Mapper to execute a callable with two datasets as arguments.
The first dataset is passed to the mapper during training, the second dataset is passed to forward/call(). This mapper is useful to, for example, compare two datasets regarding particular aspects, merge them, or perform other operations that require the presence of two datasets.
Notes
Available conditional attributes:
(Conditional attributes enabled by default suffixed with +)
Methods
forward(data) | Map data from input to output space. |
forward1(data) | Wrapper method to map single samples. |
generate(ds) | Yield processing results. |
get_postproc() | Returns the post-processing node or None. |
get_space() | Query the processing space name of this node. |
reset() | |
reverse(data) | Reverse-map data from output back into input space. |
reverse1(data) | Wrapper method to map single samples. |
set_postproc(node) | Assigns a post-processing node Set to None to disable postprocessing. |
set_space(name) | Set the processing space name of this node. |
train(ds) | The default implementation calls _pretrain(), _train(), and finally _posttrain(). |
untrain() | Reverts changes in the state of this node caused by previous training |
Parameters: | fx : callable
train_as_1st : bool
enable_ca : None or list of str
disable_ca : None or list of str
auto_train : bool
force_train : bool
space: str, optional :
postproc : Node instance, optional
descr : str
|
---|
Examples
>>> from mvpa2.mappers.fxy import FxyMapper
>>> from mvpa2.datasets import Dataset
>>> callable = lambda x,y: len(x) > len(y)
>>> ds1 = Dataset(range(5))
>>> ds2 = Dataset(range(3))
>>> fxy = FxyMapper(callable)
>>> fxy.train(ds1)
>>> fxy(ds2).item()
True
>>> fxy = FxyMapper(callable, train_as_1st=False)
>>> fxy.train(ds1)
>>> fxy(ds2).item()
False
Methods
forward(data) | Map data from input to output space. |
forward1(data) | Wrapper method to map single samples. |
generate(ds) | Yield processing results. |
get_postproc() | Returns the post-processing node or None. |
get_space() | Query the processing space name of this node. |
reset() | |
reverse(data) | Reverse-map data from output back into input space. |
reverse1(data) | Wrapper method to map single samples. |
set_postproc(node) | Assigns a post-processing node Set to None to disable postprocessing. |
set_space(name) | Set the processing space name of this node. |
train(ds) | The default implementation calls _pretrain(), _train(), and finally _posttrain(). |
untrain() | Reverts changes in the state of this node caused by previous training |