Einführung in die Algebra

Vorlesung 26

Einheitswurzeln

DEFINITION 26.1. Es sei K ein Körper und $n \in \mathbb{N}_+$. Dann heißen die Nullstellen des Polynoms

$$X^{n} - 1$$

in K die n-ten Einheitswurzeln in K.

Die 1 ist für jedes n eine n-te Einheitswurzel, und die -1 ist für jedes gerade n eine n-te Einheitswurzel. Es gibt maximal n n-te Einheitswurzel, da das Polynom $X^n - 1$ maximal n Nullstellen besitzt. Die Einheitswurzeln bilden also insbesondere eine endliche Untergruppe (mit $x^n = 1$ und $y^n = 1$ ist auch $(xy)^n = 1$, usw.) der Einheitengruppe des Körpers. Nach Satz 19.7 ist diese Gruppe zyklisch mit einer Ordnung, die n teilt.

DEFINITION 26.2. Eine n-te Einheitswurzel heißt primitiv, wenn sie die Ordnung n besitzt.

Man beachte, dass ein Erzeuger der Gruppe der Einheitswurzeln nur dann primitiv heißt, wenn es n verschiedene Einheitswurzeln gibt. Wenn ζ eine primitive n-te Einheitswurzel ist, so sind genau die ζ^i mit i < n und i teilerfremd zu n die primitiven Einheitswurzeln. Insbesondere gibt es, wenn es überhaupt primitive Einheitswurzeln gibt, genau $\varphi(n)$ primitive Einheitswurzeln, wobei $\varphi(n)$ die eulersche φ -Funktion bezeichnet. Die komplexen Einheitswurzeln lassen sich einfach beschreiben.

LEMMA 26.3. Sei $n \in \mathbb{N}_+$. Die Nullstellen des Polynoms $X^n - 1$ über \mathbb{C} sind

$$e^{2\pi ik/n} = \cos\frac{2\pi k}{n} + i\sin\frac{2\pi k}{n}, k = 0, 1, \dots, n - 1.$$

In $\mathbb{C}[X]$ gilt die Faktorisierung

$$X^{n} - 1 = (X - 1)(X - e^{2\pi i/n}) \cdot \cdot \cdot (X - e^{2\pi i(n-1)/n})$$

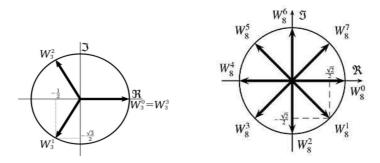
Beweis. Der Beweis verwendet einige Grundtatsachen über die komplexe Exponentialfunktion. Es ist

$$(e^{2\pi ik/n})^n = e^{2\pi ik} = (e^{2\pi i})^k = 1^k = 1.$$

Die angegebenen komplexen Zahlen sind also wirklich Nullstellen des Polynoms $X^n - 1$. Diese Nullstellen sind alle untereinander verschieden, da aus

$$e^{2\pi ik/n} = e^{2\pi i\ell/n}$$

mit $0 \le k \le \ell \le n-1$ sofort durch betrachten des Quotienten $e^{2\pi i(\ell-k)/n}=1$ folgt, und daraus $\ell-k=0$. Es gibt also n explizit angegebene Nullstellen und daher müssen dies alle Nullstellen des Polynoms sein. Die explizite Beschreibung in Koordinaten folgt aus der eulerschen Formel.



Kreisteilungskörper

Definition 26.4. Der n-te Kreisteilungskörper ist der Zerfällungskörper des Polynoms

$$X^n - 1$$

über \mathbb{Q} .

Offenbar ist 1 eine Nullstelle von $X^n - 1$. Daher kann man $X^n - 1$ durch X - 1 teilen und erhält, wie man schnell nachrechen kann,

$$X^{n} - 1 = (X - 1)(X^{n-1} + X^{n-2} + \dots + X + 1)$$
.

Wegen $1\in\mathbb{Q}$ ist daher der n-te Kreisteilungskörper auch der Zerfällungskörper von

$$X^{n-1} + X^{n-2} + \ldots + X + 1$$
.

