
PRELIM
IN

ARY

Trace Code Instrumentation Instructions

PROGRAMMER'S GUIDE

1/198 17-APR 901 0500/1 Uen PA15



PRELIM
IN

ARY

Copyright

© Copyright Ericsson AB 2012. All rights reserved.

Disclaimer

No part of this document may be reproduced in any form without the written
permission of the copyright owner.

The contents of this document are subject to revision without notice due to
continued progress in methodology, design and manufacturing. Ericsson shall
have no liability for any error or damage of any kind resulting from the use
of this document.

Trademark List

Ericsson Ericsson is the trademark or registered trademark of
Telefonaktiebolaget LM Ericsson. All other product or
service names mentioned in this manual are trademarks
of their respective companies.

1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



PRELIM
IN

ARY

Contents

Contents

1 About This Guide 1

1.1 Intended Audience 1

1.2 How This Guide is Organized 1

1.3 Conventions Used in This Guide 2

1.4 Prerequisites 3

1.5 Comments About the Documentation 3

2 Overview 4

3 Working with Tracepoints 4

3.1 Adding Tracepoint Declarations 5

3.2 Adding Tracepoint Statements 14

4 Preparing the Tracepoint Probe 17

5 Compiling Instrumented Applications 18

5.1 Compiling the Tracepoint Probe Directly with the Application 19

5.2 Compiling the Tracepoint Probe Separately from the
Application Using Dynamic Linking 21

6 Instrumenting a Sample Application 23

6.1 The Sample Application 24

6.2 Adding Tracepoint Statements to the Program Code 25

6.3 Creating the Tracepoint Provider Header File 26

6.4 Preparing the Tracepoint Probe 30

6.5 Modifying the Makefile.am 30

6.6 Trace Output 31

7 Appendix 32

7.1 Using C Structures in a Tracepoint Statement 32

7.2 lttng-gen-tp Helper Script 34

Reference List 36

1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



PRELIM
IN

ARY

Trace Code Instrumentation Instructions

1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



About This Guide

1 About This Guide

This document describes how to code Component Based Architecture (CBA)
applications for tracing using the Trace Common Component (CC).

1.1 Intended Audience

This guide is intended for developers of CBA common components and
applications.

1.1.1 Prerequisite Knowledge

Users of this document should have knowledge and experience of the following:

• C/C++ programming principals

• Trace Key Concepts and naming guidelines documented in Trace Event
Guidelines (Reference [1])

• Linux

• Automake

1.2 How This Guide is Organized

This document is organized into the following major sections:

Table 1 Document Organization

Section Description

About This Guide Introduces the guide, describing prerequisites,
document structure, and the conventions used.

Overview Provides an overview of code instrumentation
and describes the activities that are involved in
the instrumentation process.

Working with Tracepoints Describes how to add tracepoint statements to
the program code and how to create a tracepoint
provider header file.

Preparing the Tracepoint
Probe

Describes the creation of a probe function for the
instrumented application.

Compiling Instrumented
Application

Describes how to compile instrumented
applications.

11/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07

1/155 42-APR 901 0500/1
1/155 42-APR 901 0500/1


Trace Code Instrumentation Instructions

1.3 Conventions Used in This Guide

Table 2 provides a list of typographic conventions that may be encountered
in this document:

Table 2 Typographic Conventions

Convention Description Example

Code Examples Code examples stat char* months[]
={"Jan","Feb"}

Command Variables Command variables,
the values of which
you must supply

<home_directory>

Document and File
Names

References to
document titles
or sections in a
document and file
names

For more information, refer
to the System Administrator
Guide.

Check the local runlog files
(xxx.runlog and xxa.runlog)
in the /var/log/xxx
directory.

GUI Objects GUI objects, such
as menus, fields,
and buttons, dialog
boxes, and options

On the File menu, click Exit.

Key Combinations Key combinations Press Ctrl+X to delete the
selected value.(1)

Output Information Text displayed by the
system

System awaiting
input

Parameter/Configura
tion Values

Parameter values
(numbers, true/false,
yes/no, and so on)

To use this feature, the
parameter must be set to
true.

System Elements Command and
parameter names,
program names,
path names, URLs,
and directory names

The files are located in
E:\Test.

The files are located in
etc/opt/ericsson/bin.
(2)

2 1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



About This Guide

Convention Description Example

User Input A command that
you must enter in
a Command Line
Interface (CLI)
exactly as written

cd $HOME

Line Break The arrow symbol
(⇒) can be
used when an
inappropriate
line break has
been made. An
inappropriate line
break occurs when
the code lines are
too long to fit on the
page, and there is no
appropriate place for
a line break.

>cd /opt/msmw-cds-⇒
cxp-<version>

(1) The plus sign (+) indicates that you must press the keys simultaneously.
(2) The use of the forward slash (/) is for UNIX systems; PC systems use the backslash (\).

1.4 Prerequisites

Trace Environment Adapter (EA) Software Development Kit (SDK) has been
installed on the development machine.

For installation procedures, refer to the Trace EA Installation Instructions
(Reference [2])

1.5 Comments About the Documentation

Ericsson encourages you to provide feedback, comments or suggestions so
that we can improve the documentation to better meet your needs. With your
comments provide the following:

• Document title

• Document number and revision

• Page number

Please send your comments to your local Ericsson Support.

31/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Trace Code Instrumentation Instructions

2 Overview

The Trace Common Component (CC) is a User-Space Tracer (UST) that
collects and processes trace information from applications at runtime. Trace
information is generated by tracepoint statements that must be added to the
program code. The process of coding an application for tracing is called
instrumenting the application. This document describes the instrumentation
process for C/C++ based applications.

Instrumenting your application involves the following activities:

1. Adding tracepoint statements to the program code, see Section 3.2 on
page 14.

2. Creating one or more tracepoint provider header files that define the
tracepoint statements, see Section 3.1 on page 5.

3. Preparing the tracepoint probe, see Section 4 on page 17.

4. Modifying the Makefile.am to compile the instrumented application, see
Section 5 on page 18.

Trace CC uses the Linux Trace Toolkit Next Generation (LTTng) UST to
provide the trace infrastructure. Instrumenting an application to use Trace
CC functionality requires the inclusion of several dependant LTTng files.
These include files are installed with the Trace Environment Adapter (EA)
Software Development Kit (SDK). The Trace EA SDK must be installed on the
development machine to instrument your application. For more information on
installing the Trace EA SDK, refer to the Trace EA Installation Instructions,
(Reference [2]).

Once compiled, the instrumented application requires LTTng libraries to offer
trace functionality. These libraries are installed in the target machine with Trace
EA.

3 Working with Tracepoints

Tracepoints resemble function calls that are added to the application source
code for tracing purposes. When an active tracepoint is hit during the execution
of an instrumented application, arguments specified in the corresponding
tracepoint declaration are captured and stored in the output files. Tracepoints
provide a hook to call a probe function at runtime. This hooking mechanism is

4 1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Working with Tracepoints

dynamic and can be activated or deactivated during a particular trace session.
The hook and the probe function are handled by the shared UST library and
will remain transparent during code instrumentation.

When active, the probe takes arguments passed by the associated tracepoint
and writes them to an event in the trace buffers. Inactive tracepoints are
processed transparently. For more information on tracepoint overhead, refer to
the LTTng UST documentation.

Note: Tracepoints can be added to all types of C/C++ code.

Multi-threaded programs, signal handlers, and shared libraries are all
supported.

Adding tracepoints to your code requires:

• Tracepoint declarations in one or more tracepoint provider header files.

• Tracepoint statements in your program code.

