
Abstract- Chaotic systems are widely used in various aspects of 

engineering. Controlling chaotic system have been demonstrated 

in  various  articles  both  analytically  and  by  trial  and  error 

methodologies.  One of the common constraints  of  the proposed 

successful  schemes are that they require complete knowledge of 

the states of the system. In this article, we proposed a observer 

based  state  feedback  and  estimation  scheme,  which  is  well 

applicable to the cases where complete knowledge of states are not 

available.  We  have  studied  the  feasibility  of  our  system  with 

application  on  Lorentz  Attractor  with  on-off  controller  and 

Rössler Attractor.
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I. INTRODUCTION

haotic systems are deterministic systems, which are time 

response appears random [1]. A small difference in initial 

condition makes the future states to be widely diverging. 

This  happens  although  the  system  is  deterministic,  no 

randomness  is  present  in  the  system  [2].  This  property  of 

chaotic  system  makes  prediction  of  future  behavior  of  the 

system very difficult.

Due  to  its  irregularity  and  complexity,  the  presence  of 

chaos is mostly avoided in many systems. If there is a chaotic 

element present in the system, one of the options is to redesign 

the whole system to exclude the particular element. But if this 

option is  not  available,  it  is  mostly  desirable  to  control  the 

chaotic system to limit cycle or a steady state.  The pioneers 

Ott, Grebogi, and Yorke (OGY) presented a method to convert 

chaotic  systems,  using small  time dependent  changes of the 

accessible  parameters  of  the  system to  a  system  with  limit 

cyclic orbits [3]. Another approach was reported by Hubler et. 

al. [4], [5] where the authors applied small perturbation to the 

forcing function. Similar approaches can be found in [6], [7]. 

In both of the cases the resulting states are no longer a solution 

of  the  original  equation  of  the  system.  Since  any  chaotic 

system  possesses  an  infinite  numbers  of  unstable  periodic 

orbits, application of small changes can settle the system to a 

large  number  of  different  orbit.  This  phenomenon  is 

particularly interesting because the same change of parameters 

can only change the steady state slightly if the system is not 

chaotic  but  periodic  or  a  stable  system.  This  property  of 

chaotic systems can be exploited to choose a particular orbit 

from  a  diverse  range  of  orbits.  What  this  method  fails  to 

address  is  that  in  many  cases  it  is  desirable  to  control  the 

chaotic element to a steady state rather than a limit cycle. But 

these method can only be applicable when the target is a stable 

orbit.  Also  since  small  measurement  errors  in  initial  state 

exponentially  diverges  to  widely  different  states  in  future 

outcomes, the application of these method becomes limited. To 

overcome measurement error, Hubinger et. al. Suggested local 

control of the controllable parameter in OGY method. But all 

these solutions were unable to steady the element to a constant 

steady state [8].

Although the discussed methods reduced chaotic systems 

to a limit cycle, they were unable to set the states to a stable 

point. This problem was addressed using classical feedback by 

Pyragas et. al. [9], [10]. The drawback of the system is either 

the gains of the feedback path has to be set experimentally, or 

through  an  extensive  analysis  of  the  system,  which  is  not 

possible or feasible in all cases. Proposed by Kokotovic et. al., 

a  recursive  method  named  backstepping  also  a  widely  used 

and popular method for stabilization of chaotic systems [11], 

[12].

If the system can be represented by the following equation

ẋ=Ax+B β�1(x) [u�α ( x)] , …1)

then it can be linearized via the state feedback

u=α (x )+β (x )v

and techniques for linear systems can be applied to modify the 

system  [13],  [14].  Note  that  this  procedure  is  an  Exact 

Linearization of the original system unlike approximation by 

Jacobian Linearization. But the limitation of this procedure is 

that the system must be in a form of equation 1). To relax this 

restriction, Su invented a differential geometric method [14]. 

