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1. Introduction. 

In his work [20] B. Riemann had studied the analytical properties of the zeta 

-function    
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has been previously introduced by Euler as a function of real variable only (see 

[4,20,24]). He had connected the question of distribution of prime numbers with 

the location of the complex zeroes of the zeta-function. By him was formulated 

the famous Hypothesis which states that the all of complex (non-real) zeroes of the 
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 zeta-function are on the critical line 2/1=σ .  It is equivalent to non-vanishing of 

the zeta-function on the half plane 2/1>σ .  

 About other results, including mean-value theorems, density theorems for 

zeroes, and etc., see [4, 6, 8, 12, 17, 19, 22, 24].  

 The Euler product  
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makes possible learning of zeroes of the zeta-function in the critical strip. Most 

wide areas of free from the zeroes of the zeta-function obtained by the method of 

Vinogradov (see [12]). 

 As a most significant achievement in the zeta-function theory arose the 

results of S. M. Voronin [see 25-32] which were a further continuation and 

development of the results of H. Bohr, R. Courant and B. Jessen (see [2, 16, 24]). 

The Universality Theory given by him for the zeta-function discovered the 

important property of the zeta-function. In compliance with the Universality 

Theory every non vanishing in and on the circle 4/1<≤ rs  analytical function can 

be approximated by )4/3( iTs ++ζ  with any small error by taking of appropriate 

value of T.  The behavior of the zeta- function and other functions in those works 

of S. M. Voronin studied by him by using of finite products of the form 

( ) 121
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p
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where p takes on values from some finite set of prime numbers. The results of 

S.M. Voronin ([25-32 ]) and of the works [1,14-16] show that the Dirichlet series 

defined by Euler products also must have like properties. 

 In the present work we show that the Dirichlet series with the Euler product 

having analytical continuation to the critical strip without singularities, in some 

natural conditions, has not zeroes in this strip where the series has mean values, 

and the primes over which are taken the products, distributed by a suitable way 

(see formulation of the theorem below). The family of such series includes many 

of widely used Dirichlet series as the zeta-function, Dirichlet L-functions, or L-
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functions of some algebraic extensions with commutative Galois groups and etc. 

The expression “analog of the Riemann Hypothesis” is used in the meaning of non 

vanishing of the Dirichlet series in the right half of the critical strip 10 <<σ . 

Let us to introduce into consideration the infinite dimensional unite cube Ω  

= [0, 1] ×  [0, 1] ×  …. Sequences ϑ  = (ϑ р), with the components indexed by prime 

numbers, are elements of this cube. 

 We let be given a following infinite product taken over all prime numbers 
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here  is a rational function of a variable z having not poles in the circle )(zf p 1<z ,   

m

m

m
pp zazf ∑

∞

=

+=
1

1)( , 

and for any positive small δ  the inequality 

1)(;)( ≥≤ δδ δ cpca mm
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is satisfied uniformly by p. 

Theorem. Let the function  has not singularities in the half plane )(sF

2/1>σ , with exception of finite number of poles on the line 1=σ . Further, let every 

factor of the product (1) have not zeroes in the half plane 2/1>σ , and for any 

small positive number λ there exist a constant c0(λ)>0 and a number h0 >0 such 

that for any h >h0 the following inequality is satisfied: 
4/

0
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If in the circle 12/1),2/1,1min( 00000 <<−−=<≤− σσσσ rrs  F(s+it0) has 

not zeros for some real t0, then there exists а sequence (ϑ n) ( Ω∈nϑ ) and a 

sequence (mn) of integers that for every real t  
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 Corollary. The analog of the Riemann Hypothesis is true, i. e. 
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F(s) ≠ 0 

when 12/1 <<σ .   

2. Supplementary statements. 

 The following variant of S.M. Voronin`s lemma, being proven by him in 

[28] for the zeta-function, is one of the basic arguments of the present work.  