3.1 Adding Tracepoint Declarations

The first part of code instrumentation is the creation of one or more tracepoint
provider header files that define the tracepoints in your program code. These
tracepoint definitions are used to set up events that can be written to the trace
buffers.

All tracepoints defined within a tracepoint provider header file must belong to
the same domain. These domains were assigned when coding the individual
tracepoint statements. For more information, refer to tracepoint_provider in
Section 3.2 on page 14.

Because each header file defines the events for a single domain, multiple files
are often necessary. To help keep track of these files, the filename for each
header file should be the same as the TRACEPOINT_PROVIDER defined within
it, including a .h extension.

For example:

If com_ericsson_aplicationx is the tracepoint provider for the
events in a header file, then the corresponding filename should be
com_ericsson_applicationx.h.

51/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Trace Code Instrumentation Instructions

Example 1 presents a sample tracepoint provider header file.

#undef TRACEPOINT_PROVIDER
#define TRACEPOINT_PROVIDER com_ericsson_applicationx

#undef TRACEPOINT_INCLUDE_FILE
#define TRACEPOINT_INCLUDE_FILE ./com_ericsson_applicationx.h

#ifdef __cplusplus
extern "C" {
#endif

#if !defined(_COM_ERICSSON_APPLICATIONX_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
#define _COM_ERICSSON_APPLICATIONX_H

#include <lttng/tracepoint.h>

TRACEPOINT_EVENT(com_ericsson_applicationx, MyEventName1,
TP_ARGS(int, LoopCounter_i,

int, MyInt
),

TP_FIELDS(
ctf_integer(int, MyLoopCounter_i, LoopCounter_i)
ctf_integer(int, MyInt, MyInt)

)
)

TRACEPOINT_LOGLEVEL(com_ericsson_applicationx, MyEventName1, TRACE_WARNING)

TRACEPOINT_EVENT(com_ericsson_applicationx, MyEventName2,
TP_ARGS( const char *, MyString

),
TP_FIELDS(ctf_string(string, MyString)

)
)

TRACEPOINT_LOGLEVEL(com_ericsson_applicationx, MyEventName2, TRACE_WARNING)

TRACEPOINT_EVENT(com_ericsson_applicationx, MyEventName3,
TP_ARGS( char *, array_text,

size_t, array_text_length,
int, MyNewLength,
int, MyOverflowLength
),

TP_FIELDS(ctf_array(char, array, array_text, 3)
ctf_array(char, array2, array_text, 1)
ctf_array_text(char, arrayText, array_text, 2)
ctf_array_text(char, arrayText2, array_text, 20)
ctf_sequence(char, Sequence, array_text, size_t,array_text_length)
ctf_sequence_text(char, sequenceText, array_text, size_t,array_text_length)
ctf_sequence_text(char, sequenceText2, array_text, size_t,MyNewLength)
ctf_sequence_text(char, sequenceText3, array_text, size_t,MyOverflowLength)
ctf_string(String, array_text)

)
)

6 1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Working with Tracepoints

TRACEPOINT_LOGLEVEL(com_ericsson_applicationx, MyEventName3, TRACE_WARNING)

#endif /* _COM_ERICSSON_APPLICATIONX_H */

/* This part must be outside protection */
#include <lttng/tracepoint-event.h>

#ifdef __cplusplus
}
#endif

Example 1 Sample Tracepoint Provider Header File

This example highlights the elements of a tracepoint provider header file. Each
element is described in the following sections.

3.1.1 TRACEPOINT_PROVIDER

#undef TRACEPOINT_PROVIDER
#define TRACEPOINT_PROVIDER com_ericsson_applicationx

The TRACEPOINT_PROVIDER macro specifies the tracing domain for events
defined in the header file.

Because the provider is part of each tracepoint event name, it must adhere to a
standardized naming convention to ensure that there are no tracepoint name
collisions with other instrumented programs. For more information on naming
conventions and guidelines, refer to the Trace Event Guidelines (Reference [1]).

3.1.2 TRACEPOINT_INCLUDE_FILE

#undef TRACEPOINT_INCLUDE_FILE
#define TRACEPOINT_INCLUDE_FILE ./com_ericsson_applicationx.h

The TRACEPOINT_INCLUDE_FILE is the name and location of this header file,
including the file extension.

Header files should be named after the corresponding TRACEPOINT_PROVIDER
with a .h extension.

Note: The path can be relative or absolute. Use '.' to specify the current
directory.

71/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07

1/155 42-APR 901 0500/1


Trace Code Instrumentation Instructions

3.1.3 extern "C"

#ifdef __cplusplus
#extern "C"{
#endif

...

#ifdef __cplusplus
}
#endif

The TRACEPOINT_EVENT macro defines C functions. If you are coding in C++,
you must surround your header with extern "C" to ensure that it compiles
correctly. Using a ifdef __cplusplus preprocessor directive allows you to
implement mixed code using C and C++ functions.

3.1.4 Header File Definition

#if !defined(_COM_ERICSSON_APPLICATIONX_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
#define _COM_ERICSSON_APPLICATIONX_H

..

#endif

To avoid double definition of TRACEPOINT_EVENT macros, enclose them
inside this if statement.

Note: The UST TRACEPOINT_HEADER_MULTI_READ macro allows the
trace infrastructure to read the header file multiple times to define all
functions and data structures it needs based on a single definition.

3.1.5 tracepoint.h

#include <lttng/tracepoint.h>

lttng/tracepoint.h is part of the LTTng-UST framework. It must be
included in your tracepoint provider header file to enable UST tracing.

8 1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Working with Tracepoints

3.1.6 TRACEPOINT_EVENT

TRACEPOINT_EVENT(sample_domain, event_name,
TP_ARGS([type,var_name]

[,type,array_name] // If ctf_string is used in TP_FIELDS.
[,type,array_name ,size_t,array_length] // If ctf_sequence or ctf_sequence_text
... // is used in TP_FIELDS.
...

),
TP_FIELDS(

[ctf_integer(int, label, var_name)]
[ctf_integer_hex(int, label, var_name)]
[ctf_integer(long, label, var_name)]
[ctf_integer_network(int, label, var_name)]
[ctf_integer_network_hex(int, label, var_name)]
[ctf_array(long, label, array_name, print_length)]
[ctf_array_text(char, label, array_name, print_length)]
[ctf_sequence(char, label, array_name, count_type, array_length)]
[ctf_sequence_text(char, label, array_name, count_type, array_length)]
[ctf_string(label, array_name)]
[ctf_float(float, label, var_name)]
[ctf_float(double, label, var_name)]

)
)

Each tracepoint() statement in your program code must map to a
TRACEPOINT_EVENT definition in the tracepoint provider header file. Each
TRACEPOINT_EVENT has three parts:

• Name declaration

• Argument listing

• Fields listing

Name Declaration

TRACEPOINT_EVENT(tracepoint_provider, event_name, ...)

The name declaration consists of two fields: the tracepoint provider and a
user-defined event name. The event name must be a valid c variable name.
Event names are limited to 127 characters and must begin with a letter or an
underscore. Digits are supported after the initial character.

Argument Listing

TP_ARGS([type,var_name]
[,type,array_name] // If ctf_string is used in TP_FIELDS.
[,type,array_name ,size_t,array_length] // If ctf_sequence or ctf_sequence_text

... // is used in TP_FIELDS.
),

The argument field (TP_ARGS) defines the arguments passed by the
corresponding tracepoint statement. The type and name are separated by
commas.

91/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Trace Code Instrumentation Instructions

Note: When printing output from an array using ctf_sequence or
ctf_sequence_text, the array length must be included as a
separate value using size_t,array_length.

