Mapper using a self-organizing map (SOM) for dimensionality reduction.
This mapper provides a simple, but pretty fast implementation of a self-organizing map using an unsupervised training algorithm. It performs a ND -> 2D mapping, which can for, example, be used for visualization of high-dimensional data.
This SOM implementation uses squared Euclidean distance to determine the best matching Kohonen unit and a Gaussian neighborhood influence kernel.
Notes
Available conditional attributes:
(Conditional attributes enabled by default suffixed with +)
Methods
forward(data) | Map data from input to output space. |
forward1(data) | Wrapper method to map single samples. |
generate(ds) | Yield processing results. |
get_postproc() | Returns the post-processing node or None. |
get_space() | Query the processing space name of this node. |
reset() | |
reverse(data) | Reverse-map data from output back into input space. |
reverse1(data) | Wrapper method to map single samples. |
set_postproc(node) | Assigns a post-processing node Set to None to disable postprocessing. |
set_space(name) | Set the processing space name of this node. |
train(ds) | The default implementation calls _pretrain(), _train(), and finally _posttrain(). |
untrain() | Reverts changes in the state of this node caused by previous training |
Parameters: | kshape : (int, int)
niter : int
learning_rate : float
iradius : float or None
enable_ca : None or list of str
disable_ca : None or list of str
|
---|
Methods
forward(data) | Map data from input to output space. |
forward1(data) | Wrapper method to map single samples. |
generate(ds) | Yield processing results. |
get_postproc() | Returns the post-processing node or None. |
get_space() | Query the processing space name of this node. |
reset() | |
reverse(data) | Reverse-map data from output back into input space. |
reverse1(data) | Wrapper method to map single samples. |
set_postproc(node) | Assigns a post-processing node Set to None to disable postprocessing. |
set_space(name) | Set the processing space name of this node. |
train(ds) | The default implementation calls _pretrain(), _train(), and finally _posttrain(). |
untrain() | Reverts changes in the state of this node caused by previous training |
Provide access to the Kohonen layer.
With some care.