Sighals & Variables (3A)

Synthesis

Young Won Lim
04/01/2012

Copyright (c) 2012 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Young Won Lim
04/01/2012

mailto:youngwlim@hotmail.com

Sequential Assignment (1)

process (A)
signal S: std_logic

begin
<= -notA;
<=h,

end process;

Y

process (A)
signal S: std_logic

<= _-notS;

end process;

begin

5

Synthesis

process (A)
signal S: std_logic

begin
<= _-|motA== after 3 ns;
<=hafter 1 ns;

end process;

S

Y

process (A)
signal S: std_logic

<= _-pot=S==| after 1 ns;
<=ﬁaﬂer 3 ns;

end process;

begin
Y

S

Young Won Lim
04/01/2012

Sequential Assignment (2)

process (A, S)
signal S: std_logic

begin
<= -notA;
<=h,

end process;

Y

process (A, S)
signal S: std_logic

<= _-notS;

end process;

begin

5

Synthesis

process (A, S)
signal S: std_logic

begin
<= _-|motA== after 3 ns;
<=hafter 1 ns;

end process;

S

Y

process (A, S)
signal S: std_logic

<= _-pot=S==| after 1 ns;
<=ﬁaﬂer 3 ns;

end process;

begin
Y

S

Young Won Lim
04/01/2012

Ex 1

process (A, B, C)
variable M: std_logic
begin

M := AorBs
Y | <= @aﬁer]ns;

end process;

process (A, B, C)
variable M: std_logic
begin

M := AorBs
Y | <= @aﬂerl ns;

end process;

CIliu

Synthesis

Young Won Lim
04/01/2012

Ex 2

process (A, B, C, M)
signal M: std_logic
begin

M | <= A=or=B==| after 3 ns;
Y <=ﬁaﬂer 1 ns;
end process;

process (A, B, C, M)
signal M: std_logic

<= _A=or=B==| after 3 ns;
<=hafter 1 ns;

end process;

begin
M

Y

Synthesis 6 Yo 0372015

Ex 3

process (Clock)
variable M: std_logic
begin
if rising_edge(Clock) then
<M = AorB:;

Y_‘ <= H-mafter 1 ns;

end if;
end process;

end

Synthesis 7 Yo 0372015

Ex 4

process (Clock)
signal M: std_logic
begin
if rising_edge(Clock) then

M |<= HAerB== after 3 ns;
Y <=ﬁ'aﬁer 1 ns;
end if;

end process;

Synthesis 8 Yo 0372015

Variable & FlipFlop

process (Clock)
variable M, N: std_logic
begin
if rising_edge(Clock) then

process (Clock)
variable M, N: std_logic
begin
if rising_edge(Clock) then
Y <= H M = ,H
N = b N = h
Y <= N;
end if;
end process;

M = X;
end if;
end process;

9 Young Won Lim
04/01/2012

Synthesis

Ex 4

process (Clock)
signal M: std_logic
begin
if rising_edge(Clock) then

M |<=_AorB=| after 3 ns;
Y <=ﬁ'aﬁer 1 ns;
end if;

end process;

SynthESiS 1 O Young Won Lim

04/01/2012

References

[1] http://en.wikipedia.org/

[2] J. V. Spiegel, VHDL Tutorial,
http://www.seas.upenn.edu/~esel71/vhdl/vhdl_primer.html

[3] J. R. Armstrong, F. G. Gray, Structured Logic Design with VHDL

[4] Z. Navabi, VHDL Analysis and Modeling of Digital Systems

[5] D. Smith, HDL Chip Design

[6] http://www.csee.umbc.edu/portal/help/VHDL/stdpkg.html

[7] VHDL Tutorial - VHDL onlinewww.vhdl-online.de/tutorial/

Young Won Lim
04/01/2012

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