Es gibt auch Kreisteilungskörper über anderen Körpern, da es ja stets Zerfällungskörper gibt. Wir beschränken uns aber auf die Kreisteilungskörper über \mathbb{Q} , die wir auch mit K_n bezeichnen. Da X^n-1 in der oben explizit beschriebenen Weise über \mathbb{C} in Linearfaktoren zerfällt, kann man K_n als Unterkörper von \mathbb{C} realisieren, und zwar ist K_n der von allen n-ten Einheitswurzeln erzeugte Unterkörper von \mathbb{C} . Dieser wird sogar schon von einer einzigen primitiven Einheitswurzel erzeugt, wofür wir den folgenden Begriff einführen.

DEFINITION 26.5. Eine Körpererweiterung $K \subseteq L$ heißt einfach, wenn es ein Element $x \in L$ gibt mit

$$L = K(x)$$
.

LEMMA 26.6. Sei $n \in \mathbb{N}_+$. Dann wird der n-te Kreisteilungskörper über \mathbb{Q} von $e^{2\pi i/n}$ erzeugt. Der n-te Kreisteilungskörper ist also

$$K_n = \mathbb{Q}(e^{2\pi i/n}) = \mathbb{Q}[e^{2\pi i/n}].$$

Insbesondere ist jeder Kreisteilungskörper eine einfache Körpererweiterung von \mathbb{Q}

Beweis. Es sei K_n der n-te Kreisteilungskörper über \mathbb{Q} . Wegen $(e^{2\pi i/n})^n=1$ ist $\mathbb{Q}[e^{2\pi i/n}]\subseteq K_n$. Wegen $(e^{2\pi i/n})^k=e^{2\pi ik/n}$ gehören auch alle anderen Einheitswurzeln zu $\mathbb{Q}[e^{2\pi i/n}]$, also ist $\mathbb{Q}[e^{2\pi i/n}]=K_n$.

Statt $e^{\frac{2\pi i}{n}}$ kann man auch jede andere n-te primitive Einheitswurzel als Erzeuger nehmen.

BEISPIEL 26.7. Wir bestimmen einige Kreisteilungskörper für kleine n. Bei n=1 oder 2 ist der Kreisteilungskörper gleich \mathbb{Q} . Bei n=3 ist

$$X^3 - 1 = (X - 1)(X^2 + X + 1)$$

und der zweite Faktor zerfällt

$$X^{2} + X + 1 = (X + \frac{1}{2} - i\frac{\sqrt{3}}{2})(X + \frac{1}{2} + i\frac{\sqrt{3}}{2}).$$

Daher ist der dritte Kreisteilungskörper der von $\sqrt{-3} = \sqrt{3}i$ erzeugte Körper, es ist also $K_3 = \mathbb{Q}[\sqrt{-3}]$ eine quadratische Körpererweiterung der rationalen Zahlen.

Bei n=4 ist natürlich

$$X^{4} - 1 = (X^{2} - 1)(X^{2} + 1)$$

$$= (X - 1)(X + 1)(X^{2} + 1)$$

$$= (X - 1)(X + 1)(X - i)(X + i).$$

Der vierte Kreisteilungskörper ist somit $\mathbb{Q}[i] \cong \mathbb{Q}[X]/(X^2+1)$, also ebenfalls eine quadratische Körpererweiterung von \mathbb{Q} .

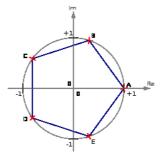
Lemma 26.8. Sei p eine Primzahl. Dann ist der p-te Kreisteilungskörper gleich

$$\mathbb{Q}[X]/(X^{p-1}+X^{p-2}+\ldots+X^1+1)$$

Insbesondere besitzt der p-te Kreisteilungskörper den Grad p-1 über \mathbb{Q} .

Beweis. Der p-te Kreisteilungskörper wird nach Lemma 26.6 von $e^{2\pi i/p}$ erzeugt, er ist also isomorph zu $\mathbb{Q}[X]/(P)$, wobei P das Minimalpolynom von $e^{2\pi i/p}$ bezeichnet. Als Einheitswurzel ist $e^{2\pi i/p}$ eine Nullstelle von X^p-1 und wegen $e^{2\pi i/p} \neq 1$ ist $e^{2\pi i/p}$ eine Nullstelle von $X^{p-1} + X^{p-2} + \ldots + X^1 + 1$. Das Polynom $X^{p-1} + X^{p-2} + \ldots + X^1 + 1$ ist irreduzibel nach Aufgabe 22.12 und daher handelt es sich nach Lemma 21.13 um das Minimalpolynom von $e^{2\pi i/p}$.

