## Descriptives \& Graphing



Survey Research \& Design in Psychology James Neill, 2012

## Overview:

Descriptives \& Graphing

1. Approaching data
2. Descriptive statistics
3. Normal distribution
4. Non-normal distributions
5. The effect of skew on central tendency
6. Graphical techniques

## Is Pivot a turning point for web exploration? <br> (Gary Flake)


(TED talk - 6 min.)

## Approaching data

Get your fingers dirty
with data

Get intimate with your data

## Clearly report the data's main features

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Data checking

- Hard copy survey data can be checked by having one person read the survey responses aloud to another person checking the data file.
- A percentage of the surveys can be checked for a large study.
- Report error-rate in research report


## Data screening

- Carefully 'screen' a data file to help minimise errors and maximise validity.
- Out of range and mis-entered data
- Missing and duplicate cases
- Missing data
- Recoding

Exploring, describing \& graphing data


## Parametric \& non-parametric statistics \& level of measurement



Level of measurement determines type of descriptive statistics and

## graphs

GOLDEN RULE of DATA ANALYSIS
The level of measurement (see previous lecture) determines which types of descriptive statistics and which types of graphs are appropriate.

## Levels of measurement and non-parametric vs. parametric

Categorical \& ordinal DVs
$\rightarrow$ non-parametric
(Does not assume a normal distribution)
Interval \& ratio DVs
$\rightarrow$ parametric
(Assumes a normal distribution)
$\rightarrow$ non-parametric
(If distribution is non-normal)
DVs = dependent variables

## Parametric statistics

- Procedures which estimate parameters of a population, usually based on the normal distribution
$-M, S D$, skewness, kurtosis
- $t$-tests, ANOVAs
$-r$
- bivariate correlation, linear regression


## Parametric statistics

- More powerful (more sensitive)
- But they require more assumptions and are more vulnerable to violations of assumptions comapred to nonparametrics statistics


## Non-parametric statistics

(Distribution-free tests)

- Procedures which do not rely on estimates of population parameters -Frequency
- e.g. sign test, chi-squared
-Rank order
- e.g. Mann-Whitney U test, Wilcoxon matched-pairs signed-ranks test


## Univariate descriptive statistics

## Number of variables

Univariate
= one variable
Bivariate
= two variables
Multivariate
= more than two variables
e.g., reliability analysis, factor analysis, multiple linear regression

## What do we want described?

The distributional properties of underlying variables, based on:

- Central tendency(ies): Frequencies, Mode, Median, Mean
- Shape: Skewness, Kurtosis
- Spread (dispersion): Min., Max., Range, IQR, Percentiles, Var/SD
for sampled data.


## Measures of central tendency

Statistics which represent the
'centre' of a frequency distribution:
-Mode (most frequent)
-Median (50 ${ }^{\text {th }}$ percentile)
-Mean (average)
Which ones to use depends on:
-Type of data (level of measurement)
-Shape of distribution (esp. skewness)
Reporting more than one may be appropriate.

## Measures of central tendency

|  | Mode | Median | Mean |
| :--- | :---: | :---: | :---: |
| Nominal | $\checkmark$ |  |  |
| Ordinal | $\checkmark$ | $\checkmark$ |  |
| Interval | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Ratio | $?$ | $\checkmark$ | $\checkmark$ |

Measures of shape / spread / dispersion / deviation

- Measures of shape and deviation from the central tendency

Non-parametric Parametric: / non-normal:

- Min and max
- SD
- Range
- Skewness
- Percentiles
- Kurtosis


## Measures of spread /

 dispersion / deviation|  | Min/Max, Range | Percentiles | Var/SD |
| :---: | :---: | :---: | :---: |
| Nominal |  |  |  |
| Ordinal | $\checkmark$ | $\checkmark$ |  |
| Interval | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Ratio | $\checkmark$ | $\checkmark$ | $\checkmark$ |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Describing nominal data

- Nominal = Labelled categories
- Descriptive statistics:
-Most frequent? (Mode - e.g., females)
-Least frequent? (e.g, Males)
-Frequencies (e.g., 20 females, 10 males)
-Percentages (e.g. 67\% females, $33 \%$ males)
-Cumulative percentages
-Ratios (e.g., twice as many females as males)


