 €Q, (£, is a projection of Q

into the subspace of the coordinate axes 9,, p ¢ M>) such that

max

‘s<r

F(Sl,ug) Hf( 27(8,+7,) P 1)’m1:maxm.

meM
psm !

F(s, +ity) - Fy(s;; %)< &9, =(9.,9);

Really,
|F2(S1)_772(31)| = |772(S1)|'|h2(sl; ;9 = Fz(sl;lg)'nz_l(sl)_l-

Now we get by taking the mean value

1/2
maX|h (Slalg )| \/_,U{Z Ij|h (51,3 )| dO'dtJ Scl(5’ﬂ)(2y0)1/2+r—60+§+ﬂ.

|s|<r+u

Therefore,

’
)<

maXﬂF(Sl +ity) — F(S1,19)|}SI‘1;1‘2§131{1F(S1 +i’o)—772(S1)|+|772(Sl)|'|hz(31;

|sf<r

< £/24 (A+1)e, (8, )(2y,) " 7T 9, = (8, ).
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By repeating this calculus we find 94,,/=(39,,9.,) €Q, 9, =(%) , for every x >1,

PEM iy

such that ¢ =0 when p <y, and

max

S‘SV

F(Sl + lto) _ Fk+1 (S1;19k+1 )| S 21+k(1/2+r760+5+‘u)8 ;

here

Fk+1(Sl; ‘9) = pr (e_zmgﬁ—yp)p_SI} my,, = max m

meM
DMy

Consequently, we have the equality
%ika(sl;Sk) =F(s, +1it,)
uniformly by s (|s| < r). Lemma 4 is proved.
4. Proof of the theorem.
Since in any bounded domain the F(s) could have only finite number of

zeroes, we can find a circle K:|s—o,|<r <z =min(l-0,,0,-1/2)not containing

zeroes of the F(s). Now we consider the integral

B, = J[ ” F. (o, +5:6,, +0)-F(c,+s;6, + 6’)|dadr}d6?,
Q Mﬁr

fork =0, 1,... and put F,(c, +s;6, +0)=0 if k=0. Applying the Schwartz inequality

and changing the order of the integration we find as above:

2

Hdg . 27/12;’-%—2/1+2§—20'U <
» >

pSZk’I n>2k71y0

B; <4m? ”dadrf

‘s‘ér Q

pr (B*Zﬂi(lg;*}’p)p—s—ao )

<2y,

)1+2r+25+2y—200

<8, 12" v,
with some constant ¢(8,x)>0. Since 2r+25+2u+1-20, <0, from this estimation
it follows the convergence of the series below almost everywhere in the O

|

k=1 ‘S‘Sr

F(o,+5:0,+0)-F,_ (0, +5,6,_,+0)dodr;s =o +ir. (9)

Let 4 be the set of divergence of the series (9) It is a finite symmetrical subset. By
the theorem of Yegorov (see [7, p. 166]) the series above is converging almost

uniformly in the outside of some subsetQ), u(Q))=0. We can suppose the set

Au Q) to be finite symmetrical (if else one can take all permutations of all its
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elements). We can find some countable family of spheres B, with the total measure

of does not exceeding ¢ the union of which contains the set 4 U Q). For any natural
number n we define the set =/ (tA) as a set of all limit points of the sequence
S (w)={ow|ceSrno(l)=1rrcn)=n}. Let A=(1),4 =(/2x)logp,, where p
denote the n-th prime number and B™ ={t|{t{A} e AAZ! ({tA}) UFB,,}, n=12,.. We
have B < B"". The set ¥ ({tA}) is a closed set. It is clear that if we shall restrict
the sequences {tA} taking the components {+4 } with indexes greater than n only
and denote by {tA}' the restricted sequence then the set Z'({tA}") also will be a
closed set. Now we consider the products [0,1]" x {{tA}'} for every t. We have
{tA} €[00]" x {{tA}Y } < A.

The example below shows that from this fact it does not follow the equality 4 =Q.
Let 7=[01], U =[0,1/2], ¥ =[1/2:1] and

Xy =UxUx--, X =VxUx--, X, =IxVxUx--, ..., X

s+

V=XV xUx- ...

It is clear that u(X,)=0 for all 5. If

then x(X)=0. As it is seen from the construction of X, the equality X =[0,1]’ x X is

satisfied for every s.

