Introduction to Physical Chemistry — Lecture 5 Supplement: Derivation of the Speed
of Sound in Air

I. LECTURE OVERVIEW

We can combine the results of Lecture 5 with some
basic techniques in fluid mechanics to derive the speed of
sound in air. For the purposes of the derivation, we will
assume that air is an ideal gas.

II. DERIVATION OF THE SPEED OF SOUND
IN AN IDEAL GAS

Consider a sound wave that is produced in an ideal
gas, say air. This sound may be produced by a variety of
methods (clapping, explosions, speech, etc.). The central
point to note is that the sound wave is defined by a local
compression and then expansion of the gas as the wave
passes by. A sound wave has a well-defined velocity v,
whose value as a function of various properties of the gas
(P, T, etc.) we wish to determine.

So, consider a sound wave travelling with velocity v,
as illustrated in Figure 1. From the perspective of the
sound wave, the sound wave is still, and the air ahead of
it is travelling with velocity v. We assume that the air
has temperature T and P, and that, as it passes through
the sound wave, its velocity changes to v + dv, and its
temperature and pressure change slightly as well, to T +
dT and P + dP, respectively (see Figure 1).

Now, let us consider a cross-sectional area perpendicu-
lar to the air flow, with area A (see Figure 2). In front of
the sound wave, the volume of air that flows through the
cross-sectional area over a time interval dt is Avdt, with
a total mass of pAwvdt. Therefore, the mass flow rate of
air through the cross-sectional area is pAwv.
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A sound wave travelling
with velocity v.

The flow of air from the
perspective of the
sound wave.

FIG. 1: Diagram of a sound wave travelling through air. One
figure is from the perspective of a stationary observer, the
other is from the perspective of the sound wave.
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FIG. 2: An imaginary cross-sectional tube running from one
side of the sound wave to the other.

Imagine that our cross-sectional area is the opening of
a tube that exits behind the sound wave, where the air
density is p + dp, and velocity is v + dv. Since there is
no mass accumulation inside the tube, then applying the
principle of conservation of mass we have,

pAv = (p+dp)A(v + dv) =

pv = pv + vdp + pdv + dvdp =

0 = vdp + pdv =

pdv = —vdp (1)

where we set dvdp = 0, since it is the product of two
infinitesimals, hence is much smaller than the other terms
and may be neglected (the product of two very small
numbers is an even smaller number. For example, 0.001 x
0.001 = 1075, which is 1,000 times smaller than 0.001).

Let us now turn our attention to Figure 3, where we
see a small volume element crossing through the sound
wave. The front face experiences a back pressure of P +
dP, hence a total force of (P + dP)dydz. The back face
experiences a front pressure of P, hence a total force of
Pdydz, so that the net force on the cube is —dPdydz, in
the z-direction. Now, just before the front of the cube
hits the sound wave and begins to compress/stretch in
the z-direction, it has dimensions dz, dy, dz, and hence
the air inside the cube has mass pdxdydz. Also, before
the front face hits sound wave, there is no net force on
the cube. Similarly, once the whole cube has crossed
through the sound wave, there is no net force. The only
time during which a net force is exerted on the cube is
while it is crossing through the sound wave.

The total time it takes the cube to cross through the
sound wave is given by dt = dx/v. Since the net force on
the cube is —dPdydz, the cube experiences an acceler-
ation of —dPdydz/(pdzdydz) = —dP/(pdzx), and hence
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FIG. 3: A force diagram on an infinitesimal cube as it passes
through the sound wave.

dv = —dP/(pdx) x dz/v = —dP/(pv), so that,
pvdv = —dP (2)

Therefore, since pdv = —uvdp, we have, v2dp = dP, and
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Now, to compute dP/dp, we note that as air crosses
through the sound wave, there is no heat added or re-
moved from the system. Therefore, we can assume that
all changes to the thermodynamic variables of the air oc-
cur under adiabatic conditions. From Lecture 5, we have,

for an adiabatic compression/expansion of an ideal gas,
PV? = Constant (4)

Now, p = g/ V, where pi, is the molar mass of the gas,
so that V' = py/p. We then obtain,

Pp~7 = Constant (5)
so that,
In P — v1lnp = Constant (6)

Differentiating with respect to p, we get,
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and so, the speed of sound is given by,

Vsound = lRT (8)

1
Note that the hotter the gas7gthe faster the speed of
sound. Also, note that the heavier the gas, the slower
the speed of sound.
For air, v = 1.4, and p, = 28.8¢g/mol. At 25°C =
208K, we get, Vsound = 347m/s = 1,250km/hr.