This macro must always be included with the tracepoint declaration. If the
corresponding tracepoint statement does not pass any arguments, include the
macro, but leave it empty as follows:

TP_ARGS(),

Fields Listing

TP_FIELDS(
[ctf_integer(int, label, var_name)]
[ctf_integer_hex(int, label, var_name)]
[ctf_integer(long, label, var_name)]
[ctf_integer_network(int, label, var_name)]
[ctf_integer_network_hex(int, label, var_name)]
[ctf_array(long, label, array_name, print_length)]
[ctf_array_text(char, label, array_name, print_length)]
[ctf_sequence(char, label, array_name, count_type, array_length)]
[ctf_sequence_text(char, label, array_name, count_type, array_length)]
[ctf_string(label, array_name)]
[ctf_float(float, label, var_name)]
[ctf_float(double, label, var_name)]

)

The fields listing (TP_FIELDS) carries the values that are going to appear in
the trace printout for this tracepoint.

Common Trace Format (CTF) macros are used to print data. Each CTF macro
identifies a fieldname=value pair in the trace printout. Together, the CTF
macros for a TRACEPOINT_EVENT form the payload of the tracepoint. These
macros convert trace data into the binary Common Trace Format. This format
is used to reduce the storage space needed for trace output.

Note: Square brackets indicate optional elements.

TP_FIELDS must always be included with the tracepoint declaration. If the
corresponding tracepoint statement does not pass any arguments, include the
macro, but leave it empty as follows:

TP_FIELDS(),

The following table lists the main CTF macros:

Table 3 CTF Macros

<CTF macro> Description

ctf_integer Stores a decimal integer in the digit order specified by the traced
machine.

10 1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Working with Tracepoints

Table 3 CTF Macros

<CTF macro> Description

ctf_integer_hex Stores a hexadecimal integer in the digit order specified by the
traced machine.

ctf_integer_network Stores a decimal integer in network order.

ctf_integer_network_hex Stores a hexadecimal integer in network order.

ctf_float Stores a decimal floating point number as specified by the traced
machine.

ctf_array Stores a fixed size collection of values. Used to print out a fixed
number of elements that are known at coding time. Because the
number of elements to print is known in advance, there is no need
to pass the array length when calling the tracepoint() macro.

Only primitive array types are supported. These include int, long,
float, and char.

Note: If the array type is char, the printout of each element will be
an integer representation of the character stored in that element.
For example: "test" will be printed as: [0] = 116, [1] = 101,
[2] = 115, [3] = 116.

ctf_array_text Stores a fixed size collection of characters. Characters are
displayed up to a null. Used to print out a fixed number of characters
that are known at coding time. Because the number of elements to
print is known in advance, there is no need to pass the array length
when calling the tracepoint() macro.

Note: If the array type is char, the printout of each element will be
an integer representation of the character stored in that element.
For example: "test" will be printed as: [0] = 116, [1] = 101,
[2] = 115, [3] = 116.

111/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Trace Code Instrumentation Instructions

Table 3 CTF Macros

<CTF macro> Description

ctf_sequence Stores a variable size collection of values. Used to print out a
variable number of elements that are not known at coding time.
Because the number of elements to print is not known in advance,
the array length must be passed when calling the tracepoint()
macro.

Only primitive array types are supported. These include int, long,
float, and char.

Note: If the array type is char, the printout of each element will be
an integer representation of the character stored in that element.
For example: "test" will be printed as: [0] = 116, [1] = 101,
[2] = 115, [3] = 116.

ctf_sequence_text Stores a variable size collection of characters. Characters are
displayed up to a null. Used to print out a variable number of
elements that are not known at coding time. Because the number
of elements to print is not known in advance, the array length must
be passed when calling the tracepoint() macro.

Note: Only arrays of type char are supported. Each element will
be printed out in plain text. For example: "test" will be printed as:
"test".

ctf_string Stores a variable size collection of characters that does not require
a user-specified length. Characters are stored up to a null.

The syntax for TP_FIELDS is:

TP_FIELDS(
[<CTF macro>(<type>,<field name>,<value>[,<count type/array_length>,<element count>])]

Where:

<type> is the argument type for the incoming argument. Only
primitive types, structures, and pointers are supported.

int, long, float, char, struct, including arrays
and pointers of these types.

Note: For more information on using C structures in
a tracepoint statement, refer to Section 7.1 on
page 32.

12 1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Working with Tracepoints

<field_name> is the field name that will appear in the trace event
printout. The <field name> is an unquoted, literal
string that supports text without spaces.

Note: The field_name must be unique within the
corresponding header file.

<value> is the value that will be stored for this field. The <value>
must adhere to the same <type> as specified in the
<CTF macro>. It can be a variable or a literal.

<count_type> Only used for sequences (ctf_sequence and
ctf_sequence_text).

Specifies a type for the <print length>.

<print_length> Only used for arrays (ctf_array and ctf_array_text).

Is a fixed length, literal integer that specifies the number
of elements in <value> to print.

<array_length> Only used for sequences.

Is a variable that specifies the number of elements in
<value> to print. This variable is passed from the
prototype definition.

3.1.7 TRACEPOINT_LOGLEVEL

...
TRACEPOINT_LOGLEVEL(com_ericsson_applicationx, MyEventName1, TRACE_WARNING)
...
TRACEPOINT_LOGLEVEL(com_ericsson_applicationx, MyEventName2, TRACE_WARNING)
...
TRACEPOINT_LOGLEVEL(com_ericsson_applicationx, MyEventName3, TRACE_WARNING)
...

TRACEPOINT_LOGLEVEL has the following format:

TRACEPOINT_LOGLEVEL(<tracepoint provider>,<event name>,<log level name>)

TRACEPOINT_LOGLEVEL is an optional macro that assigns a log level to the
corresponding tracepoint event. Log levels indicate the expected frequency of
trace output, providing an additional way to categorize tracepoint events. Lower
log levels are intended for more critical, but less frequent tracepoint events.

Note: The TRACEPOINT_LOGLEVEL macro must be defined in the same
header file as the corresponding tracepoint event.

Table 4 describes the 15 predefined trace log levels that are available for use.

131/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Trace Code Instrumentation Instructions

Table 4 Trace Log Levels

Name Level

TRACE_EMERG 0

TRACE_ALERT 1

TRACE_CRIT 2

TRACE_ERR 3

TRACE_WARNING 4

TRACE_NOTICE 5

TRACE_INFO 6

TRACE_DEBUG_SYSTEM 7

TRACE_DEBUG_PROGRAM 8

TRACE_DEBUG_PROCESS 9

TRACE_DEBUG_MODULE 10

TRACE_DEBUG_UNIT 11

TRACE_DEBUG_FUNCTION 12

TRACE_DEBUG_LINE(1) 13

TRACE_DEBUG 14

(1) TRACE_DEBUG_LINE is the default log level assigned to any tracepoint that does not have
an explicit log level assignment in the corresponding header file.

3.1.8 tracepoint-event.h

#include <lttng/tracepoint-event.h>

lttng/tracepoint-event.h is part of the Lttng-UST framework. It must be
included in your header file to enable UST tracing. It should be specified at the
end of the tracepoint provider header file.

3.2 Adding Tracepoint Statements

The second part of code instrumentation is the modification of program code
for software tracing. These modification include the addition of tracepoint
statements. Tracepoint statements allow you to print information, such as
variables, from a particular section of code for troubleshooting purposes. Each
statement is a macro that passes a set of arguments to the UST probe function.

Example 2 presents the source code for a sample instrumented application.

