Complex Functions (1A)

Copyright (c) 2011 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Analytic Functions

$$f'(z) = \frac{df}{dz} = \lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z}$$

$$\Delta f = f(z + \Delta z) - f(z)$$

$$\Delta z = \Delta x + i \Delta y$$

- f(z): analytic in a region
- f(z) has a (unique) derivative at every point of the region

$$f'(z) = \frac{df}{dz} = \lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z}$$

- f(z): analytic at a point z = a
- f(z) has a (unique) derivative at every point of some small circle about z = a

Singular Point

Regular point of f(z) a point at which f(z) is analytic

Singular point of f(z) a point at which f(z) is not analytic

Isolated Singular point of f(z) a point at which f(z) is analytic everywhere else inside some small circle about the singular point

Cauchy-Riemann Condition

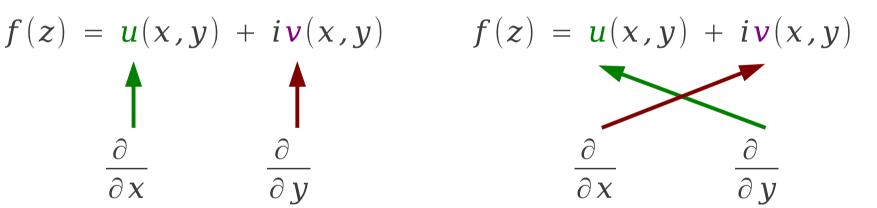
$$f(z) = u(x, y) + iv(x, y)$$
 : analytic in a region

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial v}$$

in that region
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial v} \qquad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial v}$$

$$f(z) = u(x,y) + iv(x,y)$$

$$\frac{\partial}{\partial x} \qquad \frac{\partial}{\partial y}$$



Analytic

$$f(z) = u(x,y) + iv(x,y)$$

$$u(x,y), v(x,y), \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y} : continuous$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

$$f(z) = u(x,y) + iv(x,y)$$

: analytic at all points inside a region not necessarily on the boundary

Derivatives

$$f(z) = u(x,y) + iv(x,y)$$
 : analytic in a region R

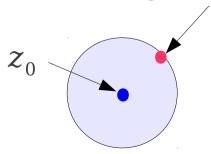
derivatives of all orders at points inside region

$$f'(z_0)$$
, $f''(z_0)$, $f^{(3)}(z_0)$, $f^{(4)}(z_0)$, $f^{(5)}(z_0)$, ...

Taylor series expansion about any point \mathcal{Z}_0 inside the region

The power series converges inside the circle about $\, {\cal Z}_0 \,$

This circle extends to the nearest singular point



Laplace Equation

$$f(z) = u(x,y) + iv(x,y)$$
 : analytic in a region R

u(x,y) , v(x,y) satisfy Laplace's equation in simply connected region

Cauchy's Theorem

$$f(z)$$
: analytic on and inside C

$$\oint_{around C} f(z) dz = 0$$

simple closed curve

a continuously turning tangent except possibly at a finite number of points

allow a finite number of corners (not smooth)

Cauchy's Integral Formula

f(z): analytic on and inside simple close curve C

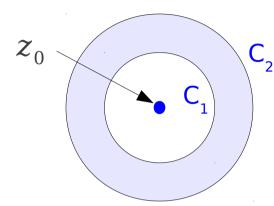
$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

the value of f(z)at a point z = a inside C

$$f(z) = \frac{1}{2\pi i} \oint \frac{f(w)}{w - z} dw$$

Laurent's Theorem

f(z): analytic in the region R between circles $\mathbf{C_1}$, $\mathbf{C_2}$ centered at z_0



$$f(z) = a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots$$

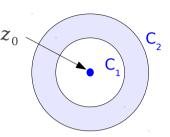
$$+ \frac{b_1}{(z-z_0)} + \frac{b_2}{(z-z_0)^2} + \cdots$$

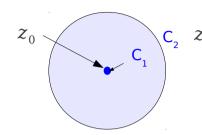
Principal part

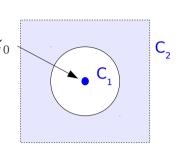
: convergent in the region R

Laurent's Theorem - Coefficients

f(z): analytic in the region R z_0 between circles $\mathbf{C_1}$, $\mathbf{C_2}$ centered at z_0







$$f(z) = a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots$$

$$+ \frac{b_1}{(z-z_0)} + \frac{b_2}{(z-z_0)^2} + \cdots$$

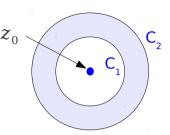
: **convergent** in the region R

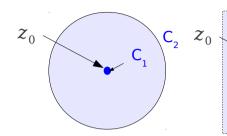
$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z)dz}{(z-z_0)^{n+1}}$$

