Estimator for classifier error distributions.
Functions
auto_null_dist(dist) | Cheater for human beings – wraps dist if needed with some |
is_datasetlike(obj) | Check if an object looks like a Dataset. |
kstest(rvs, cdf[, args, N, alternative, mode]) | Perform the Kolmogorov-Smirnov test for goodness of fit. |
match_distribution(data[, nsamples, loc, ...]) | Determine best matching distribution. |
nanmean(x[, axis]) | Compute the mean over the given axis ignoring NaNs. |
Classes
AdaptiveNormal(dist, **kwargs) | Adaptive Normal Distribution: params are (0, sqrt(1/nfeatures)) .. |
AdaptiveNullDist(dist, **kwargs) | Adaptive distribution which adjusts parameters according to the data WiP: internal implementation might change .. |
AdaptiveRDist(dist, **kwargs) | Adaptive rdist: params are (nfeatures-1, 0, 1) .. |
AttributePermutator(attr[, count, limit, assure]) | Node to permute one a more attributes in a dataset. |
ClassWithCollections([descr]) | Base class for objects which contain any known collection Classes inherited from this class gain ability to access collections and their items as simple attributes. |
ConditionalAttribute([enabled]) | Simple container intended to conditionally store the value .. |
Dataset(samples[, sa, fa, a]) | Generic storage class for datasets with multiple attributes. |
FixedNullDist(dist, **kwargs) | Proxy/Adaptor class for SciPy distributions. |
MCNullDist(permutator[, dist_class, measure]) | Null-hypothesis distribution is estimated from randomly permuted data labels. |
Nonparametric(dist_samples[, correction]) | Non-parametric 1d distribution – derives cdf based on stored values. |
NullDist([tail]) | Base class for null-hypothesis testing. |
rv_semifrozen(dist[, loc, scale, args]) | Helper proxy-class to fit distribution when some parameters are known It is an ugly hack with snippets of code taken from scipy, which is Copyright (c) 2001, 2002 Enthought, Inc. |