Since the set [0,1]" x{{tA}'} is a closed set, there exists only a finite set R of
natural numbers such that[0,1]" x {{tA}'} < UreR B.. Consider the set of restricted
points & of the spheres B, . Let B ={0'|0 < B,}. Then the intersection of them being
an open set contains the point{tA}’. So we have

011" < {{eAyy <[00 < () B = . B. »
for every considered z. The analogical relation is true if we would exchange the
point {tA} by any limit pointe of the sequenceX({tA}), becausewe B.. If by B’ we
denote the union of all open sets of the view ("] _ B/, then we get the relation
{tA} e[01]" x {{tA})'} c A< [01]"xB' < B,

for each considered values of 7, or
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{o} e[0]]'x{@} c Ac[01]'xB' | B,
for any limit point of @. From this it follows that u(B’)<e¢. The set B’ is an open
set andX'({tA}')c B'. Now we can apply the lemma 4 and get the bound
m(B"™) < 6¢ce . So we have m(B) < 6¢e .
Consequently, taking n=y,, k=1, 2, 3,... for every k we find such a limit point

w, € Q\|J B, ofthe sequence X, ({fA}) for which the series

2

1 ‘S‘SV

E(JO +5;0 + a)k)— FH(O'O +s5;0, ,+ a)k]dodr
/=
is convergent. Since the set Q\[J B, is closed, the limit point @ =({rA}) of the
sequence () will belong into Q \[ B, . So the series below

>l

=1 ‘S‘SF

F(o, +5:6,+i{tA})-F,_ (0, +5:0,_, + i{tA})'deT

is convergent for all values of ¢¢ B i.e. for the values of # with exception of their
set of a measure of 12c¢. Since ¢ is any, the latest result shows the convergence
of the series (9) for the almost all ¢ (it 1s clear that the condition 0<¢<1 now can be
omitted) . Then, by the lemma 2, for any given & < 1 the sequence

F (o, +s: 6, +i{tA}),
for all such ¢ converges in the circle |s| < rdy (& < 1) uniformly to some analytical
function f(s;; ?):

limF, (o, +s+it;8,)= f(s;t).  (10)

k—w

In spite of the equality (10), when we use ¢ as a variable we must note that
the logarithms of the left and right hand sides of it may differ one from other by
theirs arguments. Therefore, we cannot use the principle of analytical continuation.
For the completing the proof of the theorem, we take any large positive number 7.

Now we note that there exist a finite number of open circles A,,..,A, every of

which does not contain any other and the union of which contains the segment

1/24+A<0<1-1,1>0,t =1, lying in the critical strip. Since the set of taken values

of t is an everywhere dense in the interval [Z7-T], the union of the circles
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C(t)={ootit+s:|s|<ro,}contains the rectangle o, -, <Res, <o, +rd;, —T <Ims, <T
in which the conditions of the lemma 2 are satisfied by the series
F(s39)+ (F(s:9) = F(s;9)+--.  (11)

Therefore, by the lemma 2, this series defines the analytical function in the
considering rectangle which coincides with the F(s;+it)) in the circle C(0).

For applying of the principle of analytical continuation, we must take an one
— connected open domain where the both of the functions logF.(s) and log F(s) are
regular (here the function F.(s) is a sum of the series (11)). Let p,,...,p, are all the
possible zeroes of the function F(s) in the considering rectangle on the contour of
which the function F(s) has not any zeroes. We take cross cuts over the segments
1/2<Res<Rep,, Ims=Imp,l=1,.,L. In the open domain of the considering
rectangle not containing the segments the function logF.(s) and logF(s) are
regular. Therefore, the equality F.(s)=F(s) is satisfied in the all open domain
defined above. Now we get the equality F.(s)=F(s) in the all rectangle because
both of those functions are regular. The proof of the theorem is completed.

6. Proof of the corollary.

The deduction of the corollary comes out from the theorem of Rouch’e (see

[19,p.137]. Let ¢ be any real number. At first we shall show that for any 0<r<r, in

the circle C={s| |s— o, —if|<r} F(s) has not zeroes. Let

m = min
seC

F(s)|

By the theorem we can find such n=n(?) for which in and on the contour C the
following inequality holds

|[F(s +ity) = F,(5;9,)| < 0.25m.

Then on the contour of the C the inequality

F (538,) = F(s +ity)| <|F (s +it,)|
is satisfied. By the theorem of Rouch'e the functions F(s+iz,) and F,(s;$,) have
the same number of zeroes in the C. But F, (s;$,) has not any zeroes in the circle

C. Therefore, F(s+it,) also has not zeroes in the C. Since ¢ is any, we deduce from
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this that the strip - <Res—o, <r is free from the zeroes of the function F(s).

The conclusions have been made above show that the corresponding strip is
free from the zeroes of F(s). For any ¢ >0 there can be found finite number of
open strips the union of which covers the strip1/2+ u <Res <1- u. Therefore, the
function F(s) has not any zeroes in this strip. Since u is any, then the corollary is
proven.
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