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Sequential Assignment (1)

process (A)
signal S: std_logic

begin
<= -notA;
<=h,

end process;

Y

process (A)
signal S: std_logic

<= _-notS;

end process;

begin

5

Synthesis

process (A)
signal S: std_logic

begin
<= _-|motA== after 3 ns;
<=hafter 1 ns;

end process;

S

Y

process (A)
signal S: std_logic

<= _-pot=S==| after 1 ns;
<=ﬁaﬂer 3 ns;

end process;

begin
Y

S
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Sequential Assignment (2)

process (A, S)
signal S: std_logic

begin
<= -notA;
<=h,

end process;

Y

process (A, S)
signal S: std_logic

<= _-notS;

end process;

begin

5

Synthesis

process (A, S)
signal S: std_logic

begin
<= _-|motA== after 3 ns;
<=hafter 1 ns;

end process;

S

Y

process (A, S)
signal S: std_logic

<= _-pot=S==| after 1 ns;
<=ﬁaﬂer 3 ns;

end process;

begin
Y

S
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Ex 1

process (A, B, C)
variable M: std_logic
begin

M := AorBs
Y | <= @aﬁer]ns;

end process;

process (A, B, C)
variable M: std_logic
begin

M := AorBs
Y | <= @aﬂerl ns;

end process;
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Ex 2

process (A, B, C, M)
signal M: std_logic
begin

M | <= A=or=B==| after 3 ns;
Y <=ﬁaﬂer 1 ns;
end process;

process (A, B, C, M)
signal M: std_logic

<= _A=or=B==| after 3 ns;
<=hafter 1 ns;

end process;

begin
M

Y
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Ex 3

process (Clock)
variable M: std_logic
begin
if rising_edge(Clock) then
<M = AorB:;

Y_‘ <= H-mafter 1 ns;

end if;
end process;

end
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Ex 4

process (Clock)
signal M: std_logic
begin
if rising_edge(Clock) then

M |<= HAerB== after 3 ns;
Y <=ﬁ'aﬁer 1 ns;
end if;

end process;
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Variable & FlipFlop

process (Clock)
variable M, N: std_logic
begin
if rising_edge(Clock) then

process (Clock)
variable M, N: std_logic
begin
if rising_edge(Clock) then
Y <= H M = ,H
N = b N = h
Y <= N;
end if;
end process;

M = X;
end if;
end process;
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Ex 4

process (Clock)
signal M: std_logic
begin
if rising_edge(Clock) then

M |<=_AorB=| after 3 ns;
Y <=ﬁ'aﬁer 1 ns;
end if;

end process;
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