## Describing ordinal data

- Ordinal = Conveys order but not distance (e.g., ranks)
- Descriptives approach is as for nominal (frequencies, mode etc.)
- Plus percentiles (including median) may be useful


## Describing interval data

- Interval = order and distance, but no true 0 ( 0 is arbitrary).
- Central tendency (mode, median, mean)
- Shape/Spread (min, max, range, SD, skewness, kurtosis)

Interval data is discrete, but is often treated as ratio/continuous (especially for $>5$ intervals)

## Describing ratio data

- Ratio = Numbers convey order and distance, meaningful 0 point
- Descriptives approach is as for interval (i.e., median, mean, SD, skewness etc.)
- Ratios


## Mode (Mo)

- Most common score - highest point in a frequency distribution - a real score - for most no. of participants
- Suitable for all levels of data, but may not be appropriate for ratio
- Not affected by outliers
- Check frequencies and bar graph to see whether it is an accurate and useful statistic.


## Frequencies

- \# of units in each category
- \% of units in each category
- Frequency table
- Bar chart or pie graph
- Crosstabs (contingency table) is the bivariate equivalent of frequencies


## Median (Mdn)

- Mid-point of distribution (Q2, 50th percentile)
- Not badly affected by outliers
- May not represent the central tendency in skewed data
- If the Median is useful, then consider what other percentiles may also be worth reporting.


## Summary:

Descriptive statistics principles

- Spend 'quality time' investigating (exploring and describing) your data
- Describe the central tendency
-Frequencies, Percentages -Mode, Median, Mean
- Describe the variability:
-Min, Max, Range, Quartiles
-Standard Deviation, Variance

| Summary: |  |
| :--- | ---: |
|  |  |
| levels of measurement |  |
|  | $\underline{\text { NOIR }}$ |
| Frequencies | NOI? |
| Mode | NOI? |
| Median | OIR |
| Mean | IR |
| Min-Max-IQR | OIR |
| SD | IR |

## Properties of the normal distribution

The four moments of a normal distribution


## The four moments of a

 normal distributionFour mathematical qualities (parameters) can describe a continuous distribution which as least roughly follows a bell curve shape:

- $1^{\text {st }}=$ mean (central tendency)
- $2^{\text {nd }}=S D$ (dispersion)
- $3^{\text {rd }}=$ skewness (lean / tail)
- $4^{\text {th }}=$ kurtosis (peakedness / flattness)


## Mean (1st moment)

- Average score

$$
\text { Mean }=\Sigma X / N
$$

- Use for normally distributed ratio data or interval (if treating it as continuous).
- Influenced by extreme scores (outliers)

Beware inappropriate averaging...
With your head in an oven and your feet in ice
you would feel
just fine
The majority of people have more than the average number of legs ( $M=1.9999$ ).

## Standard deviation (2nd moment )

- $S D=$ square root of the variance

$$
=\frac{\Sigma(X-X)^{2}}{N-1}
$$

- Used for normally distributed interval or ratio data
- Affected by outliers
- Standard Error (SE) = $S D$ / square root of $N$


## Skewness (3rd moment )

- Lean of distribution
$-+v e=$ tail to right
- -ve = tail to left
- Can be caused by:
-an outlier, or ceiling or floor effects
- Can be accurate
-e.g., no. of cars owned per person

Skewness (3rd moment)
(with ceiling and floor effects)

- Negative skew

$2.0004 .200 \quad 6.4008 .600 \quad 10.80$
- Positive skew


## Kurtosis (4th moment )

- Flatness or peakedness of distribution

$$
\begin{aligned}
& +\mathrm{ve}=\text { peaked } \\
& -\mathrm{ve}=\text { flattened }
\end{aligned}
$$

- By altering the X \&/or Y axis, any distribution can be made to look more peaked or flat - add a normal curve to help judge kurtosis visually.


