Vorkurs Mathematik

Arbeitsblatt 8

AUFGABE 8.1. Es sei K ein angeordneter Körper. Zeige, dass für jedes $x \in K$ die Beziehung $x^2 = xx \ge 0$ gilt.

Aufgabe 8.2. Beweise die folgenden Aussagen:

In einem angeordneten Körper gelten die folgenden Eigenschaften.

- (1) 1 > 0,
- (2) Aus $a \ge b$ und $c \ge 0$ folgt $ac \ge bc$,
- (3) Aus $a \ge b$ und $c \le 0$ folgt $ac \le bc$.

Aufgabe 8.3. Es sei K ein angeordneter Körper und x>0. Zeige, dass -x<0 ist.

(Bemerkung: Diese Aussage kann man so verstehen, dass das Negative eines positiven Elementes negativ ist. Allerdings tritt dabei negativ in zwei verschiedenen Bedeutungen auf!)

Aufgabe 8.4. Es sei K ein angeordneter Körper und x > y. Zeige, dass dann -x < -y ist.

AUFGABE 8.5. Es sei K ein angeordneter Körper und x > 0. Zeige, dass auch das inverse Element x^{-1} positiv ist.

Man folgere daraus, dass die positiven Elemente in einem angeordneten Körper bzgl. der Multiplikation eine Gruppe bilden.

AUFGABE 8.6. Es sei K ein angeordneter Körper und $x \ge 1$. Zeige, dass für das inverse Element $x^{-1} \le 1$ gilt.

AUFGABE 8.7. Es sei K ein angeordneter Körper und x>y>0. Zeige, dass für die inversen Elemente $x^{-1}< y^{-1}$ gilt.

Aufgabe 8.8. Zeige, dass der in Aufgabe 7.8 konstruierte Körper K nicht angeordnet werden kann.

AUFGABE 8.9. Es sei K ein Körper. Zeige, dass man jeder natürlichen Zahl $n \in \mathbb{N}$ ein Körperelement n_K zuordnen kann, so dass 0_K das Nullelement in K und 1_K das Einselement in K ist und so dass

$$(n+1)_K = n_K + 1_K$$

gilt. Zeige, dass diese Zuordnung die Eigenschaften

$$(n+m)_K = n_K + m_K$$
 und $(nm)_K = n_K \cdot m_K$

besitzt.

Erweitere diese Zuordnung auf die ganzen Zahlen \mathbb{Z} und zeige, dass die angeführten strukturellen Eigenschaften dann ebenfalls gelten.

AUFGABE 8.10. Es sei K ein angeordneter Körper. Zeige, dass die in Aufgabe 8.9 eingeführte Abbildung

$$\mathbb{Z} \longrightarrow K, n \longmapsto n_K,$$

injektiv ist.

AUFGABE 8.11. Es sei K ein angeordneter Körper. Betrachte die in Aufgabe 8.9 konstruierte injektive Zuordnung $\mathbb{Z} \subset K$. Zeige, dass man diese Zuordnung zu einer Zuordnung $\mathbb{Q} \subseteq K$ fortsetzen kann, und zwar derart, dass die Verknüpfungen in \mathbb{Q} mit den Verknüpfungen in K übereinstimmen.

AUFGABE 8.12. Es sei K ein angeordneter Körper und es seien x < y Elemente in K. Zeige, dass für das arithmetische Mittel $\frac{x+y}{2}$ die Beziehung

$$x < \frac{x+y}{2} < y$$

gilt.

AUFGABE 8.13. Es sei K ein angeordneter Körper. Es sei vorausgesetzt, dass in K die (positiven) Elemente $8^{1/2}$ und $25^{1/3}$ exisitieren. Welches ist größer?

AUFGABE 8.14. Betrachte die Menge

$$K = \{q + p\sqrt{5} : p, q \in \mathbb{Q}\},\$$

wobei $\sqrt{5}$ zunächst lediglich ein Symbol ist. Definiere eine Addition und eine Multiplikation auf dieser Menge derart, dass $\sqrt{5}^2 = 5$ ist und dass K zu einem Körper wird. Definiere eine Ordnung derart, dass K zu einem angeordneten Körper wird und dass $\sqrt{5}$ positiv wird. Ist das Element $23 - 11\sqrt{5}$ positiv oder negativ?