 Lemma 1. Let  g(s) be an analytical function in the circle |s| < r ( 4/10 << r ), 

remaining continuous and non vanishing when |s| ≤ r. Then for any ε > 0 and for 

any у > 2 there is an element Mpp ∈= )(θθ  and a finite set M of prime numbers  

containing all of primes with p ≤ y  such that: 

 1) 10 ≤≤ pθ  for ; Mp∈

 2)  are already given numbers for p ≤ y; 0
pp θθ =

 3) ( ) εθσ ≤+−
≤
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here ( )θσ ;0+sFM  is defined by the equality 
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 Proof. The proof of the lemma 1 will be conducted by the method of the 

work [12] of S.M. Voronin. The series (2) of the work [24, p.241] we define as 
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where kϕ  is an argument of the coefficient . We have (for the sufficiently large 

values of k): 
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By using of an expansion of the logarithmic function into power series, we may 

write 
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and the coefficients bn defined by the following equality 
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Therefore, 
nn
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Since , we may take 0rr < δ  satisfying the inequality 2δ +2r-2 0σ < -1. Then, the 

definition of  and (4) show, with the last inequality, that the series  )(sun
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differs from the series  by an absolutely converging series. Therefore, it is 

sufficiently to show that for any 

∑ )(sun

( )rHs γϕ 2)( ∈  ( 10 << γ  is any) there is a permutation 

of the series (5) converging to the )(sϕ  (the definition of the Hardy space ( )rH γ
2  was 

given in [24, p.323]). Further, we are considering (5), following by [28], and 

noting that 
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We have to define the numbers kθ  and we take any given values for them since 

, and ypk ≤ 4/)(kk ρθ =  otherwise, with the values )(kρ  which will be precisely 

defined below. Let  
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From the results of the work [24, p.243] we deduce that  

( ) 2/2 xeRx −≤Δ π . 

So ( ) 0)(),( →ssk ϕη , as . Therefore, we must set such ∞→k kθ  that the series (5) 

could have two sub series divergent to ∞+  and ∞− , correspondingly. From the 

conditions (2) and (3) it follows that the set of primes satisfying the condition 

h<p≤h(1+log-10h) (for given ) can be dissected into the union of sets Ph 1, P2, P3, P4 

for every of which the following inequality holds 
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Really, the addends of the last sum have the bound . As h is taken 

sufficiently large, we can suppose this bound to be less than . It is possible to 

take such addends sum of which is no less than  (because the full sum 

satisfies the condition (3)); since the taken sum is greater than , we 

can omit, beginning from the greatest addends, several of them while their sum is 

not less than . So we separate such a subset of primes  that 
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Repeating like reasoning we get suitable subsets P1, P2, P3, P4 . We set 1)( −= ikρ  for 

every .  ik Pp ∈

By following [28] we find a segment jτ  in ]1,1[ +− jj xx   of the length of 

greater than  for which at least one of the inequalities  8)1(01.0 −+jx

jx
j ex )1( 01.0)(Re δ−−>Δ , jx

j ex )1( 01.0)(Im δ−−>Δ  

is satisfied in every point of the segment jτ (note that [see 24, p.244] in the first 

case  does not change its sign in this segment).Therefore, if we suppose )(Re xΔ

2/0δλ < , we shall have  
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in the notations of [28] when the inequality  is fulfilled. 

Analogously, we can prove the inequality 
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provided the condition  is satisfied. By like way we can 

consider the case when the inequality 

jx
j ex )1( 01.0)(Re δ−−−<Δ

jx
j ex )1( 0)(Im δ−−>Δ  is fulfilled (in this case we 
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use the subsets P2 and P4). 

Let now ],[ βαατ +=j . Then we apply the inequalities above by taking 

. Consequently, some permutation of the series  αeh =

∑
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converges conditionally. So (see [24,28]), there exist a permutation of the series 

 converging to the ∑ > yp n
n

su )( ∑ ≤
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yp n
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sus )()(ϕ  uniformly in any compact sub 

domain of the circle .rs <  Taking sufficiently large partial sums of this series, we 

get a suitable result. Lemma 1 is proved. 

 Lemma2. Let the series of analytical functions  
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be given in the one-connected  domain G of the complex s – plane, absolutely 

convergent  almost everywhere in the  G  in Lebesgue meaning,  and the function 
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is a summable function in the  G. Then given series uniformly converges in any 

compact sub domain of the G; particularly, the sum of this series will be an 

analytical function in the G. 

 Proof. It is enough to show that the theorem is true for any rectangle С  in 

the domain G. Let С  be a rectangle in the G and С′  is another rectangle lying 

directly in the interior of the , moreover, the sides of them are parallel to the axis. 