14 1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Working with Tracepoints

#include <stdlib.h>
#include <iostream>
#include <string>

using namespace std;

#define TRACEPOINT_DEFINE
#define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
#include "com_ericsson_applicationx.h" // Must be included after the two #define statements.

int main ()
{

int MyInt = 3;
int i;
int MyOverflow = 20;

long array_long[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
char array_text[10] = "abcde";
string MyString = "Still in the loop...";

for (i=0; i<10; i++)
{
tracepoint(com_ericsson_applicationx, MyEventName1, i, MyInt);
cout << "Hello World " << i << endl;
tracepoint(com_ericsson_applicationx, MyEventName2, MyString.c_str());
cout << ".........\n";
sleep(2);

}
cout << "Program ends ! \n" ;
tracepoint(com_ericsson_applicationx, MyEventName3, array_text, strlen(array_text),MyInt,MyOverflow);

}

Example 2 Sample Instrumented Application

This example highlights the elements that must be added to the application
source code during instrumentation. Each element is described below.

Tracepoint statements use the following syntax:

tracepoint(tracepoint_provider, event_name, var1[,...,var10]);

Where:

tracepoint_provider
Is the trace domain that this event belongs to. To
avoid name clashes, domain names must follow the
trace naming conventions. For more information on the
naming convention for tracepoint events, refer to the
Trace Event Guidelines (Reference [1]).

Note: Each tracepoint provider must have a
corresponding tracepoint provider header file
that defines all of the tracepoint events in that
domain. For more information on the tracepoint
provider header file, refer to Section 3.1 on
page 5.

event_name Is the name of the event generated by this tracepoint
statement. All event names for the same tracepoint
provider must be unique.

151/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07

1/155 42-APR 901 0500/1


Trace Code Instrumentation Instructions

Event names must follow the trace naming conventions.
For more information on the naming convention for
tracepoint events, refer to the Trace Event Guidelines
(Reference [1]).

var1 Is the first of up to 10 arguments that can be passed to
the UST probe function at runtime. All arguments must
adhere to the following rules:

• Only primitive C-types, structures, and pointers are
supported.

int, long, float, char, struct, including arrays
and pointers of these types.

Note: For more information on using C structures
in a tracepoint statement, refer to Section
7.1 on page 32.

• C++ classes, including strings, are not supported.

A cpp-string (variable defined with a string class)
must be converted to a null-terminated c-string
before it can be passed as an argument to the UST
probe function.

• When using a ctf_sequence or ctf_sequence_
text macro to generate print output, two arguments
are used for each array variable. The first argument
specifies the array and the next argument carries
the length of that array. For more information, see
Section 3.1.6 on page 9.

To instrument your program code:

1. Define the TRACEPOINT_DEFINE and TRACEPOINT_PROBE_DYNAMIC
_LINKAGE macros.

#define TRACEPOINT_DEFINE

#define TRACEPOINT_PROBE_DYNAMIC_LINKAGE

These macros allow your program to run independent of the LTTng-UST
tracer. For more information on compiling an application binary that can run
independent of LTTng libraries, refer to Section 5.2 on page 21.

2. Include the tracepoint provider header files in your program file.

#include <tracepoint_provider_header_file>
...

16 1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07

1/155 42-APR 901 0500/1


Preparing the Tracepoint Probe

These header files must contain declarations for all tracepoints used in
your program. For more information on the tracepoint provider header
files, refer to Section 3.1 on page 5.

3. Add tracepoint statements to the code, as needed.

tracepoint(<tracepoint_provider>, <event_name>, var1
[,var_length] [,var2 ...]);

Note: var_length is only required if the previous argument is an array
and a ctf_sequence or ctf_sequence_text macro will be
used to print the output.

Example 3 highlights sample tracepoint statements:

int MyInt = 10;
tracepoint(APP1_domain1_branch1, event1, MyInt);

// Variable MyInt is passed by value not by reference.

char my_CharArray[100]="hello";
tracepoint(APP1_domain1_branch2, event1, my_CharArray, strlen(my_CharArray));

// Since the my_CharArray is an array, its length must be passed as
// the next argument because ctf-sequence will be used in the
// corresponding tracepoint provider header file.

long MyLongArray[]={1,2,3,4,5};
tracepoint(APP1_domain3, event3, MyLongArray, sizeof(MyLongArray)/sizeof(long));

// Get the length of the array.

string My_cppString = “HELLO”;
tracepoint(APP1_domain2, event1, My_cppString.c_str());

// Passing a c-string instead of the original. The array length is not needed
// because ctf_string will be used in the corresponding tracepoint provider
// header file.

tracepoint(APP1_domain1, event1, my_CharArray, strlen(my_CharArray), MyInt);
// Multiple arguments are passed in one tracepoint.

Example 3 Sample Tracepoint Statements

4 Preparing the Tracepoint Probe

The third part of code instrumentation is the preparation of the tracepoint probe.

LTTng uses a probe function to retrieve runtime data from tracepoint
statements and deliverer that data to the trace buffers. Tracepoint probes
are application specific. These probes are automatically generated by the
TRACEPOINT_CREATE_PROBES C macro using definitions from tracepoint
provider header files.

171/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Trace Code Instrumentation Instructions

As a C macro, TRACEPOINT_CREATE_PROBES must be defined in a .c file
linked to your application that includes all of the tracepoint provider header
files. Typically, the tracepoint probe is defined in a standalone file with the
following format:

#define TRACEPOINT_CREATE_PROBES
#include "tracepoint_provider_1.h"
#include ...
...

Example 4 TRACEPOINT_CREATE_PROBES .c File

This file must be prepared prior to compiling your application and added to
the Makefile.

5 Compiling Instrumented Applications

The following instructions document how to compile an instrumented application
using Automake.

Building an instrumented application requires several modifications to your
Makefile.am. These changes will vary depending on the application's intended
runtime environment.

Typically, instrumented applications are compiled to be executable on systems
where LTTng is installed; however, certain scenarios require an instrumented
program to run on a target machine that does not have LTTng. In this case,
the Makefile.am can be modified to build the application binary separately from
the dependant LTTng libraries (the tracepoint probe). These dependencies
are built into a separate library file. At execution, a shell wrapper can be
used to preload (using LD_PRELOAD) the LTTng library file before calling
the application binary.

Note: If an application is built with LTTng libraries linked in at compile time, it
will only be executable if LTTng is installed on the target system.

If the LTTng library file is successfully preloaded (when LTTng is installed in
the target machine), trace functionality can be applied to the instrumented
application.

If the Lttng library file fails to preload, (when LTTng is not installed in the
target machine), the instrumented application will still execute without trace
functionality. There will be no performance impact on the instrumented
application in this case.

18 1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Compiling Instrumented Applications

This method ensures that the instrumented application can be executed
regardless of the presence of LTTng libraries in the target machine.

5.1 Compiling the Tracepoint Probe Directly with the
Application

Compiling the tracepoint probe directly with the application produces an
application binary with all LTTng libraries linked in. This application will only be
executable if LTTng is installed on the target system.

Prerequisites:

• To compile your instrumented application, all LTTng dependant files must
be available on the development machine. These files are installed as
part of the Trace EA SDK, which must be installed prior to building your
application.

• Instrumented applications must be compiled using the DX GCC
Cross-Compiler. For more information on the DX toolchain, refer to the
documentation for your version of the product software.

Perform the following steps to update your Makefile.am:

1. Include the path to LTTng header files under AM_CFLAGS and
AM_CPPFLAGS.

For example:

• AM_CFLAGS = $(DX_SYSROOT_X86_64)/usr/include ⇒
-Wsystem-headers

• AM_CPPFLAGS = $(DX_SYSROOT_X86_64)/usr/include ⇒
-Wsystem-headers

In this example, the variable $DX_SYSROOT_X86_64 contains the Trace
EA SDK installation path.