AUFGABE 8.15. Bestimme die kleinste reelle Zahl, für die die Bernoullische Ungleichung zum Exponenten n=3 gilt.

AUFGABE 8.16. Es sei K ein Körper, bei dem eine Teilmenge $P \subseteq K$ ausgezeichnet sei, die den folgenden Bedingungen genügt.

- (1) Für $x \in K$ ist entweder $x \in P$ oder $-x \in P$ oder x = 0.
- (2) Aus $x, y \in P$ folgt $x + y \in P$.
- (3) Aus $x, y \in P$ folgt $x \cdot y \in P$.

Zeige, dass mit der Festlegung

$$x \ge y$$
 genau dann, wenn $x = y$ oder $x - y \in P$

ein angeordneter Körper entsteht.

AUFGABE 8.17. Beweise die folgenden Eigenschaften für die Betragsfunktion

$$K \longrightarrow K_{\geq 0}, x \longmapsto |x|,$$

in einem angeordneten Körper (dabei seien x, y beliebige Elemente in K).

- $(1) |x| \ge 0.$
- (2) |x| = 0 genau dann, wenn x = 0 ist.
- (3) |x| = |y| genau dann, wenn x = y oder x = -y ist.
- (4) |y-x|=|x-y|.
- (5) |xy| = |x| |y|.
- (6) Für $x \neq 0$ ist $|x^{-1}| = |x|^{-1}$.
- (7) Es ist $|x+y| \le |x| + |y|$ (Dreiecksungleichung für den Betrag).

AUFGABE 8.18. Es sei K ein angeordneter Körper und seien $x_1, \ldots, x_n \in K$ Elemente. Zeige, dass dann

$$\left|\sum_{i=1}^{n} x_i\right| \le \sum_{i=1}^{n} \left|x_i\right|$$

gilt.

Aufgabe 8.19. Es sei K ein angeordneter Körper. Man untersuche die Verknüpfung

$$K \times K \longrightarrow K, (x, y) \longmapsto \min(x, y),$$

auf Assoziativität, Kommutativität, die Existenz von einem neutralen Element und die Existenz von inversen Elementen.

Aufgabe 8.20. Es sei K ein angeordneter Körper. Man untersuche die Abbildung

$$\varphi: K \longrightarrow K, x \longmapsto \varphi(x),$$

mit

$$\varphi(x) = \begin{cases} \min(x, x^{-1}) \text{ für } x > 0, \\ 0 \text{ für } x = 0, \\ \max(x, x^{-1}) \text{ für } x < 0. \end{cases}$$

Mögliche Fragestellungen bzw. Stichpunkte sind

- Ist die Abbildung injektiv, surjektiv?
- Was ist das Bild der Abbildung?
- Wie sehen die Urbilder aus?
- Was kann man über die Hintereinanderschaltungen φ^n sagen?
- Was kann man über das Verhalten der Abbildung bzgl. der Addition und der Multiplikation sagen, also zu $\varphi(x+y)$ und $\varphi(xy)$?
- Gibt es einen Zusammenhang zum Betrag?
- Maximum und Minimum der Funktion, Stetigkeit, Differenzierbarkeit.
- Skizze.
- Asymptotisches Verhalten.

Aufgabe 8.21. Sei K ein archimedisch angeordneter Körper. Zeige, dass die halboffenen Intervalle

$$[n, n+1] = \{x \in K : x \ge n \text{ und } x < n+1\}, n \in \mathbb{Z},$$

eine disjunkte Überdeckung von K bilden.

Aufgabe 8.22. Sei K ein archimedisch angeordneter Körper. Dann gibt es für jedes $s \in K$ eine ganze Zahl q und ein $t \in K$ mit $0 \le t < 1$ und mit

$$s = q + t$$
.