CORDIC Fixed Point Simulation

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Based on the following site:

drdobbs.com

"Implementing CORDIC Algorithms", P. Jarvis, Dr Dobb's

ANSI-C version of the above by P. Knoppers.

Circular

```
void Circular (long x, long y, long z)
                                                                     x \rightarrow x'_{i+1} = (x'_{i} - y'_{i} \sigma_{i} 2^{-i})
                                                                     y \longrightarrow y'_{i+1} = (x'_i \sigma_i 2^{-i} + y'_i)
   int i;
   X = X;
                                                                     \mathbf{Z} \Longrightarrow \alpha_{i+1} = \alpha_i - \tan(\sigma_i 2^{-i})
   Y = y;
   Z = z;
   for (i = 0; i <= fractionBits; ++i)
         x = X \gg i; X \cdot 2^{-i}

y = Y \gg i; Y \cdot 2^{-i}
          z = atan[i];
         X \rightarrow Delta(y, Z); \longrightarrow X = (X - Y \sigma_i 2^{-i})
          Y += Delta (x, Z); y'_{i+1} = (x'_i \sigma_i 2^{-i} + y'_i)
         Z = Delta(z, Z);
```

Delta

#define Delta(n, Z)
$$(Z \ge 0)$$
? (n): -(n)

$$-2\pi$$
 $-\pi$ 0 π 2π

References

- [1] http://en.wikipedia.org/
- [2] "Implementing CORDIC Algorithms", P. Jarvis, Dr Dobb's
- [3] ANSI-C version of [2] by P. Knoppers.