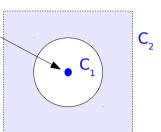
$$b_n = \frac{1}{2\pi i} \oint_C \frac{f(z)dz}{(z-z_0)^{-n+1}}$$

Laurent's Theorem - Some Points

f(z): analytic in the region R z_0 between circles $\mathbf{C_1}$, $\mathbf{C_2}$ centered at z_0







$$f(z) = a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots$$

$$f(z) = a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots + \frac{b_1}{(z-z_0)} + \frac{b_2}{(z-z_0)^2} + \cdots + \frac{b_n}{(z-z_0)^n}$$

$$f(z) = a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots + \frac{b_1}{(z-z_0)}$$

$$f(z) = a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots + \frac{b_1}{(z-z_0)} + \frac{b_2}{(z-z_0)^2} + \cdots + \cdots$$

regular point z_0

pole of order n z_0

simple pole z_0

 b_1 residue of f(z)

essential singularity z_0

Residue Theorem (1)

$$f(z)$$
: analytic on and inside C

$$\oint_{around C} f(z) dz = 0$$

$$f(z)$$
: analytic on and inside C except z_0

 z_0 Isolated singular point

$$\oint_C f(z)dz = 2\pi i \cdot \sum$$
 the residues of $f(z)$ inside C

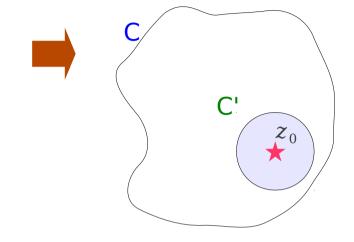
The integral around C is in the counterclockwise direction

Residue Theorem (2)

f(z): analytic on and inside C except z_0

 z_0 Isolated singular point

$$f(z) = a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots + \frac{b_1}{(z-z_0)} + \frac{b_2}{(z-z_0)^2} + \cdots + \cdots$$



$$\oint_C a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots dz = 0$$

along C'
$$z = z_0 + \rho e^{i\theta}$$

analytic on and inside C

$$\oint_{C'} \frac{b_1}{(z-z_0)} dz = b_1 \int_{0}^{2\pi} \frac{\rho i e^{i\theta} d\theta}{\rho e^{i\theta}} = b_1 \int_{0}^{2\pi} i d\theta = 2\pi i b_1$$

$$\oint_{C'} \frac{b_2}{(z-z_0)^2} + \frac{b_3}{(z-z_0)^3} + \cdots dz = 0 \qquad \qquad \int_{0}^{2\pi} e^{ik\theta} d\theta = \left[\frac{e^{ik\theta}}{ik}\right]_{0}^{2\pi} = 0$$

$$\int_{0}^{2\pi} e^{ik\theta} d\theta = \left[\frac{e^{ik\theta}}{ik}\right]_{0}^{2\pi} = 0$$

Finding Residues (1)

$$\oint_C f(z)dz = 2\pi i \cdot \sum$$
 the residues of $f(z)$ inside C

The integral around C is in the counterclockwise direction

Methods of Finding Residues

Laurent Series:
$$b_1$$

$$1/(z-z_0)$$

Simple Pole:
$$f(z) \cdot (z - z_0)$$

Multiple Pole:
$$f(z) \cdot (z-z_0)^m$$

Finding Residues (2)

 $\oint_C f(z)dz = 2\pi i \cdot \sum$ the residues of f(z) inside C

The integral around C is in the counterclockwise direction

Laurent Series:
$$b_1$$
 $1/(z-z_0)$

Simple Pole:
$$f(z)\cdot(z-z_0)$$

Multiple Pole:
$$f(z) \cdot (z-z_0)^m$$

$$R(z_0) = \lim_{z \to z_0} (z - z_0) f(z)$$

$$R(z_0) \, = \, \frac{g(z_0)}{h'(z_0)} \qquad \qquad \qquad f(z) \, = \, \frac{g(z)}{h(z)} \qquad \frac{g(z_0) \neq 0}{h'(z_0) \neq 0} \quad h(z_0) \, = \, 0$$

$$R(z_0) = \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} (z - z_0)^m f(z)$$

References

- [1] http://en.wikipedia.org/
- [2] http://planetmath.org/
- [3] M.L. Boas, "Mathematical Methods in the Physical Sciences"