We can suppose that on contour of these rectangles the series is convergent almost 

everywhere in correspondence with the theorem of G.Fubini (see. [7, p.208]). We 

deduce from the theorem of Lebesgue on a bounded convergence (see. [21, 

p.293]): 
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where the integrals are taken in Lebesgue meaning and ),()( 00 ts σΦ=Φ  is a sum of 

given series on the points of convergence. Because on the right hand side of the 
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equality the integrals exist in the Riemann meaning, we get by applying Cauchy’s 

formula  
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here )()( 01 ξξ Φ=Φ  almost everywhere and ξ  is any point on or in the contour. 

Further, the series in the C is bounded by following way 
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if δ  denotes the minimal distance between the sides of the С  and С . The series  ′

dssf
n

C n∑∫
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converges in agree with the theorem of Lebesgue on the monotone convergence 

(see [21, p.290]). Therefore, the series  converges uniformly in theС)(
1

ξ∑
∞

=n
nf ′ . The 

lemma 2 is proved.  

3. Main auxiliary results. 

 Definition 1. Let NN →:σ  is any one to one mapping of the set of natural 

numbers. If there exist a natural number m such that nn =)(σ  for every n >m  then  

we say that σ  is a finite permutation. We call the subset Ω⊂A  to be finite – 

symmetrical if for any element An ∈= )(θθ  we have An ∈= )( )(σθσθ , where σ  a finite 

permutation is. 

Let  to denote the set of all finite permutations. It is a group which contains 

any group  of n- degree permutations as a subgroup (we shall consider every n- 

degree permutation 

Σ

nS

σ ( ) as a finite permutation for which ,...2,1=n mm =)(σ   

as ). Letnm > Ω∈ω , }|{)( Σ∈=Σ σσωω , and )(ωΣ′  means the closed set of all limit 

points of the sequence )(ωΣ . For a real t we denote })({}{ ntt λ=Λ  when )( nλ=Λ . 

Below we denote by μ  a product of linear Lebesgue measures defined in the 

segment [0,1]: L××= mmμ .  

Lemma 3. Let А ⊂ Ω be a finite – symmetrical subset of zero measure  and  

 (=Λ nλ ) be an unbounded monotonically increasing sequence of positive numbers 
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any subset of components of which is linearly independent over the field of rational 

numbers. Let AB ⊃  be any open set with εμ <)(B  and 

}})({})({|10{0 BtAttE ⊂ΛΣ′∧∈Λ≤≤=  

Then we have εcEm 6)( 0 ≤  with an absolute constant c, and m means the linear 

Lebesgue measure.     

Proof.  Let ε  be any small positive number. Since the numbers nλ are linearly 

independent, we for any finite permutation σ   have }{})({ 21 mn tt λλ ≠  when 21 tt ≠ . 

Really, in the other case we could have the equality }{}{ 21 mm tt λλ =  for some 

sufficiently large natural m, i.е. ,)( 21 ktt m =− λ  Zk∈ . Further, by writing the 

same equality for other integer mr >  we have the relation  
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which contradicts the linear independence of the numbers nλ . So, for any pair of 

different numbers  and  1t 2t { }Σ∈∉ σλλ σ |})({})({ )(21 nn tt . We can find a family of open 

spheres (in the Tichonov topology) such that each of them does not contain any 

other of  (the sphere being consisted in the other one may be omitted)  and  K,, 21 BB

.5.1)(,
1

εμ <⊂⊂
∞

=
∑ j

j
j BBBA U  

Now we take the permutation Σ∈σ  defined by the equalities knkn == )(,,)1( 1 σσ K  

with the natural numbers  set by following way. At first we take  such that  jn N

12)( εμ <′NB , 

where the  is a projection of the sphere  into the first  axes andNB′ 1B N 11)( εμ =B . 

We cover the NB′  by cubes with the rib δ  and summarized measure not exceeding 

13ε . Let us to write  and define the numbers  by using of following 

inequalities  

Nk = knn ,,1 K

1,1,,
9
1,

4
1,1 1

2
11111

123121
<<<<> −−−−−−

−
δδλλδλλδλλλ

kk nnnnnnn k
K .       (6) 
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Now we take any cube with the rib δ  and center kmm ≤≤1)(α . Then the point 

})({
mntλ  would lie in this cube if  it were the case 

2}{ δαλ ≤− mnm
t . 

