Wiederholertutorium Mathematik I

Aufgabenblatt 13

Wiederholungsaufgaben

Aufgabe 13.1. Überprüfe die Folge $x_n = \sqrt[n]{2^n + 3^n}$ auf Konvergenz.

Aufgabe 13.2. Die Folge $(x_n)_{n\in\mathbb{N}}$ sei rekursiv gegeben durch

$$x_0 := x, x_1 := y, x_n := \frac{1}{2}(x_{n-1} + x_{n-2})$$
 für $n \ge 2$,

wobei $x, y \in \mathbb{R}$. Zeige, dass $(x_n)_{n \in \mathbb{N}}$ konvergiert und berechne den Grenzwert.

Aufgabe 13.3. Bestimme den Konvergenzradius der Potenzreihe

$$\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} \frac{1}{k} \right) z^{n} .$$

AUFGABE 13.4. Untersuche die Funktion $g: \mathbb{R} \to \mathbb{R}, x \mapsto |(x+1)^3(x-1)|$ auf Stetigkeit und Differenzierbarkeit. Bestimme (falls möglich) die Ableitung.

AUFGABE 13.5. Sei die lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^4$ definiert durch f(x,y,z)=(x+2z,y-z,x+y,2x+3z).

- (1) Bestimme die zu f korrespondierende Matrix A. Ist f injektiv?
- (2) Sei $\mathcal{B} = \{v_1, v_2, v_3\}$ eine Basis des \mathbb{R}^3 gegeben durch

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

und sei $\mathcal{B}' = \{w_1, w_2, w_3, w_4\}$ eine Basis des \mathbb{R}^4 gegeben durch

$$w_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, w_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, w_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, w_4 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Berechne $A_{\mathcal{B}'}^{\mathcal{B}}(f)$.

Aufgabe 13.6. Betrachte die Matrix $A = \begin{pmatrix} -5 & 2 & -2 \\ -4 & 1 & 0 \\ 4 & -4 & 5 \end{pmatrix} \in \operatorname{Mat}_{3\times 3}(\mathbb{K}).$

Untersuche ob A diagonalisierbar ist in Abhängigkeit von \mathbb{K} (d.h., $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$). Falls ja, so gebe eine invertierbare Matrix C und eine Diagonalmatrix D mit $D = C^{-1}AC$ an.