## Judging severity of skewness \& kurtosis

- View histogram with normal curve
- Deal with outliers
- Rule of thumb: Skewness and kurtosis >-1 or < 1 is generally considered to reasonable for parametric inferential statistics
- Significance tests: Tend to be overly sensitive


## Areas under the normal curve

If distribution is normal
(bell-shaped - or close):
$\sim 68 \%$ of scores within +/- $1 S D$ of $M$
$\sim 95 \%$ of scores within +/- 2 SD of $M$
$\sim 99.7 \%$ of scores within +/- $3 S D$ of $M$

Areas under the normal curve


## Non-normal <br> distributions

47

## Types of non-normal distribution

- Modality
-Uni-model (one peak)
-Bi-modal (two peaks)
-Multi-modal (more than two peaks)
- Skewness
-Positive (tail to right)
-Negative (tail to left)
- Kurtosis
-Platykurtic (Flat)
-Leptokurtic (Peaked)


Histogram of weight


Histogram of daily calorie intake


Histogram of fertility


Fertility. average number of kids


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


Non-normal distribution:
Descriptive statistics

- Min \& Max
- Range = Max-Min
- Percentiles
- Quartiles
-Q1
$-\mathrm{Mdn}=$ Q2
-Q3
- IQR = Q3-Q1

Effects of skew on measures of central tendency
+vely skewed mode < median < mean

## Symmetrical (normal)

mean $=$ median $=$ mode
-vely skewed
mean < median < mode

Effects of skew on measures of central tendency

positive skew

## Transformations

- Converts data using various formulae
- To achieve normality and allow more powerful tests
- Loses original metric
- Complicates interpretation


## Graphical techniques

## Visualisation

## Graphs

(Edward Tufte)

- Visualise data
- Reveal data
- Describe
- Explore
- Tabulate
- Decorate
- Communicate complex ideas with clarity, precision, and efficiency



## Graphing steps

1. Identify the purpose of the graph
2. Select which type of graph to use
3. Draw a graph
4. Modify the graph to be clear, non-distorting, and well-labelled.
5. Disseminate the graph (e.g., include it in a report)

## Software for

data visualisation (graphing)

## 1. Statistical packages

- e.g., SPSS Graphs or via Analyses

2. Spreadsheet packages

- e.g., MS Excel

3. Word-processors

- e.g., MS Word - Insert - Object Micrograph Graph Chart


## Principles of graphing

## Graphical display principles

- Have a clear purpose in mind
- Maximise clarity of information conveyed; minimise clutter
- Find creative, effective ways to show the data
- Substance > fanciness
- Avoid distortions of data
- Clear labelling


## Tufte's graphing guidelines

- Show the data
- Avoid distortion
- Focus on substance rather than method
- Present many numbers in a small space
- Make large data sets coherent


## Tufte's graphing guidelines

- Maximise the information-to-ink ratio
- Encourage the eye to make comparisons
- Reveal data at several levels/layers
- Closely integrate with statistical and verbal descriptions
$\qquad$

Cleveland's hierarchy


Based on graphic (Figure 2) in Presentation Graphics (white paper) by Leland Wilkinson, SPSS, Inc and Northwestern Uiv

## Cleveland's hierarchy:

Best to worst
1.Position along a common scale
2.Position along identical, non aligned scales
3.Length
4.Angle-slope
5.Area
6.Volume
7.Color hue - color saturation - density

## Univariate graphs

## Univariate graphs

- Bar graph
- Pie chart
- Data plot
- Error bar
- Stem \& leaf plot
- Box plot (Box \& whisker)
- Histogram


## Bar chart (Bar graph)

- Examine comparative heights of bars
- X-axis: Collapse if too many categories
- Y-axis: Count or \% or mean?
- Consider whether to use data labels

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Data plot \& error bar

## Data plot

## Error bar




## Stem \& leaf plot

- Alternative to histogram
- Use for ordinal, interval and ratio data
- May look confusing to unfamiliar reader

| Raw Data | Stem | Leaf |
| :---: | :---: | :---: |
| 011223444555667777 | 0 | 0112234445556677778899 |
| 8899 | 1 | 0111222333334445555556666666666777888899 |
| 1011111112121213131313 | 2 | 00112233444455667889 |
| 1314141415151515151516 | 3 | 005 |
| 1616161616161616161717 17181818181919 |  |  |
| $\begin{array}{lllllll} 20 & 20 & 21 & 21 & 22 & 22 & 23 \\ 24 & 23 & 24 & 24 & 26 & 27 & 28 \\ 24 & 29 \end{array}$ |  |  |
| 303035 |  |  |