Note: The -Wsystem-headers option ensures that the compilation will
fail if any tracepoint provider name is longer than the 127 character
maximum.

2. Specify your application source files.

For example:

191/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Trace Code Instrumentation Instructions

ApplicationX_SOURCES = applicationx.cpp applicationx_t
p.c

In this example, applicationx.cpp is the application source code and
applicationx_tp.c defines the tracepoint probe. For more information on the
tracepoint probe, refer to Section 4 on page 17.

3. Specify the LTTng libraries under LDFLAGS.

ApplicationX_LDFLAGS = -llttng-ust –llttng-ust-fork

Note: llttng-ust is the general LTTng library and llttng-ust-fork
is a special LTTng library that allows the instrumented application
make use of fork to spawn new processes that contain one or
more tracepoints.

After performing these updates, your Makefile.am will appear similar to the
following:

AM_CFLAGS = $(DX_SYSROOT_X86_64)/usr/include -Wsystem-headers
AM_CPPFLAGS = $(DX_SYSROOT_X86_64)/usr/include -Wsystem-headers

bin_PROGRAMS = ApplicationX
ApplicationX_SOURCES = ApplicationX.cpp ApplicationX_tp.c
ApplicationX_LDFLAGS = -llttng-ust -llttng-ust-fork

Example 5 Sample Makefile.am

This makefile will generate a binary (ApplicationX) that has all of the LTTng
dependant libraries linked-in. These dependencies can be viewed with the
ldd command.

For example:

SC-2:/cluster/temp # ldd ApplicationX
linux-vdso.so.1 => (0x00007fff2f3ff000)
liblttng-ust.so.0 => /usr/lib64/liblttng-ust.so.0 (0x00007fea5bd47000)
liblttng-ust-fork.so.0 => /usr/lib64/liblttng-ust-fork.so.0 (0x00007fea5bb44000)
libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00007fea5b839000)
libm.so.6 => /lib64/libm.so.6 (0x00007fea5b5e3000)
libc.so.6 => /lib64/libc.so.6 (0x00007fea5b285000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007fea5b067000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007fea5ae63000)
libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00007fea5ac4c000)
liblttng-ust-tracepoint.so.0 => /usr/lib64/liblttng-ust-tracepoint.so.0 (0x00007fea5aa45000)
librt.so.1 => /lib64/librt.so.1 (0x00007fea5a83c000)
liburcu-bp.so.1 => /usr/lib64/liburcu-bp.so.1 (0x00007fea5a636000)
libuuid.so.1 => /lib64/libuuid.so.1 (0x00007fea5a430000)
/lib64/ld-linux-x86-64.so.2 (0x00007fea5bf84000)
liburcu-common.so.1 => /usr/lib64/liburcu-common.so.1 (0x00007fea5a22d000)

Note: If any of the dependant libraries are not found at execution time, the
program will not run.

20 1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Compiling Instrumented Applications

5.2 Compiling the Tracepoint Probe Separately from the
Application Using Dynamic Linking

Compiling the tracepoint probe separately from the application produces two
files:

• The application binary.

• A separate library file (.so) that links in the tracepoint probe and all of the
dependant LTTng files.

Separating the tracepoint probe and LTTng dependant files from
the application binary allows the instrumented application to operate
independent of LTTng.

Prerequisites:

• To compile your instrumented application, all LTTng dependant files must
be available on the development machine. These files are installed as
part of the Trace EA SDK, which must be installed prior to building your
application.

• Instrumented applications must be compiled using the DX GCC
Cross-Compiler. For more information on the DX toolchain, refer to the
documentation for your version of the product software.

Perform the following steps to update your Makefile.am:

1. Include the path to LTTng header files under AM_CFLAGS and
AM_CPPFLAGS.

For example:

• AM_CFLAGS = $(DX_SYSROOT_X86_64)/usr/include ⇒
-Wsystem-headers

• AM_CPPFLAGS = $(DX_SYSROOT_X86_64)/usr/include ⇒
-Wsystem-headers

Note: The -Wsystem-headers option ensures that the compilation will
fail if any tracepoint event name is longer than the 127 character
maximum.

2. Specify your application source files.

For example:

ApplicationX_SOURCES = applicationx.cpp

211/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Trace Code Instrumentation Instructions

Note: In this example, applicationx.cpp is the application source code.
The tracepoint probe is not included in this step because it must
be separated from the application source.

3. Specify that dynamically linked libraries will be used under LDFLAGS:

ApplicationX_LDFLAGS = -ldl

4. Specify the creation of a separate library file (.so) that links in all of the
LTTng dependant libraries.

For example:

lib_LTLIBRARIES = my-lttng-libs-for-ApplicationX.la
my_lttng_libs_for_ApplicationX_la_SOURCES = ApplicationX_tp.c \

com_ericsson_applicationx.h

FORCE_SHARED_LIB_OPTIONS = -module -shared -avoid-version $(abs_builddir)
PROBE_LIBS = -llttng-ust -llttng-ust-fork
my_lttng_libs_for_ApplicationX_la_LDFLAGS = $(FORCE_SHARED_LIB_OPTIONS) $(PROBE_LIBS)

After performing these updates, your Makefile.am will appear similar to the
following:

AM_CFLAGS = $(DX_SYSROOT_X86_64)/usr/include -Wsystem-headers
AM_CPPFLAGS = $(DX_SYSROOT_X86_64)/usr/include -Wsystem-headers

bin_PROGRAMS = ApplicationX
ApplicationX_SOURCES = ApplicationX.cpp
ApplicationX_LDFLAGS = -ldl

lib_LTLIBRARIES = my-lttng-libs-for-ApplicationX.la
my_lttng_libs_for_ApplicationX_la_SOURCES = ApplicationX_tp.c \

com_ericsson_applicationx.h

FORCE_SHARED_LIB_OPTIONS = -module -shared -avoid-version $(abs_builddir)
PROBE_LIBS = -llttng-ust -llttng-ust-fork
my_lttng_libs_for_ApplicationX_la_LDFLAGS = $(FORCE_SHARED_LIB_OPTIONS) $(PROBE_LIBS)

Example 6 Sample Makefile.am

To operate independently of LTTng , a shell wrapper must be used to run the
instrumented application. This shell wrapper will attempt to preload the LTTng
libraries before launching the application. If LTTng libraries fail to preload,
(LTTng not available on the target machine) the application will still execute
without trace functionality.

The shell wrapper for the sample application, run_ApplicationX.sh, is written as
follows:

#!/bin/sh
LD_PRELOAD=/cluster/temp/my-lttng-libs-for-ApplicationX.so:liblttng-ust-fork.so.0.0.0⇒
/cluster/temp/ApplicationX ${*}

22 1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Instrumenting a Sample Application

Note: The "${*}" allows the passing of arguments to ApplicationX.

For example:

• To run ApplicationX directly:

./ApplicationX arg1 arg2

• To run with the shell wrapper:

./run_ApplicationX.sh arg1 arg2

When the above script is executed, it first tries to load the tracepoint probe that
loads all of the dependent LTTng libraries. It then calls the application binary. If
the dependant LTTng libraries are present, the application loads with tracing
enabled. If the LTTng libraries are not present, the script will ignore the failure
and launch the instrumented application with tracing disabled.

6 Instrumenting a Sample Application

As described in the previous sections, instrumenting an application is a four
step process.

1. Adding tracepoint statements to the program code, see Section 6.2 on
page 25.

2. Creating one or more tracepoint provider header files that define the
tracepoint statements, see Section 6.3 on page 26.

