
In this lecture we will continue with the question when are the torsors given
by a forcing algebras over a two-dimensional ring affine? We will look at the
graded situation to be able to work on the corresponding projective curve.
In particular we want to address the following questions

(1) Is there a procedure to decide whether the torsor is affine?
(2) Is it non-affine if and only if there exists a geometric reason for it

not to be affine (because the superheight is too large)?
(3) How does the affineness vary in an arithmetic family, when we vary

the prime characteristic?
(4) How does the affineness vary in a geometric family, when we vary

the base ring?

In terms of tight closure, these questions are directly related to the tantalizing
question of tight closure (is it the same as plus closure), the dependence
of tight closure on the characteristic and the localization problem of tight
closure.

Geometric interpretation in dimension two

We will restrict now to the two-dimensional homogeneous case in order to
work on the corresponding projective curve. We want to find an object
over the curve which corresponds to the forcing algebra. Let R be a two-
dimensional standard-graded normal domain over an algebraically closed field
K. Let C = Proj R be the corresponding smooth projective curve and let

I = (f1, . . . , fn)

be an R+-primary homogeneous ideal with generators of degrees d1, . . . , dn.
Then we get on C the short exact sequence

0 −→ Syz (f1, . . . , fn)(m) −→
n⊕
i=1

OC(m− di)
f1,...,fn−→ OC(m) −→ 0 .

Here Syz (f1, . . . , fn)(m) is a vector bundle, called the syzygy bundle, of rank
n− 1 and of degree

((n− 1)m−
n∑
i=1

di) deg (C) .

Thus a homogeneous element f of degree m defines a cohomology class
δ(f) ∈ H1(C, Syz (f1, . . . , fn)(m), so this defiens a torsor over the projective
curve. We mention an alternative description of the torsor corresponding to
a first cohomology class in a locally free sheaf which is better suited for the
projective situation.
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Remark 5.1. Let S denote a locally free sheaf on a scheme X. For a coho-
mology class c ∈ H1(X,S) one can construct a geometric object: Because of
H1(X,S) ∼= Ext1(OX ,S), the class defines an extension

0 −→ S −→ S ′ −→ OX −→ 0 .

This extension is such that under the connecting homomorphism of cohomo-
logy, 1 ∈ Γ(X,OX) is sent to c ∈ H1(X,S). The extension yields projective
subbundles

P(S∗) ⊂ P(S ′∗) .
If V is the corresponding vector bundle, one may think of P(S∗) as P(V )
which consists for every base point x ∈ X of all the lines in the fiber Vx run-
ning through the zero point. The projective subbundle P(V ) has codimension
one inside P(V ′), for every point it is a projective space lying (linearly) insi-
de a projective space of one dimension higher. The complement then is over
every point then an affine space. One can show that the global complement

T = P(S ′∗)− P(S∗)

is another model for the torsor given by the cohomology class. The advantage
of this viewpoint is that we may work, in particular when X is projective, in
an entirely projective setting.

In the situation of a forcing algebra for homogeneous elements, this torsor T
can also be obtained as Proj B, where B is the (not necessarily positively)
graded forcing algebra. In particular, it follows that the containment f ∈ I∗ is
equivalent to the property that T is not an affine variety. For this properties,
positivity (ampleness) properties of the syzygy bundle are crucial. We need
the concept of semistability.

Definition 5.2. Let S be a vector bundle on a smooth projective curve C.

It is called semistable, if deg(T )
rk(T ) ≤

deg(S)
rk(S) for all subbundles T . Suppose that

the base field has positive characteristic p > 0. Then S is called strongly
semistable, if all (absolute) Frobenius pull-backs F e∗(S) are semistable.

For a strongly semistable vector bundle S on Y and a cohomology class
c ∈ H1(Y,S) with corresponding torsor we obtain the following affineness
criterion.

Theorem 5.3. Let Y denote a smooth projective curve over an algebraically
closed field k and let S be a strongly semistable vector bundle over Y to-
gether with a cohomology class c ∈ H1(Y,S). Then the torsor T (c) is an
affine scheme if and only if deg (S) < 0 and c 6= 0 (F e(c) 6= 0 in positive
characteristic).

This implies for a strongly semistable syzygy bundles the following degree
formula for tight closure.
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Theorem 5.4. Suppose that Syz (f1, . . . , fn) is strongly semistable. Then

Rm ⊆ I∗ for m ≥
∑
di

n− 1
and Rm ∩ I∗ ⊆ I for m <

∑
di

n− 1
.

In general, there exists an exact criterion depending on c and the strong
Harder-Narasimhan filtration of S.

Theorem 5.5. Let Y denote a smooth projective curve over an algebraically
closed field k and let S be a vector bundle over Y together with a cohomology
class c ∈ H1(Y,S). Let

S1 ⊂ S2 ⊂ . . . ⊂ St−1 ⊂ St = S
be a strong Harder-Narasimhan filteration, i.e. a Harder-Narasimhan filtra-
tion of some Frobenius pull-back such that the quotients Si/Si−1 are strongly
semistable (the existence is a theorem of A. Langer). Then the torsor T (c)
is an affine scheme if and only if the following (inductively defined property
starting with t) holds: there is an i such that deg (Si/Si−1) < 0 and the image
of c in this sheaf is non-zero.