## Stem \& leaf plot

- Contains actual data
- Collapses tails

| quency | m | Leaf |
| :---: | :---: | :---: |
| 7.00 | 1 |  |
| 192.00 | 1 | 22223333333 |
| 541.00 | 1 | 444444444444444455555555555555 |
| 610.00 | 1 | 6666666666666677777777777777777777 |
| 849.00 | 1 | 88888888888888888888888888899999999999999999999 |
| 614.00 | 2 | 000000000000000011111111111111111 |
| 602.00 | 2 | 222222222222222233333333333333333 |
| 447.00 | 2 | 4444444444444455555555555 |
| 291.00 | 2 | 66666666677777777 |
| 240.00 | 2 | 88888889999999 |
| 167.00 | 3 | 000001111 |
| 146.00 | 3 | 22223333 |
| 153.00 | 3. | 44445555 |
| 118.00 | 3 | 666777 |
| 99.00 | 3. | 888999 |
| 106.00 | 4 | 000111 |
| 54.00 | 4. |  |
| 339.00 E | remes | (>=43) |

$\qquad$ whisker)

- Useful for interval and ratio data
- Represents min., max, median, quartiles, \& outliers


## Box plot

- Alternative to histogram
- Useful for screening
- Useful for comparing variables
- Can get messy - too much info
- Confusing to unfamiliar reader



## Histogram

- For continuous data
- X-axis needs a happy medium for \# of categories
- Y-axis matters (can exaggerate)

Histogram of male \& female heights $\qquad$


FIGURE 2.3.11 Histogram of heights constructed using the people. Photograph by Peter Morenus in conjunction with Prof. Linda Strausberg, University of Connecticut. Subjects are University of Connecticut genetics students, females in white tops, males in dark tops.

## Line graph

- Alternative to histogram
- Implies continuity e.g., time
- Can show multiple lines



## Summary:

Graphs \& levels of measurement

|  | NOIR |
| :--- | :---: |
| Bar chart \& pie chart | NOI |
| Histogram | IR |
| Stem \& leaf | $I R$ |
| Data plot \& box plot | $I R$ |
| Error-bar | $I R$ |
| Line graph | $I R$ |
|  |  |



## Graphical integrity

(part of academic integrity)
"Like good writing, good graphical displays of data communicate ideas with clarity, precision, and efficiency.

Like poor writing, bad graphical displays distort or obscure the data, make it harder to understand or compare, or otherwise thwart the communicative effect which the graph should convey."

Michael Friendly -
Gallery of Data Visualisation

## Tufte's graphical integrity

- Some lapses intentional, some not
- Lie Factor = size of effect in graph size of effect in data
- Misleading uses of area
- Misleading uses of perspective
- Leaving out important context
- Lack of taste and aesthetics


## Review questions

1.If a survey question produces a 'floor effect', where will the mean, median and mode lie in relation to one another?
2.Would you expect the mean \# of cars owned in Australia to exceed the median?

## Review questions

3.Would you expect the mean score on an easy test to exceed the median performance?
4.Over the last century, the performance of the best baseball hitters has declined. Does this imply that the overall performance of baseball batters has decreased?

Review exercise:
Fill in the cells in this table
Level
Properties Examples Descriptive Graphs Statistics
Nominal
/Categorical
Ordinal /
Rank
Interval

Ratio


## Links

- Presenting Data - Statistics Glossary v1.1http://www.cas.lancs.ac.uk/glossary_v1.1/presdata.html
- A Periodic Table of Visualisation Methods -http://www.visual-literacy.org/periodic_table/periodic_table.html
- Gallery of Data Visualization http://www.math.yorku.ca/SCS/Gallery/
- Univariate Data Analysis - The Best \& Worst of Statistical Graphs - http://www.csulb.edu/~msaintg/ppa696/696uni.htm
- Pitfalls of Data Analysis -
http://www.vims.edu/~david/pitfalls/pitfalls.htm
- Statistics for the Life Sciences -http://www.math.sfu.ca/~cschwarz/Stat-301/Handouts/Handouts.


## References

1. Cleveland, W. S. (1985). The elements of graphing data. Monterey, CA: Wadsworth.
2. Jones, G. E. (2006). How to lie with charts. Santa Monica, CA: LaPuerta.
3. Tufte, E. (1983). The visual display of quantitative information. Cheshire, CT: Graphics Press.

## Open Office Impress

- This presentation was made using Open Office Impress.
- Free and open source software.
- http://www.openoffice.org/product/impress.html