The only restriction that remains is that the system have to be 

diffeomorph  [15]  to  equation  1),  which  in  turn  can  be 

transformed  to  an  unique  controller  canonical  form  using 

similarity transformation [16], [17].  Then we can simply use 

classical state feedback scheme and modify the system to meet 

our requirements (we can place the eigenvalues of the A matrix 

on the left half plane if we desire the system to be stable or we 

can place two of them in the imaginary axis if  we want the 

chaotic system to follow some orbit).
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One of the common constraints in the successful schemes 

is  that  the  states  of  the  chaotic  system  must  be  visible  to 

properly  construct  the  linear  system.  There  are  very  few 

methods presented which discusses about observer based state 

feedback  for  chaotic  systems.  Among  them,  Leu  et.  al. 

employed  fuzzy-neural  networks  to  approximate  nonlinear 

system [18],  [19].  In  this  article  we  have  proposed a  much 

simpler  model  to  employ observer  based  state  feedback for 

chaotic system. 

This paper includes 5 sections. In Section II, we introduce 

a  study  of  the  mathematical  background  for  the  proposed 

method. Section III presents the proposed method. Section IV 

contains simulation results of the proposed method for some 

chaotic systems. We conclude the article in Section V.

II. EXACT LINEARIZATION BY DIFFEOMORPHIC TRANSFORMATION

Su  relaxed  the  restriction  of  Exact  Linearization  by 

introducing the concept of ℑ equivalence [16].

Two  systems ẋ= f ( x , u) and ẏ=g ( y , v ) are 

said  to  be ℑ equivalent  if  there  exists  a C
∞

diffeomorphism

T :ℝ n+1 →ℝ n+1

with

T 1(x ,u)= y1 ,…T n(x , u)= yn andT n+1( x ,u)=v ,  

such that

Ṫ i=g i(T 1 ,…T n+1) ∀i.

Then using a little manipulation it can be shown that

∂T 1

∂ u
=0,…

∂T n

∂u
=0,

∂T n+1

∂ u
≠0

from the fact that every linear controllable system is ℑ

equivalent to (
ẏ1

ẏ2

⋮
˙yn+1

)=(
y2

⋮
yn+1

0
)+(0

0
⋮
1
)v …1)

corresponding  T  transformation  for  a  system

ẋ= f ( x)+g (x ).ϕ( x , u)

where ϕ(x ,u) is  a  scalar, ϕ(0,0)=0, f (0)=0

and
∂ϕ
∂u

≠0 is given by

T i+1=∑
j=1

n ∂ T i

∂ x j

( f j( x)+g j(x )⋅ϕ(x ,u)) ,∀ i≠n+1

since
∂T 1

∂ u
=0,…

∂T n

∂u
=0

T i+1=∑
j =1

n ∂ T i

∂ x j

f j( x) , ∀ i=1,… , n�1

and

T n+1=∑
j=1

n ∂ T n

∂ x j

( f j( x)+g j(x )⋅ϕ(x ,u))

which can be written in terms of product space [20] as

T i+1=〈dT i , f 〉 , ∀ i=1,… , n�1

T n+1=〈dT n , f 〉+〈dT n , g 〉ϕ …2)  

III. STATE FEEDBACK MODEL

With the help of equation 1, equation 2 can be rewritten as

v=T n+1(x ,u )

since the transformation is diffeomorphic

u=T
�1

n+1(x , v)

With this knowledge, we can design the observer-based state 

feedback model as proposed in figure 1.

To validate this model, we have tested it over two chaotic 

systems, Lorentz Attractor [21], [22], [23].