From the definition of the fractional part we may write, for some integral r taking 

m=1: 

11

2/2/ 11
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rtr
λ

δα
λ

δα ++
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−+ ,        (7) 

The measure of a set of such t does not exceed the value . The number of such 

intervals corresponding to the different values of 

1
1

−
nδλ

11
][ nntr λλ ≤= does not exceed 

22][
11
+≤+ nn λλ . The total measure of these intervals is as 

δλδλλ )21()2( 11
111

−− +≤+≤ nnn . 

Now we examine one of the intervals (6), and taking m=2 we can write  

22

2/2/ 22

nn
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λ

δα
λ

δα ++
≤≤

−+
   (8) 

with
22

][ nnts λλ ≤= . Since we take the conditions (6) and (8) simultaneously, we 

must estimate the total measures of intervals (8) having nonempty intersections 

with the intervals (7) by using of the conditions (6). The number of intervals with 

the length  having nonempty intersection with one of the intervals of the view 

(7) does not exceed the value  

1
2

−
nλ

22][
2121

11 +≤+ −−
nnnn λδλλδλ . 

Therefore, the measure of a set of such t, for all of which the conditions (7) and (8) 

are satisfied simultaneously, does not exceed  
11
2211

)2)(2( −−++ nnnn δλλδλλ . 

One may continue this reasoning by taking all of conditions of the form 

kmltl

mm nn

,,1,2/2/
K=

++
≤≤

−+
λ

δα
λ

δα . 

Then we find the following estimation for the measure )(δm of a set of such t for 

which the points })({
mntλ  lie into the cubes with the rib ofδ : 
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Therefore, by summing over all of such cubes we get, as an upper bound for the 

measure of a set of such t  for which 1})({ Bt
mn ∈λ , the value  ≤ 13 εc , c>0.  

Note that the sequence )( nλ=Λ , defined above, depends onδ . We shall fix, for 

every of defined above spheres , some sequence kB kΛ  by using of conditions (6). 

Considering all of such spheres we denote ,...}2,1|{0 =Λ=Σ kk . Since the set A is 

finite-symmetrical, the measure of interested us values of t can be estimated by 

using of any sequence  because, as it was noted above, the sets kΛ })({ ΛΣ t for 

various values of t have an empty intersection.  
Further, for any point t of the Е0, the set })({ ΛΣ t  has a non-empty intersection 

with finite number of spheres  only. Really, if else, then some limit point (which 

is contained by the open set B) of 

kB

)(ΛΣ  belong say to BBs. Let d is a distance from θ 

to the bound of . Then, for infinitely many indexes nsB k beginning from some k the 

all of spheres  would belong into the spheres with radius < d/2 and the center θ. 

So, for sufficiently large k the all of such spheres would belong into , which is 

contradiction. Consequently, the set Е

knB

sB

0 can be represented as a union of subsets Еk, 

k=1,2,… where 

}})({|{ 0 ∅=∩ΛΣ∈=
>
U
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mk BtEtE . 

Then, 

)1(;,})({ 110 ≥⊂=⊂Λ⇒∈ +≤

∞
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So we have 

≤Λ≤Λ≤ ∑ Σ∈ΛΣ∈Λ
k

kEmEmEт ))((suplim))((suplim)( )(
0 00  

εεε cc 3)(3 21 =++≤ L , 

where  and . The proof of the 

lemma 3 is completed. 

}})({|{)( 0 BtEtE ∈Λ∈=Λ }}{|{)( 0
)(

k
k BtEtE ∈Λ∈=Λ

Lemma 4. Let the conditions of the theorem be satisfied. Then there exist a 
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sequence of points (θк) (θк∈Ω) and natural numbers (mn) such  that     

( ) ( )ssFsF kkk
+=

∞→ 0,lim θ  

in the circle  |s| ≤  r<r0  uniformly by s.  

Proof. Let y > 2 be a whole positive number which will be precisely defined 

below. We suppose 

,...22,...,2, 01010 yyyyyyy m
mm ==== − . 

