Gaussian Process Regression (GPR).
Functions
NLAcholesky(a) | Cholesky decomposition. |
NLAsolve(a, b) | Solve a linear matrix equation, or system of linear scalar equations. |
Ndiag(v[, k]) | Extract a diagonal or construct a diagonal array. |
Ndot(a, b[, out]) | Dot product of two arrays. |
SLcho_solve(c_and_lower, b[, overwrite_b, ...]) | Solve the linear equations A x = b, given the Cholesky factorization of A. |
SLcholesky(a[, lower, overwrite_a, check_finite]) | Compute the Cholesky decomposition of a matrix. |
accepts_dataset_as_samples(fx) | Decorator to extract samples from Datasets. |
array(object[, dtype, copy, order, subok, ndmin]) | Create an array. |
asarray(a[, dtype, order]) | Convert the input to an array. |
Classes
Classifier([space]) | Abstract classifier class to be inherited by all classifiers .. |
ConditionalAttribute([enabled]) | Simple container intended to conditionally store the value .. |
Dataset(samples[, sa, fa, a]) | Generic storage class for datasets with multiple attributes. |
GPR([kernel]) | Gaussian Process Regression (GPR). |
GPRLinearWeights(clf[, force_train]) | SensitivityAnalyzer that reports the weights GPR trained |
GeneralizedLinearKernel(*args, **kwargs) | The linear kernel class. |
LinearKernel(*args, **kwargs) | Simple linear kernel: K(a,b) = a*b.T .. |
Parameter(default[, ro, index, value, name, doc]) | This class shall serve as a representation of a parameter. |
Sensitivity(clf[, force_train]) | Sensitivities of features for a given Classifier. |
SquaredExponentialKernel([length_scale, sigma_f]) | The Squared Exponential kernel class. |
Exceptions
Classifier([space]) | Abstract classifier class to be inherited by all classifiers .. |
ConditionalAttribute([enabled]) | Simple container intended to conditionally store the value .. |
Dataset(samples[, sa, fa, a]) | Generic storage class for datasets with multiple attributes. |
GPR([kernel]) | Gaussian Process Regression (GPR). |
GPRLinearWeights(clf[, force_train]) | SensitivityAnalyzer that reports the weights GPR trained |
GeneralizedLinearKernel(*args, **kwargs) | The linear kernel class. |
LinearKernel(*args, **kwargs) | Simple linear kernel: K(a,b) = a*b.T .. |
Parameter(default[, ro, index, value, name, doc]) | This class shall serve as a representation of a parameter. |
Sensitivity(clf[, force_train]) | Sensitivities of features for a given Classifier. |
SquaredExponentialKernel([length_scale, sigma_f]) | The Squared Exponential kernel class. |