Weiter unten werden wir für jedes n die Minimalpolynome der primitiven n-ten Einheitswurzeln bestimmen.



BEISPIEL 26.9. Der fünfte Kreisteilungskörper wird von der komplexen Zahl $e^{2\pi i/5}$ erzeugt. Er hat aufgrund von Lemma 26.8 die Gestalt

$$K_5 \cong \mathbb{Q}[X]/(X^4 + X^3 + X^2 + X + 1),$$

wobei die Variable X als $e^{2\pi i/5}$ (oder eine andere primitive Einheitswurzel) zu interpretieren ist. Sei $x=e^{2\pi i/5}$ und setze $u=2x^4+2x+1$. Aus Symmetriegründen muss dies eine reelle Zahl sein. Es ist

$$u^{2} = 4x^{8} + 4x^{2} + 1 + 8x^{5} + 4x^{4} + 4x$$

$$= 4x^{3} + 4x^{2} + 1 + 8 + 4x^{4} + 4x$$

$$= 5 + 4(x^{4} + x^{3} + x^{2} + x + 1)$$

$$= 5.$$

Es ist also $u=\sqrt{5}$ (die positive Wurzel) und somit haben wir eine Folge von quadratischen Körpererweiterungen

$$\mathbb{Q} \subset \mathbb{Q}[\sqrt{5}] \subset K_5$$
.

Dies zeigt aufgrund von Satz 25.3, dass die fünften Einheitswurzeln konstruierbare Zahlen sind.

Kreisteilungspolynome

DEFINITION 26.10. Sei $n \in \mathbb{N}_+$ und seien $z_1, \ldots, z_{\varphi(n)}$ die primitiven komplexen Einheitswurzeln. Dann heißt das Polynom

$$\Phi_n = \prod_{i=1}^{\varphi(n)} (X - z_i) \in \mathbb{C}[X]$$

das n-te Kreisteilungspolynom.

Nach Konstruktion hat das n-te Kreisteilungspolynom den Grad $\varphi(n)$.

LEMMA 26.11. Sei $n \in \mathbb{N}_+$. Dann gilt in $\mathbb{C}[X]$ die Gleichung

$$X^n - 1 = \prod_{d|n} \Phi_d.$$

Beweis. Jede der n verschiedenen n-ten Einheitswurzeln besitzt eine Ordnung d, die ein Teiler von n ist. Eine n-te Einheitswurzel der Ordnung d ist eine primitive d-te Einheitswurzel. Die Aussage folgt daher aus

$$\begin{split} X^n - 1 &= \prod_{\substack{z \text{ ist n-te Einheitswurzel} \\ = \prod_{d \mid n} \left(\prod_{\substack{z \text{ ist primitive d-te Einheitswurzel} \\ = \prod_{d \mid n} \Phi_d. } (X - z) \right) } \\ \end{aligned}$$

Lemma 26.12. Die Koeffizienten der Kreisteilungspolynome liegen in \mathbb{Z} .

Beweis. Induktion über n. Für n=1 ist $\Phi_1=X-1\in\mathbb{Z}[X]$. Für beliebiges n betrachten wir die in Lemma 26.11 bewiesene Darstellung

$$X^{n} - 1 = \prod_{d|n} \Phi_{d} = \left(\prod_{d|n, d \neq n} \Phi_{d}\right) \cdot \Phi_{n}.$$

Der linke Faktor ist ein normiertes Polynom und er besitzt nach der Induktionsvoraussetzung Koeffizienten in \mathbb{Z} . Daraus folgt mit Aufgabe 26.5, dass auch Φ_n Koeffizienten in \mathbb{Z} besitzt.

Grundlegend ist die folgende Aussage.

Satz 26.13. Die Kreisteilungspolynome Φ_n sind irreduzibel über \mathbb{Q} .

