Convolution (1A)

•

Copyright (c) 2010 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Convolution: delayed response of h(t)

(1)

Time Invariant

Convolution: delayed response of h(t)

(3)

$$\delta(t-v)$$
 $h(t-v)$

$$x(v) \delta(t-v)$$
 $x(v) h(t-v)$

$$x(v) h(t-v)$$

input value at time v $\rightarrow x(v)$ delayed impulse response \rightarrow x(v) h(t - v)

Convolution: Commutative Law

$$x(t) \Longrightarrow h(t) \Longrightarrow y(t)$$

$$x(v) \qquad h(v) \xrightarrow{\text{Flip}} h(-v) \xrightarrow{\text{Shift}} h(t-v)$$

$$\int x(v)h(t-v) dv = y(t)$$

$$\int h(v)x(t-v) dv = y(t)$$

$$h(v) \qquad x(v) \xrightarrow{\text{Flip}} x(-v) \xrightarrow{\text{Shift}} x(t-v)$$

$$h(t) \Longrightarrow x(t) \Longrightarrow y(t)$$

$$LTI$$

Convolution: delayed response of x(t)

(1)

delayed response by 1

Convolution: delayed response of x(t)

(3)

FIR and IIR

y(t)

Finite Impulse Response

Finite Duration

Impulse response x(t)

Infinite Impulse Response

Infinite Duration

Frequency Response

$$y(t) = h(t) * x(t) = \int_{-\infty}^{+\infty} h(\tau) x(t - \tau) d\tau$$

$$x(t) = A e^{j\Phi} e^{j\omega t} \qquad h(t) \qquad y(t) = H(jw) \cdot A e^{j\Phi} e^{j\omega t}$$

$$y(t) = \int_{-\infty}^{+\infty} h(\tau) A e^{j\Phi} e^{jw(t-\tau)} d\tau$$

$$= \int_{-\infty}^{+\infty} h(\tau) A e^{j\Phi} e^{jwt} e^{-j\omega\tau} d\tau$$

$$= A e^{j\Phi} e^{jwt} \cdot \int_{-\infty}^{+\infty} h(\tau) e^{-j\omega\tau} d\tau$$

$$= x(t) \cdot H(jw)$$

Frequency Response

$$y(t) = h(t) * x(t) = \int_{-\infty}^{+\infty} h(\tau) x(t - \tau) d\tau$$

$$x(t) \qquad h(t) \qquad y(t)$$

$$\delta(t) \qquad h(t) \qquad h(t)$$

$$A e^{j\Phi} e^{j\Theta t} \qquad h(t) \qquad H(j\Theta) A e^{j\Phi} e^{j\Theta t}$$

$$single frequency component : \Theta$$

$$H(j\omega) = \int_{-\infty}^{+\infty} h(\tau) e^{-j\omega\tau} d\tau$$

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003