A. Lorentz Attractor

The equations for Lorentz attractor are given by

dx

dt
=p ( y�x )

dy

dt
=�xz� y

dz

dt
=xy� z�R  

In  this  equation R=R0+u is  the  Rayleigh  number,

u is  the  controlled  forcing  function  and p is  Prandtl 

number.  For R0=28, this  system  demonstrates  chaotic 

behavior  with  3  unstable  equilibrium, 

(√R0�1 ,√R0�1 ,�1) ,(�√R0�1 ,�√ R0�1 ,�1) ,  

(0,0, R0) [24].  We  shift  the  coordinate  to 

(x�√R0�1 , y�√R0�1 , z+1) → ( x1 , x2 , x3)  to 

define  the  equilibrium  point 

(√R0�1 ,√R0�1 ,�1)→(0 ,0 , 0) . With  the  change 

in coordinates, the state equation becomes

[
ẋ1

ẋ2

ẋ3
]=[

�px1+px2

x1� x2�√ R0�1 x3� x1 x3

√R0�1(x1+x2)� x3+x1 x2
]+[0

0
1]u

Corresponding ℑ equivalent can be obtained as [25]



T 1=x1  

T 2=� px1+px2

T 3=( p
2+ p)(x1�x2)� p√ R0�1 x3� px1 x3  

and

T 4=v=〈dT 3, f 〉+〈dT 3, g 〉u=q(x )+s (x )u

〈dT 3, f 〉=q (x )

=( p
2+p� px3)(�px1+ px2)

�( p
2+p)( x1�x2�√R0�1�x1 x3) x2

�p (√ R0�1+x1)[√ R0�1( x1+x2)�x3+ x1 x2]  

〈dT 3, g 〉=s (x )= p(x1+√R0�1)

The inverse transformation can be obtained as

T
�1

1: x1= y2  

T
�1

2: x2=
y3

p
+ y2  

T
�1

3: x3=
� y4�(1+

1

p
) y3

√R0�1+ y2

 

T
�1

4 :u=
v�q(x )

s( x)
 

IV. SIMULATION RESULTS

For the simulation, we choose the poles of the observer to be 

at (�1,�2,�3,�4). Corresponding K matrix was found 

to  be K=[24 50 35 10] . Theoretically  this  choice 

would change the chaotic system to a stable system and force 

the state of the system to the unstable equilibrium at origin. 

Simulation was performed using various initial  states of the 

chaotic attractor and all  the observation were in congruency 

with the anticipated result. Only one of the states x1 were 

made  observable  during  the  experiment.  Experiments  with 

different observability were performed, but due to similarity of 

outcomes, the observation are omitted. Figure 2, Figure 3 and 

Figure  4  represent  response  of  the  Lorentz  attractor  with 

different  initial  conditions  and  both  controlled  and 

uncontrolled responses.

ẋ= f ( x)+g (x) .ϕ(x ,u)

T n+1( x̂ , u) B

+
�
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+
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Figure 1. Proposed Observer-based State Feedback Model



Fig 2. Response of Lorrentz Attractor with initial state of [1 0 0]

Fig 3. Response of Lorrentz Attractor with initial state of [0 1 0]



V. CONCLUSION

In this article, we present a novel approach for stabilization 

of chaotic system when the states of the system are observable. 

We  proved  the  feasibility  of  our  approach  by  studying  the 

behavior of Lorentz attractor with different initial conditions 

under  the  proposed  scheme.  With  careful  modification  the 

approach can also be applied to obtain a limit cyclic orbit from 

the  chaotic  system.  Also  the  same  methodologies  are 

applicable  for  other  non-linear  systems  without  loss  of 

generalization.

REFERENCES

[1] Gollub, J. P., Baker, G. L., “Chaotic dynamics”, Cambridge University 

Press, 1996.

[2] Alligood, T. K., Sauer, T. D., Yorke J.A.,  “Chaos: an introduction to 

dynamical systems”, Springer, 1996.

[3] Ott,  E.,  Grebogi,  C.,  Yorke J.  A.,  “Controlling  Chaos”,  Vol-64,  pp. 

1196-1199, Physical Review Letters, American Physics Society, March, 

1990.

[4] Hübler, A.,  “Adaptive Control of Chaotic Systems”,  Vol-62, pp 343-

346, Helv. Phys. Acta 62, 1989.

[5] Hübler,  A.,  Lüscher,  E.,  “Resonant  Stimulation  and  Control  of  

Nonlinear  Oscillators”,  Vol-76,  pp  67-69,  Naturwissenschaften  76, 

1989.