3. Preparing the tracepoint probe, see Section 6.4 on page 30.

4. Modifying the Makefile.am to compile the instrumented application, see
Section 6.5 on page 30.

The instrumentation process involves creating or modifying a number of files.
These files are outlined in Figure 1.

231/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Trace Code Instrumentation Instructions

Figure 1 Instrumented Files

This section uses examples to present a walkthrough of the instrumentation
process. Each example highlights the specific changes that are introduced to
the code during that phase of the instrumentation.

6.1 The Sample Application

In this walkthrough we will be working to instrument a simple application called
ApplicationX.

Example 7 shows the original ApplicationX source code.

24 1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Instrumenting a Sample Application

#include <stdlib.h>
#include <iostream>
#include <string>

using namespace std;

int main ()
{

int MyInt = 3;
int i;
int MyOverflow = 20;
long array_long[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
char array_text[10] = "abcde";
string MyString = "Still in the loop...";

for (i=0; i<10; i++)
{

cout << "Hello World " << i << endl;
cout << ".........\n";

}
cout << "Program ends ! \n" ;

}

Example 7 ApplicationX.cpp Before Instrumentation

ApplicationX is compiled using Automake with the following Makefile.am:

noinst_PROGRAMS = ApplicationX_notInstrumented
ApplicationX_notInstrumented_SOURCES = ApplicationX.cpp

Example 8 Makefile.am for ApplicationX

6.2 Adding Tracepoint Statements to the Program Code

The first step towards instrumenting ApplicationX is to add tracepoint
statements to the program code. The specific changes are highlighted in the
following example.

251/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Trace Code Instrumentation Instructions

#include <stdlib.h>
#include <iostream>
#include <string>

using namespace std;

#define TRACEPOINT_DEFINE
#define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
#include "com_ericsson_applicationx.h" // Must be included after the two #define statements.

int main ()
{
int MyInt = 3;
int i;
int MyOverflow = 20;

long array_long[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
char array_text[10] = "abcde";
string MyString = "Still in the loop...";

for (i=0; i<10; i++)
{

tracepoint(com_ericsson_applicationx, MyEventName1, i, MyInt);
cout << "Hello World " << i << endl;
tracepoint(com_ericsson_applicationx, MyEventName2, MyString.c_str());
cout << ".........\n";
sleep(2);

}
cout << "Program ends ! \n" ;
tracepoint(com_ericsson_applicationx, MyEventName3, array_text, strlen(array_text),MyInt,MyOverflow);

}

Example 9 ApplicationX.cpp After Instrumentation

Trace output produced by ApplicationX is show in Section 6.6 on page 31.

Tracepoint statements are fully described in Section 3.2 on page 14.

Note: The TRACEPOINT_DEFINE and TRACEPOINT_PROBE_DYNAMIC_LIN
KAGE macros are defined to provide the option for the program to run
independent of the LTTng-UST tracer.

com_ericsson_applicationx.h is the tracepoint provider header file that
defines the new tracepoint statements. It is described in the following section.

6.3 Creating the Tracepoint Provider Header File

The second step towards instrumenting ApplicationX is to create a tracepoint
provider header file that defines the tracepoint statements that were added to
the source code.

A sample file is presented in the following example:

Note: Elements of the tracepoint provider header file are fully described in
Section 3.1 on page 5.

26 1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Instrumenting a Sample Application

#undef TRACEPOINT_PROVIDER
#define TRACEPOINT_PROVIDER com_ericsson_applicationx

#undef TRACEPOINT_INCLUDE_FILE
#define TRACEPOINT_INCLUDE_FILE ./com_ericsson_applicationx.h

#ifdef __cplusplus
extern "C" {
#endif

#if !defined(_COM_ERICSSON_APPLICATIONX_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
#define _COM_ERICSSON_APPLICATIONX_H

#include <lttng/tracepoint.h>

TRACEPOINT_EVENT(com_ericsson_applicationx, MyEventName1,
TP_ARGS(int, LoopCounter_i,

int, MyInt
),

TP_FIELDS(
ctf_integer(int, MyLoopCounter_i, LoopCounter_i)
ctf_integer(int, MyInt, MyInt)

)
)

TRACEPOINT_LOGLEVEL(com_ericsson_applicationx, MyEventName1, TRACE_WARNING)

TRACEPOINT_EVENT(com_ericsson_applicationx, MyEventName2,
TP_ARGS( const char *, MyString

),
TP_FIELDS(ctf_string(string, MyString)

)
)
TRACEPOINT_LOGLEVEL(com_ericsson_applicationx, MyEventName2, TRACE_WARNING)

TRACEPOINT_EVENT(com_ericsson_applicationx, MyEventName3,
TP_ARGS( char *, array_text,

size_t, array_text_length,
int, MyNewLength,
int, MyOverflowLength
),

TP_FIELDS(ctf_array(char, array, array_text, 3)
ctf_array(char, array2, array_text, 1)
ctf_array_text(char, arrayText, array_text, 2)
ctf_array_text(char, arrayText2, array_text, 20)
ctf_sequence(char, Sequence, array_text, size_t,array_text_length)
ctf_sequence_text(char, sequenceText, array_text, size_t,array_text_length)
ctf_sequence_text(char, sequenceText2, array_text, size_t,MyNewLength)
ctf_sequence_text(char, sequenceText3, array_text, size_t,MyOverflowLength)
ctf_string(String, array_text)

)
)
TRACEPOINT_LOGLEVEL(com_ericsson_applicationx, MyEventName3, TRACE_WARNING)

#endif /* _COM_ERICSSON_APPLICATIONX_H */

/* This part must be outside protection */
#include <lttng/tracepoint-event.h>

#ifdef __cplusplus
}
#endif

Example 10 com_ericsson_applicationx.h

Trace output produced by ApplicationX is show in Section 6.6 on page 31.

Note: Portions of the tracepoint provider header file can be generated by the
lttng-gen-tp helper script. For more information, refer to Section
7.2 on page 34.

271/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Trace Code Instrumentation Instructions

Each tracepoint statement in the program code must be defined as a separate
TRACEPOINT_EVENT in the header file. ApplicationX has three events,
highlighted in the following example.

TRACEPOINT_EVENT(com_ericsson_applicationx, MyEventName1,
TP_ARGS(int, LoopCounter_i,

int, MyInt
),

TP_FIELDS(
ctf_integer(int, MyLoopCounter_i, LoopCounter_i)
ctf_integer(int, MyInt, MyInt)

)
)

TRACEPOINT_LOGLEVEL(com_ericsson_applicationx, MyEventName1, TRACE_WARNING)

TRACEPOINT_EVENT(com_ericsson_applicationx, MyEventName2,
TP_ARGS( const char *, MyString

),
TP_FIELDS(ctf_string(string, MyString)

)
)
TRACEPOINT_LOGLEVEL(com_ericsson_applicationx, MyEventName2, TRACE_WARNING)

TRACEPOINT_EVENT(com_ericsson_applicationx, MyEventName3,
TP_ARGS( char *, array_text,

size_t, array_text_length,
int, MyNewLength,
int, MyOverflowLength
),

TP_FIELDS(ctf_array(char, array, array_text, 3)
ctf_array(char, array2, array_text, 1)
ctf_array_text(char, arrayText, array_text, 2)
ctf_array_text(char, arrayText2, array_text, 20)
ctf_sequence(char, Sequence, array_text, size_t,array_text_length)
ctf_sequence_text(char, sequenceText, array_text, size_t,array_text_length)
ctf_sequence_text(char, sequenceText2, array_text, size_t,MyNewLength)
ctf_sequence_text(char, sequenceText3, array_text, size_t,MyOverflowLength)
ctf_string(String, array_text)

)
)
TRACEPOINT_LOGLEVEL(com_ericsson_applicationx, MyEventName3, TRACE_WARNING)

Example 11 ApplicationX Tracepoint Events

The tracepoint events used in this example have been constructed to highlight
specific features and functionality described below.

com_ericsson_applicationx:MyEventName1

The first event, com_ericsson_applicationx, MyEventName1, illustrates
that parameters are passed by value in the tracepoint statement.