From the lemma 1 it follows that for the given ε  and a whole number  y > 2  there 

exist  a set  М1 of primes such that  М1  contains all of the primes  р ≤ у and  
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Moreover,  when р ≤ у. Now we denote 00 =pϑ
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here  when  and 0
pp ϑϑ = 1Mp∈ mm

Mm 1
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= .  If 0rr <++ μδ , then by taking 011 itss +=′  

we can find a constant ),( μδc  ( 0>μ ) such that 
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the summation under the sign of integral is taken over such natural numbers n in 

the canonical factorizations of which take part only the primes p, 11, mpMp ≤∉ , 
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and Ω1 is a projection of Ω  into the subspace of coordinate axes θр with р∉ М1. 

Then it will be found a point ( )
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(see[19, p. 345]) and c1(δ,µ)>0 is a constant. So, setting θ1 = (θ0, θ1′), θ0 = ( )
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0
Mpp ∈

ϑ , 

 we shall have 0yy =

{ } { }≤′⋅+−+≤−+
≤≤

);()()()(max);()(max 11111110111101 ϑηηϑ shssitsFsFitsF
rsrs

 

μδσλδε ++−+++≤ 02/1
01 ),()1( rycA , 

on condition that у0 would satisfy the inequality  

)(max;)1(),( 1
2/1

01
0 sFAAyc

rs

r

≤

++−+ =≤+ εμδ μδσ . 

We replace now ε by ε/2. There will be find a set of primes М2 containing 

all of the prime numbers ≤ 2у0 = у1 and satisfying, by the lemma 1, the inequality 

2/)()(max 1201 εη ≤−+
≤

sitsF
rs

, 

where  

∏
∈

−+−=
2

1
0

)()( )(2
12

Mp

si
p pefs pp γϑπη ,  

and  if р ≤ у01 =pϑ 1. By like way we find a point ∈′2ϑ Ω2 (Ω2 is a projection of Ω 

into the subspace of the coordinate axes pϑ , р ∉ М2) such that  

),(;);()(max 21221201 ϑϑϑεϑ ′=≤−+
≤

sFitsF
rs

; 

( )∏
≤

−+−=
1

1)(2
11 );(

mp

si
p pefsF pp γϑπϑ , mm

Mm 1

max1 ∈
= . 

Really,  

;);()()()( 12121212 ϑηη shsssF ⋅=−  . 1)();();( 1
1

21212 −⋅= − ssFsh ηϑϑ

Now we get by taking the mean value 

μδσ

μ

μδσϑ
π

μϑ ++−+

+≤

−

≤
≤

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
′≤′ ∫∫ 02/1

01

2/1

2
212

1
212 )2)(,();(

2
12);(max r

rs
rs

ycdtdshsh . 

Therefore, 

{ } { }≤′⋅+−+≤−+
≤≤

);()()()(max);()(max 21212120111201 ϑηηϑ shssitsFsFitsF
rsrs

 

).,(;)2)(,()1(2/ 212
2/1

1
0 ϑϑϑμδε μδσ ′=++≤ ++−+r

oycA  
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By repeating this calculus we find ϑ k+1=( ), 1+′kk ϑϑ ∈Ω, , for every к >1,  

such that   when  р ≤ у

1
)(

+∈=
kMp

k
pk ϑϑ

0=k
pϑ к  and  

εϑ μδσ )2/1(1
11101

02);()(max ++−++
++≤

≤−+ rk
kkrs

sFitsF ; 

here 

( ) mmpefsF
k

k

pp

Mmk
mp

si
pk

1
1

1 max;);( 1
)(2

11
+

+
∈+

≤

−+−
+ == ∏ γϑπϑ  

Consequently, we have the equality  

)();(lim 011 itsFsF kkk
+=

∞→
ϑ  

uniformly by s (|s| ≤ r). Lemma 4 is proved. 

4. Proof of the theorem. 

Since in any bounded domain the F(s) could have only finite number of 

zeroes, we can find a circle K: rs ≤− 0σ )2/1,1min( 000 −−=< σσr not containing 

zeroes of the F(s). Now we consider the integral  

( ) ( ) θτσθθσθθσ dddsFsFB
rs

kkkkk ∫ ∫∫
Ω ≤

++ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++−++= ;; 0101 , 

for к = 0, 1,… and put ( 0; 000 ) =++ θθσ sF  if к=0. Applying the Schwartz inequality 

and changing the order of the integration we find as above: 