The same criterion holds for plus closure (the existence of projective curves
inside the torsor or the trivializing of the cohomology class along a finite
curve map). Hence over (the algebraic closure of) a finite field we have that
a torsor is not affine if and only if it contains a projective curve. This implies
the following theorem.

Theorem 5.6. Let R be a standard-graded, two-dimensional normal domain
over (the algebraic closure of) a finite field. Let I be an R+-primary (i.e.,
the radical of I is R+). graded ideal. Then

I∗ = I+ .

Local cohomology under deformations

We consider a base scheme B and a morphism

Z −→ B

together with an open subscheme W ⊆ Z. For every base point b ∈ B we get
the open subset

Wb ⊆ Zb

inside the fiber Zb. It is a natural question to ask how properties of Wb vary
with b. In particular we may ask how the cohomological dimension of Wb

varies and how the affineness may vary. In the algebraic setting we have a D-
algebra S and an ideal a ⊆ S which defines for every prime ideal p ∈ Spec (D)
the extended ideal ap in S⊗D κ(p). This question is already interesting when
B is a one-dimensional integral scheme, in particular in the following two
situations.
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(1) B = Spec (Z). Then we talk about an arithmetic deformation and
want to know how affineness varies with the characteristic and how
the relation is to characteristic zero.

(2) B = A1
K = Spec (K[t]), where K is a field. Then we talk about a

geometric deformation and want to know how affineness varies with
the parameter t, in particular how the behaviour over the special
points where the residue class field is algebraic over K is related to
the behaviour over the generic point.

It is fairly easy to show that if the open subset in the generic fiber is affine,
then also the open subsets are affine for almost all special points. We deal
with this question where W is a torsor over a family of smooth projective
curves. The arithmetic as well as the geometric variant of this question are
directly related to questions in tight closure theory. Because of the above
mentioned degree criteria in the strongly semistable case, a weird behaviour of
the affineness property of torsors is only possible if we have a weird behaviour
of strong semistability. We start with the arithmetic situation.

Example 5.7. Consider Z[x, y, z]/(x7 + y7 + z7) and consider the ideal I =
(x4, y4, z4) and the element f = x3y3. Consider reductions Z→ Z/(p). Then

f ∈ I∗ holds in Z/(p)[x, y, z]/(x7 + y7 + z7) for p = 3 mod 7

and

f 6∈ I∗ holds in Z/(p)[x, y, z]/(x7 + y7 + z7) for p = 2 mod 7 .

In particular, the bundle Syz(x4, y4, z4) is semistable in the generic fiber, but
not for any reduction p = 2 mod 7. The corresponding torsor is an affine
scheme for infinitely many prime reductions and not an affine scheme for
infinitely many prime reductions.

We will look now at geometric deformations:

D = Fp[t] ⊂ Fp[t][x, y, z]/(g) = S

where t has degree 0 and x, y, z have degree one and g is homogeneous. Then
(for every field Fp[t]→ K)

S ⊗Fp[t] K

is a two-dimensional standard-graded ring over K. For residue class fields of
points of A1

Fp
= Spec Fp[t] we have basically two possibilities.

• K = Fp(t), the function field. This is the generic or transcendental case.

• K = Fq, the special or algebraic or finite case.

How does f ∈ I∗ vary with K? To analyze the behavior of tight closure in
such a family we can use what we know in the two-dimensional standard-
graded situation.
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A counterexample to the localization problem

In order to establish an example where tight closure does not behave uni-
formly under a geometric deformation we first need a situation where strong
semistability does not behave uniformly. Such an example was given by Paul
Monsky in 1997 in terms of Hilbert-Kunz multiplicity. We consider the ring

F2[t][x, y, z]/g)

where

g = z4 + z2xy + z(x3 + y3) + (t+ t2)x2y2 ,

the ideal

I = (x4, y4, z4) .

and the element

f = y3z3 .

This is our example (x3y3 does not work). First, by strong semistability in
the transcendental case we have

f ∈ I∗ in S ⊗ F2(t)

by the degree formula. If localization would hold, then f would also belong
to the tight closure of I for almost all algebraic instances Fq = F2(α), t 7→ α.
Contrary to that we can show that for all algebraic instances the element f
belongs never to the tight closure of I.

Theorem 5.8. Tight closure does not commute with localization.

Corollary 5.9. Tight closure is not plus closure in graded dimension two
for fields with transcendental elements.

Proof. Consider

R = F2(t)[x, y, z]/(g) .

In this ring y3z3 ∈ I∗, but it can not belong to the plus closure. Else there
would be a curve mapping Y → CF2(t) which annihilates the cohomology class
c and this would extend to a mapping of relative curves almost everywhere.

�

Corollary 5.10. There is an example of a smooth projective variety Z and
an effective divisor D ⊂ Z and a morphism

Z −→ A1
F2

such that (Z − D)η is not an affine variety over the generic point, but for
every algebraic point x the fiber (Z −D)x is an affine variety.

Proof. Take C → A1
F2

to be the Monsky quartic and consider the syzygzy
bundle

S = Syz (x4, y4, z4)(6)
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together with the cohomology class c determined by f = y3z3. This class
defines an extension

0 −→ S −→ S ′ −→ OC −→ 0

and hence P(S∗) ⊂ P(S ′∗). Then P(S ′∗)−P(S∗) is an example with the stated
properties by the previous results. �

It is an open question whether such an example can exist in characteristic
zero.