TRACEPOINT_EVENT(com_ericsson_applicationx, MyEventName1,
TP_ARGS(int, LoopCounter_i,

int, MyInt
),

TP_FIELDS(
ctf_integer(int, MyLoopCounter_i, LoopCounter_i)
ctf_integer(int, MyInt, MyInt)

)
)

In this example, a parameter i is passed in the tracepoint() statement from
the main program. Here, TP_ARGS() receives the parameter with the

28 1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Instrumenting a Sample Application

name LoopCounter_i and it is printed out by TP_FIELDS with the name
MyLoopCounter_i.

This example demonstrates the flexibilty to modify parameter names at printout;
nevertheless, it is strongly recommended to use the same parameter name
passed in the tracepoint() statement. This best practice is highlighted in the
second integer parameter MyInt.

com_ericsson_applicationx:MyEventName2

The second event, com_ericsson_applicationx, MyEventName2,
illustrates the flexibility of using the ctf_string macro in TP_FIELDS for
printing.

TRACEPOINT_EVENT(com_ericsson_applicationx, MyEventName2,
TP_ARGS( const char *, MyString

),
TP_FIELDS(ctf_string(string, MyString)

)
)

In this example, we do not need to pass the string length parameter of the string
in TP_ARGS() because the ctf_string macro is being used to print it.

com_ericsson_applicationx:MyEventName3

The third event, com_ericsson_applicationx, MyEventName3,
illustrates the other CTF printout macros that are supported by LTTng.

TRACEPOINT_EVENT(com_ericsson_applicationx, MyEventName3,
TP_ARGS( char *, array_text,

size_t, array_text_length,
int, MyNewLength,
int, MyOverflowLength
),

TP_FIELDS(ctf_array(char, array, array_text, 3)
ctf_array(char, array2, array_text, 1)
ctf_array_text(char, arrayText, array_text, 2)
ctf_array_text(char, arrayText2, array_text, 20) // Note 20 > array_length
ctf_sequence(char, Sequence, array_text, size_t,array_text_length)
ctf_sequence_text(char, sequenceText, array_text, size_t,array_text_length)
ctf_sequence_text(char, sequenceText2, array_text, size_t,MyNewLength)
ctf_sequence_text(char, sequenceText3, array_text, size_t,MyOverflowLength)
ctf_string(String, array_text)

)
)

Example 12 MyEventName3

Note: More arguments can be passed to TP_FIELDS() than TP_ARGS().

291/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Trace Code Instrumentation Instructions

6.4 Preparing the Tracepoint Probe

The third step towards instrumenting ApplicationX is to create a standalone
.c file that defines the TRACEPOINT_CREATE_PROBES macro. This file
must include all of the tracepoint provider header files that are used by the
instrumented application. In this example, ApplicationX uses one tracepoint
header file; therefore, the corresponding tracepoint probe file for this application
contains the following:

#define TRACEPOINT_CREATE_PROBES
#include "com_ericsson_applicationx.h"

Example 13 ApplicationX_tp.c

Note: The filename of the tracepoint probe does not have to follow a specific
naming convention, so long as it carries the .c extension.

6.5 Modifying the Makefile.am

The fourth step towards instrumenting ApplicatoinX is to modify the Makefile.am
to compile the newly instrumented application.

There are two ways to modify the Makefile.am.

• To compile the tracepoint probe directly with the application.

• To compile the tracepoint probe separately from the application using
dynamic linking.

Both methods are fully described in Section 5 on page 18.

The choice of method depends on application's intended runtime environment
because compiling the tracepoint probe directly with the application creates a
binary that is only executable on systems where LTTng is installed.

Compiling the Tracepoint Probe Directly with the Application

AM_CFLAGS = $(DX_SYSROOT_X86_64)/usr/include -Wsystem-headers
AM_CPPFLAGS = $(DX_SYSROOT_X86_64)/usr/include -Wsystem-headers

bin_PROGRAMS = ApplicationX
ApplicationX_SOURCES = ApplicationX.cpp ApplicationX_tp.c
ApplicationX_LDFLAGS = -llttng-ust -llttng-ust-fork

Example 14 Makefile.am with LTTng Libraries Linked In

30 1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Instrumenting a Sample Application

Compiling the Tracepoint Probe Separately from the Application Using
Dynamic Linking

AM_CFLAGS = $(DX_SYSROOT_X86_64)/usr/include -Wsystem-headers
AM_CPPFLAGS = $(DX_SYSROOT_X86_64)/usr/include -Wsystem-headers

bin_PROGRAMS = ApplicationX
ApplicationX_SOURCES = ApplicationX.cpp
ApplicationX_LDFLAGS = -ldl

lib_LTLIBRARIES = my-lttng-libs-for-ApplicationX.la
my_lttng_libs_for_ApplicationX_la_SOURCES = ApplicationX_tp.c \

com_ericsson_applicationx.h

FORCE_SHARED_LIB_OPTIONS = -module -shared -avoid-version $(abs_builddir)
PROBE_LIBS = -llttng-ust -llttng-ust-fork
my_lttng_libs_for_ApplicationX_la_LDFLAGS = $(FORCE_SHARED_LIB_OPTIONS) $(PROBE_LIBS)

Example 15 Makefile.am Separating LTTng Dependancies

This method builds the instrumented application without LTTng dependant
libraries.

The makefile will generate the following output:

• ./ApplicationX binary

• .libs/my-lttng-libs-for-ApplicationX.so

The .libs/my-lttng-libs-for-ApplicationX.so file contains all
of the LTTng library dependencies. If ApplicationX requires the LTTng
libraries (when tracing is needed, for example), this file must be preloaded,
using LD_PRELOAD, before launching ApplicationX. The preload is
accomplished by launching ApplicationX through the following shell
wrapper.

#!/bin/sh
LD_PRELOAD=/cluster/temp/my-lttng-libs-for-ApplicationX.so:liblttng-ust-fork.so.0.0.0⇒
/cluster/temp/ApplicationX ${*}

Example 16 run_ApplicationX.sh Shell Wrapper

6.6 Trace Output

Activating all tracepoints in ApplicationX during program execution will generate
the following trace output:

Note: The following example has been formatted for browser display.

311/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Trace Code Instrumentation Instructions

+- Time stamp hh:mm:ss.nano_second
|
| +- Process name of the instrumented application
| |
| | +- PID of the instrumented application
| | |
| | | +- Tracepoint name
| | | | +- CPU Identifier (each node can
| | | | |
| | | | | +- Tracepoint pa
| | | | | |
V V V V V V
[11:25:19.517394996] ApplicationX:8129 com_ericsson_applicationx:MyEventName1: { cpu_id = 6 }, { MyLoopCounter_i
[11:25:19.517438506] ApplicationX:8129 com_ericsson_applicationx:MyEventName2: { cpu_id = 6 }, { string = "Still
...
...
...
[11:25:37.518259500] ApplicationX:8129 com_ericsson_applicationx:MyEventName1: { cpu_id = 6 }, { MyLoopCounter_i
[11:25:37.518271861] ApplicationX:8129 com_ericsson_applicationx:MyEventName2: { cpu_id = 6 }, { string = "Still
[11:25:39.518353486] ApplicationX:8129 com_ericsson_applicationx:MyEventName3: { cpu_id = 6 }, { array = [ [0] =

Example 17 ApplicationX Trace Output

7 Appendix

7.1 Using C Structures in a Tracepoint Statement

There are two ways to pass a C structure in the tracepoint() function call:

1. Pass each structure element as a separate argument.

For more information on passing arguments in the tracepoint() function
call, refer to Section 3.2 on page 14.