Beweis. Nehmen wir an, dass Φ_n nicht irreduzibel über \mathbb{Q} ist. Dann gibt es nach Lemma 20.13 eine Zerlegung $\Phi_n = FG$ mit normierten Polynomen $F,G\in\mathbb{Z}[X]$ von kleinerem Grad. Wir fixieren eine primitive n-te Einheitswurzel ζ . Dann ist nach Definition der Kreisteilungspolynome $\Phi_n(\zeta) = 0$ und daher ist (ohne Einschränkung) $F(\zeta) = 0$. Wir können annehmen, dass F irreduzibel und normiert ist, also das Minimalpolynom von ζ ist. Wir werden zeigen, dass jede primitive n-te Einheitswurzel ebenfalls eine Nullstelle von F ist. Dann folgt aus Gradgründen grad $(F) = \varphi(n) = \operatorname{grad}(\Phi_n)$ im Widerspruch zur Reduzibilität. Jede primitive Einheitswurzel kann man schreiben als ζ^k mit einer zu n teilerfremden Zahl k. Es genügt dabei, den Fall ζ^p mit einer zu n teilerfremden Primzahl p zu betrachten, da sich jedes ζ^k sukzessive als p-Potenz erhalten lässt (wobei man ζ sukzessive durch ζ^p ersetzt und $F(\zeta^p) = 0$ verwendet). Nehmen wir also an, dass $F(\zeta^p) \neq 0$ ist. Dann muss $G(\zeta^p) = 0$ sein. Daher ist ζ eine Nullstelle des Polynoms $G(X^p)$ und daher gilt $FH = G(X^p)$ mit $H \in \mathbb{Q}[X]$, da ja F das Minimalpolynom von ζ ist. Wegen Aufgabe 26.5 gehören die Koeffizienten von H zu \mathbb{Z} . Wir betrachten nun die Polynome Φ_n, F, G, H modulo p, also als Polynome in $\mathbb{Z}/(p)[X]$, wobei wir dafür $\overline{\Phi_n}$, \overline{F} usw. schreiben. Aufgrund des Frobenius-Homomorphismus in Charakteristik p und Satz 14.14 gilt

$$\overline{G}(X^p) = (\overline{G}(X))^p$$
.

Daher ist

$$\overline{FH} = \overline{G}(X^p) = (\overline{G}(X))^p.$$

Sei nun $\mathbb{Z}/(p)\subseteq L$ der Zerfällungskörper von X^n-1 über $\mathbb{Z}/(p)$, so dass über L insbesondere auch $\overline{\Phi_n}$ und damit auch \overline{F} in Linearfaktoren zerfällt. Sei $u\in L$ eine Nullstelle von \overline{F} . Dann ist u wegen der obigen Teilbarkeitsbeziehung auch eine Nullstelle von \overline{G} . Wegen $\overline{\Phi_n}=\overline{FG}$ ist dann u eine mehrfache Nullstelle von $\overline{\Phi_n}$. Damit besitzt auch X^n-1 eine mehrfache Nullstelle in L. Nach dem formalen Ableitungskriterium ist aber $(X^n-1)'=(n \mod p)X^{n-1}$ und dieser Koeffizient ist nicht null. Also erzeugt das Polynom X^n-1 und seine Ableitung das Einheitsideal, so dass es nach Aufgabe 23.14 keine mehrfache Nullstellen geben kann und wir einen Widerspruch erhalten.

KOROLLAR 26.14. Der n-te Kreisteilungskörper K_n über \mathbb{Q} hat die Beschreibung

$$K_n = \mathbb{Q}[X]/(\Phi_n)$$
,

wobei Φ_n das n-te Kreisteilungspolynom bezeichnet. Der Grad des n-ten Kreisteilungskörpers ist $\varphi(n)$.

Beweis. Es ist $K_n = \mathbb{Q}[\zeta]$, wobei ζ eine primitive n-te Einheitswurzel ist. Nach Definition des Kreisteilungspolynoms ist $\Phi_n(\zeta) = 0$ und nach Satz 26.13 ist das Kreisteilungspolynom irreduzibel, so dass es sich um das Minimalpolynom von ζ handeln muss. Also ist nach Satz 21.12 $K_n \cong \mathbb{Q}[X]/(\Phi_n)$.

Abbildungsverzeichnis

Quelle = 3rd roots of unity.svg, Autor = Benutzer Marek Schmidt und	
Nandhp auf Commons, $Lizenz = PD$	2
Quelle = 8th-root-of-unity.jpg, Autor = Benutzer Marek Schmidt auf	-
Commons, Lizenz = PD	2
Quelle = Kreis5Teilung.svg, Autor = Benutzer Exxu auf Commons,	
Lizenz = CC-by-sa 3.0	4