≤⋅≤ ∑∏∫∫ ∫ ∏
−−− >

−++

≤≤ Ω ≤

−−+−

0
1

0

1
0

1

0

2

2222

2

2

2

)(222 )(4
yn

r

p
p

rs yp

si
pk

kkk

p
n
p ndpefddrB σδμσγϑπ θτσπ  

( ) 022221
0

12),( σμδμδ −+++−≤
rk yc  

with some constant 0),( >μδc . Since ,021222 0 <−+++ σμδr  from this estimation 

it follows the convergence of the series below almost everywhere in the Ω   

( ) ( )∑ ∫∫
∞

= ≤
−− +=++−++

1
1010 ;;;

k rs
kkkk isddsFsF τστσθθσθθσ .  (9) 

Let A be the set of divergence of the series (9) It is a finite symmetrical subset. By 

the theorem of Yegorov (see [7, p. 166]) the series above is converging almost 

uniformly in the outside of some subset 0)(, 11 =Ω′Ω′ μ . We can suppose the set 

 to be finite symmetrical (if else one can take all permutations of all its 1Ω′∪A
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elements). We can find some countable family of spheres BBr with the total measure 

of does not exceedingε  the union of which contains the set . For any natural 

number n we define the set 

1Ω′∪A

)( ΛΣ′ tn  as a set of all limit points of the sequence 

})(1)1(|{)( nnn =∧∧=∧Σ∈=Σ σσσσωω L . Let nnn plog)2/1(),( πλλ ==Λ , where  

denote the n-th prime number and . We 

have

np

,...2,1},})({}{|{)( =⊂ΛΣ′∧∈Λ= nBtAttB
r rn

n U
)1()( +⊂ nn BB . The set })({ ΛΣ′ tn  is a closed set. It is clear that if we shall restrict 

the sequences }{ Λt  taking the components }{ ntλ  with indexes greater than n only 

and denote by }{ ′Λt  the restricted sequence then the set  also will be a 

closed set. Now we consider the products  for every t. We have  

)}({ ′ΛΣ′ t

}}{{]1,0[ ′Λ× tn

Att n ⊂′Λ×∈Λ }}{{]1,0[}{ . 

The example below shows that from this fact it does not follow the equality Ω=A . 

Let  and  ],1,0[=I ],2/1,0[=U ]1;2/1[=V

⋅⋅⋅×××=⋅⋅⋅×××=⋅⋅⋅××=⋅⋅⋅××= + UVIXUVIXUVXUUX s
s 1210 ,...,,, ,…. 

It is clear that 0)( =sXμ  for all s. If 

U
∞

=

=
0s

sXX  

then 0)( =Xμ . As it is seen from the construction of X, the equality  is 

satisfied for every s. 

XX s ×= ]1,0[

 Since the set  is a closed set, there exists only a finite set R of 

natural numbers such that . Consider the set of restricted 

points 

}}{{]1,0[ ′Λ× tn

U Rr r
n Bt

∈
⊂′Λ× }}{{]1,0[

θ′  of the spheres . Let rB }|{ rr BB ∈′=′ θθ . Then the intersection of them being 

an open set contains the point }{ ′Λt . So we have 

UI Rr rRr r
nn BBt

∈∈
⊂′×⊂′Λ× ]1,0[}}{{]1,0[ ,     

for every considered t. The analogical relation is true if we would exchange the 

point  by any limit point}{ Λt ω  of the sequence })({ ΛΣ t , because rB∈ω . If by B′  we 

denote the union of all open sets of the view , then we get the relation I Rr rB
∈

′

Ur r
nn BBAtt ⊂′×⊂⊂′Λ×∈Λ ]1,0[}}{{]1,0[}{  

for each considered values of t, or  
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Ur r
nn BBA ⊂′×⊂⊂′×∈ ]1,0[}{]1,0[}{ ωω  

for any limit point of ω . From this it follows that εμ ≤′)(B . The set B′  is an open 

set and . Now we can apply the lemma 4 and get the bound 

. So we have

Bt ′⊂′ΛΣ′ )}({

εcBm n 6)( )( ≤ εcBm 6)( ≤ . 