Note: A maximum of 10 arguments (apart from the provider name and
event name) can be passed in the tracepoint() function call.

2. Pass a pointer to that structure as a single argument.

The pointer can be used to access the structure elements for printout. This
approach uses only one argument and allows the remaining nine to be
used for other parameters.

Note: There is no limit on the number of arguments (CTF macros) that
can be used in TP_FIELDS to print output. For more information
on TP_FIELDS, refer to Section 3.1.6 on page 9.

To pass a pointer in the tracepoint function call, all structure members must
be C-types. (int, long, float, and char). CPP-types (C-plusplus-types)
are not allowed.

32 1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Appendix

To avoid redefining the structure in the tracepoint provider header file, it is
best to defined the structure in a separate header file. This header file must
be included in the tracepoint probe.

The following examples illustrate how to pass a pointer to a structure in
a tracepoint() function call.

Structure Header File

#ifdef __cplusplus
extern "C" {
#endif

struct subscriber {
const char * name; // can not use c-plusplus data types
const char * imsi;
float balance;
int secondRemaining;

};

typedef struct subscriber * p_subscriber;

#ifdef __cplusplus
}
#endif

Example 18 subscriber.h

Instrumented Application

#define TRACEPOINT_DEFINE
#include "subscriber.h"
#include "com_ericsson_common_trace_testapp.h"
...

p_subscriber get_p_subscriber(){
static p_subscriber temp = (p_subscriber) malloc(sizeof( p_subscriber*));
return temp;

}
...

p_subscriber personA = get_p_subscriber();
personA->name = "Micky Mouse";
personA->imsi = "123455143457900";
personA->balance = 50.25;
personA->secondRemaining = 3600;

...

tracepoint(com_ericsson_common_trace_testapp, pointer_to_structure_in_tracepoint, personA);
...

Example 19 InstrumentedApp.cpp

331/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Trace Code Instrumentation Instructions

Tracepoint Provider Header File

...
TRACEPOINT_EVENT(com_ericsson_common_trace_testapp, pointer_to_structure_in_tracepoint,

TP_ARGS(p_subscriber, personA
),

TP_FIELDS( ctf_string(Sub_Name, personA->name)
ctf_string(sub_IMSI, personA->imsi)
ctf_float(float, Sub_balance, personA->balance)
ctf_integer(int, Sub_TimeRemaining, personA->secondRemaining)

)
)
...

Example 20 com_ericsson_common_trace_testapp.h

Tracepoint Probe

#define TRACEPOINT_CREATE_PROBES
#include "subscriber.h" // Must be included before

// the associated header file.

#include "com_ericsson_common_trace_testapp.h

Example 21 tp.c

7.2 lttng-gen-tp Helper Script

To help users coding the tracepoint provider header files, LTTng has created a
helper script that takes the TRACEPOINT_EVENT and TRACEPOINT_LOGLEVEL
sections of the header file as input and outputs a complete tracepoint header
file.

Note: lttng-gen-tp is not developed or maintained by Ericsson. The file
is included in the Trace EA SDK as is to facilitate the instrumentation
process.

lttng-gen-tp is located under /<Trace EA SDK>/usr/bin/.

Where <Trace EA SDK> represents the path at which the Trace EA SDK has
been installed.

Prerequisites:

lttng-gen-tp requires a plain-text .template file as input. The template file
must include all of the TRACEPOINT_EVENT and TRACEPOINT_LOGLEVEL
definitions for the future header file.

Note: Each template file can only contain events for the same tracepoint
provider.

TRACEPOINT_EVENT and TRACEPOINT_LOGLEVEL are fully described in
Section 3.1 on page 5.

34 1/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



Appendix

A sample template file is outlined in the following example:

TRACEPOINT_EVENT(com_ericsson_applicationx, MyEventName1,
TP_ARGS(int, LoopCounter_i,

int, MyInt
),

TP_FIELDS(
ctf_integer(int, MyLoopCounter_i, LoopCounter_i)
ctf_integer(int, MyInt, MyInt)

)
)

TRACEPOINT_LOGLEVEL(com_ericsson_applicationx, MyEventName1, TRACE_WARNING)

TRACEPOINT_EVENT(com_ericsson_applicationx, MyEventName2,
TP_ARGS( const char *, MyString

),
TP_FIELDS(ctf_string(string, MyString)

)
)
TRACEPOINT_LOGLEVEL(com_ericsson_applicationx, MyEventName2, TRACE_WARNING)

Example 22 Sample Template File

The filename of the template file should be the same as the corresponding
tracepoint provider with a .template extension.

To use lttng-gen-tp:

• Launch lttng-gen-tp with your input file, specifying the output with the
-o option.

For example:

./lttng-gen-tp com_ericsson_applicationx.template -o com_ericsson_applicationx.h

A new tracepoint provider header file, com_ericsson_applicationx.h, is created
using the TRACEPOINT_EVENT and TRACEPOINT_LOGLEVEL definitions
specified in the template file, com_ericsson_applicationx.template.

Caution!

Risk of data corruption.

At the time of publication, lttng-gen-tp does not perform error checking. To
ensure data integrity, you must manually ensure that the output from this tool
complies with the instrumentation guidelines outlined in this document.

351/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07



PRELIM
IN

ARY

Reference List

Reference List

[1] Trace Event Guidelines, 1/155 42-APR 901 0500/1

[2] Trace EA Installation Instructions, 1/1531-APR 901 0524/1

361/198 17-APR 901 0500/1 Uen PA15 | 2012-05-07


	toc
	1 About This Guide
	1.1 Intended Audience
	1.1.1 Prerequisite Knowledge

	1.2 How This Guide is Organized
	1.3 Conventions Used in This Guide
	1.4 Prerequisites
	1.5 Comments About the Documentation

	2 Overview
	3 Working with Tracepoints
	3.1 Adding Tracepoint Declarations
	3.1.1 TRACEPOINT_PROVIDER
	3.1.2 TRACEPOINT_INCLUDE_FILE
	3.1.3 extern "C"
	3.1.4 Header File Definition
	3.1.5 tracepoint.h
	3.1.6 TRACEPOINT_EVENT
	Name Declaration
	Argument Listing
	Fields Listing
	3.1.7 TRACEPOINT_LOGLEVEL
	3.1.8 tracepoint-event.h

	3.2 Adding Tracepoint Statements

	4 Preparing the Tracepoint Probe
	5 Compiling Instrumented Applications
	5.1 Compiling the Tracepoint Probe Directly with the Application
	5.2 Compiling the Tracepoint Probe Separately from the Applicati

	6 Instrumenting a Sample Application
	6.1 The Sample Application
	6.2 Adding Tracepoint Statements to the Program Code
	6.3 Creating the Tracepoint Provider Header File
	com_ericsson_applicationx:MyEventName1
	com_ericsson_applicationx:MyEventName2
	com_ericsson_applicationx:MyEventName3
	6.4 Preparing the Tracepoint Probe
	6.5 Modifying the Makefile.am
	Compiling the Tracepoint Probe Directly with the Application
	Compiling the Tracepoint Probe Separately from the Application U
	6.6 Trace Output

	7 Appendix
	7.1 Using C Structures in a Tracepoint Statement
	Structure Header File
	Instrumented Application
	Tracepoint Provider Header File
	Tracepoint Probe
	7.2 lttng-gen-tp Helper Script