[6] Liu, Y., Rios Leite, J. R.,  “Control of Lorenz chaos”, Vol-185, pp 35-

37, Physics Letter A, Elsevier, January 1994.

[7] Braiman,  Y.,  Goldhirsch,  I.,  “Taming  Chaotic  Dynamics  with  Weak  

periodic perturbations”,   Vol  – 66,  pp 2545-2548,  Physical  Review 

Letters, American Physics  Society, May, 1991.

[8] Hubinger, B., Doerner, R, Martienssen, W,  “Local control of chaotic  

motion”, Vol-90, pp 103-106, z. Phys, 1993.

[9] Pyragas,  K.,  “Continuous  control  of  chaos  by  self-controlling 

feedback”, Vol-170, pp 421-428, Physics Letter A, Elsevier, 1992.

[10] Pyragas,  K.,  Tamasevicius,  A.,  “Experimental  control  of  chaos  by  

delayed self-controlling feedback”, Vol-180, pp 99-102, Physics Letter 

A, Elsevier, 1993.

[11] Kokotovic, P. V.,  “The joy of feedback: nonlinear and adaptive”, Vol 

12, pp 7-17, Control Systems Magazine, Jun 1992.

[12] Krstic,  M.,  Kokotovic,  P.V.,  “Adaptive  nonlinear  control  with 

nonlinear  swapping”,  Vol-2,  pp  1073-1080,  Proc.  32nd  IEEE 

Conference on Decision and Control, Dec 1993.

[13] Cheng, D, Isidori, A., Respondek, W., Tarn, T. J., “Exact Linearization 

of Nonlinear Systems with Outputs”, Vol-21, pp 63-68, Mathematical 

System Theory, 1988.

[14] H. K. Khalil,  “Nonlinear Systems Analysis”, pp 290-291, Macmillan, 

1992

[15] Shastri, A. R., “Elements of Differential Topology”, pp 21, CRC press, 

2010.

[16] Su, R., “On the linear equivalents of nonlinear systems”, Vol-2, pp 48-

52, System and Control Letters, July 1982.

[17] H. K. Khalil,  “Nonlinear Systems Analysis”, pp 292-296, Macmillan, 

1992

[18] Leu, Y. G., Lee, T. T., Wang, W. Y., “Observer-Based Adaptive Fuzzy-

Neural Control for Unknown Nonlinear Dynamical Systems”, Vol-29, 

pp 583-591,  IEEE Trans.  Systems,  Man and Cybernetics-B, October 

1999.

Fig 4. Response of Lorrentz Attractor with initial state of [0 0 1]



[19] Leu, Y. G., Wang, W. Y., Lee, T. T., “Observer-Based Direct Adaptive  

Fuzzy-Neural  Control  for  Nonaffine  Nonlinear  Systems”,  Vol-16,  pp 

853-861, IEEE Trans. Neural Networks, July 2005.

[20] Kreyszig, E., “Introductory Functional Analysis with Applications”, pp 

128-129, John Wiley & Sons, 1978.

[21] Lorentz, E. N., “Deterministic Nonperiodic Flow”, Vol-20, pp 130-141, 

Journal of The Atmospherec Science, 1963.

[22] Singer, J, Wang, Y. Z., Bau, H.,  “Controlling a Chaotic System”, Vol-

66, pp 1123-1125, Physical Review Letters, American Physics Society, 

March 1991.

[23] Williams, R. F., "The Structure of Lorenz Attractors", Vol 50, pp 321-

347, Publications Mathematiqus Ihes, 1979.

[24] Thompson, J. M. T., Stewart, H. B., “Nonlinear Dynamics and Chaos”, 

pp 207-228, John Wiley and Sons., 2002.

[25] Fuh, C. C., Tung, P. C., Controlling Chaos using Differential Geometric 

Method,  Vol  75,  pp  2952-2955,  Physical  Review Letters,  American 

Physics Society, October, 1995.