 Consequently, taking n=yk, k=1, 2, 3,… for every k we find such a limit point 

 of the sequence U r rk B\Ω∈ω })({ΛΣ t
ky  for which the series   

( ) ( ) τσωθσωθσ ddsFsF
l rs

kllkll∑ ∫∫
∞

= ≤
−− ++−++

1
1010 ;;  

is convergent. Since the set is closed, the limit point U r rB\Ω }({ Λ= tω ) of the 

sequence ( kω ) will belong into . So the series below  U r rB\Ω

( ) ( ) τσθσθσ ddtisFtisF
l rs

llll∑ ∫∫
∞

= ≤
−− Λ++−Λ++

1
1010 }{;}{;  

is convergent for all values of Bt∉  i.e. for the values of t with exception of their 

set of a measure of εc12 .  Since ε  is any, the latest result shows the convergence 

of the series (9) for the almost all t (it is clear that the condition  now can be 

omitted) . Then, by the lemma 2, for any given δ

10 ≤≤ t

0 < 1 the sequence 

( )}{;0 Λ++ tisF kk θσ ,        

for all such t converges in the circle |s| ≤ rδ0  (δ0 < 1)  uniformly to some analytical 

function f(s1; t): 

( ) );(;lim 10 tsfitsF kkk
=++

∞→
θσ .     (10) 

 In spite of the equality (10), when we use t as a variable we must note that 

the logarithms of the left and right hand sides of it may differ one from other by 

theirs arguments. Therefore, we cannot use the principle of analytical continuation. 

For the completing the proof of the theorem, we take any large positive number T.  

Now we note that there exist a finite number of open circles  every of 

which does not contain any other and the union of which contains the segment 

mΔΔ ,...,1

0,0,12/1 tt =>−≤<+ λλσλ  lying in the critical strip. Since the  set of  taken values  

of t  is  an  everywhere  dense  in  the  interval  [T,-T],  the union of  the circles 
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C(t)={σ0+it+s:|s|≤rδ0}contains the rectangle  ,Re 2
001

2
00 δσδσ rsr +≤≤− TsT ≤≤− 1Im   

in which the conditions of the lemma 2 are satisfied by the series 

+);( 111 ϑsF ( ) L+− 111212 ;();( ϑϑ sFsF .     (11) 

Therefore, by the lemma 2, this series defines the analytical function in the 

considering rectangle which coincides with the F(s1+it0) in the circle C(0).  

For applying of the principle of analytical continuation, we must take an one 

– connected open domain where the both of the functions  and  are 

regular (here the function  is a sum of the series (11)). Let 

)(log * sF )(log sF

)(* sF Lρρ ,,1 K  are all the 

possible zeroes of the function  in the considering rectangle on the contour of 

which the function   has not any zeroes. We take cross cuts over the segments 

)(sF

)(sF

,ReRe2/1 ls ρ≤≤  .,...,1,ImIm Lls l == ρ  In the open domain of the considering 

rectangle not containing the segments the function  and  are 

regular. Therefore, the equality 

)(log * sF )(log sF

)()(* sFsF =  is satisfied in the all open domain 

defined above. Now we get the equality )()(* sFsF =  in the all rectangle because 

both of those functions are regular. The proof of the theorem is completed.  

6. Proof of the corollary. 

          The deduction of the corollary comes out from the theorem of Rouch`e (see 

[19,p.137]. Let t be any real number. At first we shall show that for any 0<r<r0 in 

the circle C={s| rits ≤−− 0σ } F(s) has not zeroes. Let  

.)(min sFm
Cs∈

=   

By the theorem we can find such n=n(t) for which in and on the contour C the 

following inequality holds 

.25.0);()( 0 msFitsF nn ≤−+ ϑ  

Then on the contour of the C the inequality  

)()();( 00 itsFitsFsF nn +≤+−ϑ  

is satisfied. By the theorem of Rouch`e the functions )( 0itsF +  and );( nn sF ϑ  have 

the same number of zeroes in the C. But );( nn sF ϑ  has not any zeroes in the circle 

C. Therefore,  also has not zeroes in the C. Since t is any, we deduce from )( 0itsF +
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this that the strip rsr <−<− 0Re σ  is free from the zeroes of the function . )(sF

The conclusions have been made above show that the corresponding strip is 

free from the zeroes of F(s). For any µ >0 there can be found finite number of 

open strips the union of which covers the strip μμ −≤≤+ 1Re2/1 s . Therefore, the 

function  has not any zeroes in this strip. Since µ is any, then the corollary is 

proven. 

)(sF
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